1
|
Porvari K, Horioka K, Kaija H, Pakanen L. Amphiregulin is overexpressed in human cardiac tissue in hypothermia deaths; associations between the transcript and stress hormone levels in cardiac deaths. Ann Med 2024; 56:2420862. [PMID: 39506618 PMCID: PMC11544741 DOI: 10.1080/07853890.2024.2420862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/15/2024] [Accepted: 10/08/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Amphiregulin (AREG) is a growth factor linked to cardioprotection and heart pathology during myocardial stress. Our aim was to investigate cardiac AREG expression, its potential as a postmortem hypothermia marker and its possible stress hormone dependency in different types of deaths. MATERIALS AND METHODS Heart RNA was isolated from hypothermic, cardiac and non-cardiac deaths. Relative AREG mRNA levels and urine stress hormone concentrations were measured by qPCR and enzyme-linked immunosorbent assays from eight different death cause groups. Receiver operating characteristic curve was used to evaluate a cut-off point for AREG expression as a hypothermia marker. Regulatory elements were predicted by PROMO. RESULTS The AREG mRNA levels were significantly higher in hypothermic deaths than in most cardiac and non-cardiac deaths. AREG expression indicated hypothermic deaths with nearly 70% sensitivity and specificity. However, high expression levels were also detected in non-ischaemic deaths. The highest concentrations of adrenaline and cortisol were detected in hypothermic deaths, while the highest noradrenaline concentrations associated with atherosclerotic heart disease (AHD) deaths with acute myocardial infarction and trauma deaths. There were no significant correlations between stress hormones and AREG mRNA in hypothermic and non-cardiac deaths, whereas moderate-to-high associations were detected in cardiac deaths. Putative response elements for cortisol and catecholamines were found in AREG. CONCLUSIONS Severe hypothermia activates cardiac AREG expression practicable as a postmortem hypothermia marker. Cortisol and catecholamines may act as transcriptional modifiers of this gene, especially in long-term ischaemic heart disease. However, the exact role of these hormones in upregulation of AREG during hypothermia remains unclear.
Collapse
Affiliation(s)
- Katja Porvari
- Research Unit of Biomedicine and Internal Medicine, Department of Forensic Medicine, Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Kie Horioka
- Research Unit of Biomedicine and Internal Medicine, Department of Forensic Medicine, Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Helena Kaija
- Research Unit of Biomedicine and Internal Medicine, Department of Forensic Medicine, Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Lasse Pakanen
- Research Unit of Biomedicine and Internal Medicine, Department of Forensic Medicine, Medical Research Center Oulu, University of Oulu, Oulu, Finland
- Forensic Medicine Unit, Finnish Institute for Health and Welfare, Oulu, Finland
| |
Collapse
|
2
|
Overexpressed cold inducible RNA-binding protein improves cell viability and EGF expression in glial cells. BMC Mol Cell Biol 2022; 23:58. [PMID: 36526996 PMCID: PMC9756664 DOI: 10.1186/s12860-022-00460-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Cold inducible RNA-binding protein (CIRP) is a key protein in the hypothermic therapy. Highly expressed CIRP exerts a neuroprotective effect on neurons. The aim of this study is to provide the evidence of the protective effects of CIRP on the glial cells and explore the downstream pathway of CIRP. RESULTS The results of this study demonstrated that the cell viability of the glial cells with CIRP overexpression was increased significantly compared to the control. With CIRP overexpression, the epidermal growth factor (EGF) mRNA expression was found increasing significantly and the mRNA expressions of derived neurotrophic factor (BDNF), bcl-2, vascular endothelial growth factor (VEGF) and nerve growth factor (NGF) were not upregulated compared to the control. EGF and CIRP co-expression was demonstrated on the glial cells. With CIRP expression, EGF expression on the glial cells was increased statistically compared to the control. CONCLUSION CIRP overexpression increases the cell viability of the glial cells, exerting a neuroprotective effect. EGF expression is activated on the glial cells with CIRP overexpression, implying a pathway of CIRP neuroprotection via EGF activation.
Collapse
|
3
|
Metzger K, Dannenberger D, Tuchscherer A, Ponsuksili S, Kalbe C. Effects of temperature on proliferation of myoblasts from donor piglets with different thermoregulatory maturities. BMC Mol Cell Biol 2021; 22:36. [PMID: 34174812 PMCID: PMC8236195 DOI: 10.1186/s12860-021-00376-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/10/2021] [Indexed: 12/13/2022] Open
Abstract
Background Climate change and the associated risk for the occurrence of extreme temperature events or permanent changes in ambient temperature are important in the husbandry of farm animals. The aim of our study was to investigate the effects of permanent cultivation temperatures below (35 °C) and above (39 °C, 41 °C) the standard cultivation temperature (37 °C) on porcine muscle development. Therefore, we used our porcine primary muscle cell culture derived from satellite cells as an in vitro model. Neonatal piglets have limited thermoregulatory stability, and several days after birth are required to maintain their body temperature. To consider this developmental step, we used myoblasts originating from thermolabile (five days of age) and thermostable piglets (twenty days of age). Results The efficiency of myoblast proliferation using real-time monitoring via electrical impedance was comparable at all temperatures with no difference in the cell index, slope or doubling time. Both temperatures of 37 °C and 39 °C led to similar biochemical growth properties and cell viability. Only differences in the mRNA expression of myogenesis-associated genes were found at 39 °C compared to 37 °C with less MYF5, MYOD and MSTN and more MYH3 mRNA. Myoblasts grown at 35 °C are smaller, exhibit higher DNA synthesis and express higher amounts of the satellite cell marker PAX7, muscle growth inhibitor MSTN and metabolic coactivator PPARGC1A. Only permanent cultivation at 41 °C resulted in higher HSP expression at the mRNA and protein levels. Interactions between the temperature and donor age showed that MYOD, MYOG, MYH3 and SMPX mRNAs were temperature-dependently expressed in myoblasts of thermolabile but not thermostable piglets. Conclusions We conclude that 37 °C to 39 °C is the best physiological temperature range for adequate porcine myoblast development. Corresponding to the body temperatures of piglets, it is therefore possible to culture primary muscle cells at 39 °C. Only the highest temperature of 41 °C acts as a thermal stressor for myoblasts with increased HSP expression, but it also accelerates myogenic development. Cultivation at 35 °C, however, leads to less differentiated myoblasts with distinct thermogenetic activity. The adaptive behavior of derived primary muscle cells to different cultivation temperatures seems to be determined by the thermoregulatory stability of the donor piglets. Supplementary Information The online version contains supplementary material available at 10.1186/s12860-021-00376-4.
Collapse
Affiliation(s)
- Katharina Metzger
- Institute of Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.,Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Dirk Dannenberger
- Institute of Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Armin Tuchscherer
- Institute of Genetics and Biometry, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Siriluck Ponsuksili
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Claudia Kalbe
- Institute of Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.
| |
Collapse
|
4
|
Bandyopadhayaya S, Ford B, Mandal CC. Cold-hearted: A case for cold stress in cancer risk. J Therm Biol 2020; 91:102608. [PMID: 32716858 DOI: 10.1016/j.jtherbio.2020.102608] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/25/2020] [Accepted: 04/25/2020] [Indexed: 02/07/2023]
Abstract
A negative correlation exists between environmental temperature and cancer risk based on both epidemiological and statistical analyses. Previously, cold stress was reported to be an effective cause of tumorigenesis. Several studies have demonstrated that cold temperature serves as a potential risk factor in cancer development. Most recently, a link was demonstrated between the effects of extreme cold climate on cancer incidence, pinpointing its impact on tumour suppressor genes by causing mutation. The underlying mechanism behind cold stress and its association with tumorigenesis is not well understood. Hence, this review intends to shed light on the role of associated factors, genetic and/or non-genetic, which are modulated by cold temperature, and eventually influence tumorigenic potential. While scrutinizing the effect of cold exposure on the body, the expression of certain genes, e.g. uncoupled proteins and heat-shock proteins, were elevated. Biological chemicals such as norepinephrine, thyroxine, and cholesterol were also elevated. Brown adipose tissue, which plays an essential role in thermogenesis, displayed enhanced activity upon cold exposure. Adaptive measures are utilized by the body to tolerate the cold, and in doing so, invites both epigenetic and genetic changes. Unknowingly, these adaptive strategies give rise to a lethal outcome i.e., genesis of cancer. Concisely, this review attempts to draw a link between cold stress, genetic and epigenetic changes, and tumorigenesis and aspires to ascertain the mechanism behind cold temperature-mediated cancer risk.
Collapse
Affiliation(s)
| | - Bridget Ford
- Department of Biology, University of the Incarnate Word, San Antonio, TX, 78209, USA
| | - Chandi C Mandal
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, 305817, India.
| |
Collapse
|
5
|
Shi H, Yao R, Lian S, Liu P, Liu Y, Yang YY, Yang H, Li S. Regulating glycolysis, the TLR4 signal pathway and expression of RBM3 in mouse liver in response to acute cold exposure. Stress 2019; 22:366-376. [PMID: 30821572 DOI: 10.1080/10253890.2019.1568987] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
At low temperatures, the liver increases glucose utilization and expresses RNA-binding motif 3 (RBM3) to cope with cold exposure. In this study, the expression of heat shock protein 70 (HSP70), Toll-like receptor 4 (TLR4), bone marrow differentiation factor 88 (MYD88), and phosphorylated nuclear factor-κB (NF-κB) was consistent with fluctuations in insulin in fasted cold-exposed mice. We also found up-regulation of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) in acute cold exposure with a decrease in core body temperature. RBM3 transcription and translation were activated 2 h after cold exposure. The anti-apoptotic factor Bcl-2/Bax ratio also increased, while expression of apoptosis factors: cleaved caspase-3, cleaved poly(ADP-ribose)polymerase 1 (PARP-1) and cytochrome-c (Cyt-c) was unchanged. Liver glycogen was depleted after 2 h of cold exposure, and blood glucose decreased after 4 h. Glycogen synthase kinase 3β (GSK3β) phosphorylation continued to increase to promote hepatic glycogen synthesis. We found a high level of protein kinase B (AKT) phosphorylation after 6 h of cold exposure. In addition, we demonstrated that after cold exposure for 2 h, in the liver, continued phosphorylation of fructose-2,6-diphosphate (PFKFB2) and decreased accumulation of glycogen intermediates fructose-1,6-diphosphate (FDP) and pyruvic acid (PA). In summary, the liver responds to cold exposure through a number of different pathways, including activation of HSP70/TLR4 signaling pathways, up-regulation of RBM3 expression, and increased glycolysis and glycogen synthesis. We propose a possible signaling pathway in which regulation of RBM3 expression by the liver affects the AKT metabolic signaling pathway. Lay summary In response to changes in ambient temperature, mice regulate global metabolism and gene expression through hormones. This study focused on the effects of environmental hypothermia on molecular pathways of glucose metabolism in the liver, which is the important metabolic organ in mice. This provides a basis for further study of mice against cold exposure damage.
Collapse
Affiliation(s)
- Hongzhao Shi
- a College of Animal Science and Veterinary Medicine , Heilongjiang Bayi Agricultural University , Daqing , PR China
| | - Ruizhi Yao
- a College of Animal Science and Veterinary Medicine , Heilongjiang Bayi Agricultural University , Daqing , PR China
| | - Shuai Lian
- a College of Animal Science and Veterinary Medicine , Heilongjiang Bayi Agricultural University , Daqing , PR China
| | - Peng Liu
- a College of Animal Science and Veterinary Medicine , Heilongjiang Bayi Agricultural University , Daqing , PR China
| | - Yang Liu
- a College of Animal Science and Veterinary Medicine , Heilongjiang Bayi Agricultural University , Daqing , PR China
| | - Yu Ying Yang
- a College of Animal Science and Veterinary Medicine , Heilongjiang Bayi Agricultural University , Daqing , PR China
| | - Huanmin Yang
- a College of Animal Science and Veterinary Medicine , Heilongjiang Bayi Agricultural University , Daqing , PR China
| | - Shize Li
- a College of Animal Science and Veterinary Medicine , Heilongjiang Bayi Agricultural University , Daqing , PR China
| |
Collapse
|
6
|
Kaija H, Pakanen L, Porvari K. RNU6B, a frequent reference in miRNA expression studies, differentiates between deaths caused by hypothermia and chronic cardiac ischemia. Int J Legal Med 2019; 134:159-162. [PMID: 30904931 PMCID: PMC6949321 DOI: 10.1007/s00414-019-02041-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/06/2019] [Indexed: 01/31/2023]
Abstract
Here, we tested the usefulness of small non-coding RNAs as references in quantitative RT-PCR expression analyses in hypothermia and chronic cardiac ischemia as the primary causes of death. Cq values of RNU6B, SCARNA17, SNORD25, and SNORA73A were determined from human cadaver samples of hypothermia and cardiac deaths. Average Cq values of RNU6B were higher in hypothermic and average SCARNA17 Cq values in chronic ischemic samples, but no difference in SNORD25 and SNORA73A Cq values could be seen between the groups. RNU6B expression levels were calculated using SNORD25, SNORA73A, and their combination as the reference in normalization. Expression of RNU6B, a widely used reference, was found to be significantly lower in hypothermia than in chronic cardiac ischemia. In these conditions, RNU6B is a useful marker differentiating hypothermia deaths from chronic ischemic heart disease deaths, but not a valid reference for normalization in expression studies.
Collapse
Affiliation(s)
- Helena Kaija
- Faculty of Medicine, Research Unit of Internal Medicine, Department of Forensic Medicine, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, P.O. Box 5000, FI-90014, Oulu, Finland
| | - Lasse Pakanen
- Faculty of Medicine, Research Unit of Internal Medicine, Department of Forensic Medicine, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, P.O. Box 5000, FI-90014, Oulu, Finland.,Forensic Medicine Unit, National Institute for Health and Welfare, P.O. Box 310, FI-90101, Oulu, Finland
| | - Katja Porvari
- Faculty of Medicine, Research Unit of Internal Medicine, Department of Forensic Medicine, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, P.O. Box 5000, FI-90014, Oulu, Finland. .,Faculty of Medicine, Research Unit of Cancer Research and Translational Medicine, Department of Pathology, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, P.O. Box 5000, FI-90014, Oulu, Finland.
| |
Collapse
|
7
|
Montaldo P, Kaforou M, Pollara G, Hervás-Marín D, Calabria I, Panadero J, Pedrola L, Lally PJ, Oliveira V, Kage A, Atreja G, Mendoza J, Soe A, Pattnayak S, Shankaran S, Vento M, Herberg J, Thayyil S. Whole Blood Gene Expression Reveals Specific Transcriptome Changes in Neonatal Encephalopathy. Neonatology 2019; 115:68-76. [PMID: 30304723 PMCID: PMC6425817 DOI: 10.1159/000492420] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 07/24/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Variable responses to hypothermic neuroprotection are related to the clinical heterogeneity of encephalopathic babies; hence better disease stratification may facilitate the development of individualized neuroprotective therapies. OBJECTIVES We examined if whole blood gene expression analysis can identify specific transcriptome profiles in neonatal encephalopathy. MATERIAL AND METHODS We performed next-generation sequencing on whole blood RNA from 12 babies with neonatal encephalopathy and 6 time-matched healthy term babies. Genes significantly differentially expressed between encephalopathic and control babies were identified. This set of genes was then compared to the host RNA response in septic neonates and subjected to pathway analysis. RESULTS We identified 950 statistically significant genes discriminating perfectly between healthy controls and neonatal encephalopathy. The major pathways in neonatal encephalopathy were axonal guidance signaling (p = 0.0009), granulocyte adhesion and diapedesis (p = 0.003), IL-12 signaling and production in macrophages (p = 0.003), and hypoxia-inducible factor 1α signaling (p = 0.004). There were only 137 genes in common between neonatal encephalopathy and bacterial sepsis sets. CONCLUSION Babies with neonatal encephalopathy have striking differences in gene expression profiles compared with healthy control and septic babies. Gene expression profiles may be useful for disease stratification and for developing personalized neuroprotective therapies.
Collapse
Affiliation(s)
- Paolo Montaldo
- Centre for Perinatal Neuroscience, Imperial College London, London, United .,Neonatal Unit, Università degli Studi della Campania "Luigi Vanvitelli,", Naples,
| | - Myrsini Kaforou
- Paediatric Infectious Diseases, Imperial College London, London, United Kingdom
| | - Gabriele Pollara
- Infection and Immunity, University College London, London, United Kingdom
| | | | | | | | - Laia Pedrola
- Health Research Institute La Fe, Valencia, Spain
| | - Peter J Lally
- Centre for Perinatal Neuroscience, Imperial College London, London, United Kingdom
| | - Vânia Oliveira
- Centre for Perinatal Neuroscience, Imperial College London, London, United Kingdom
| | - Anup Kage
- Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Gaurav Atreja
- Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Josephine Mendoza
- Centre for Perinatal Neuroscience, Imperial College London, London, United Kingdom
| | - Aung Soe
- Medway NHS Foundation Trust, Gillingham, United Kingdom
| | | | - Seetha Shankaran
- Neonatal-Perinatal Division, Wayne State University, Detroit, Michigan, USA
| | - Máximo Vento
- Health Research Institute La Fe, Valencia, Spain
| | - Jethro Herberg
- Paediatric Infectious Diseases, Imperial College London, London, United Kingdom
| | - Sudhin Thayyil
- Centre for Perinatal Neuroscience, Imperial College London, London, United Kingdom
| |
Collapse
|
8
|
Mei C, He SS, Yin P, Xu L, Shi YR, Yu XH, Lyu A, Liu FH, Jiang LS. Magnolol pretreatment attenuates heat stress-induced IEC-6 cell injury. J Zhejiang Univ Sci B 2017; 17:413-24. [PMID: 27256675 DOI: 10.1631/jzus.b1500261] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Heat stress (HS) is an important environmental stressor that adversely influences livestock during the summer. The aim of this study was to investigate whether magnolol protects against HS-induced intestinal epithelial cell injury. MATERIALS AND METHODS An intestinal epithelial cell line (IEC-6) was subjected to HS at 42 °C, with and without magnolol pretreatment. Cell injury was detected by monitoring lactate dehydrogenase (LDH) release. MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay was used to assess cell proliferation and viability, including identifying effective concentrations of magnolol. Flow cytometry confirmed G1-phase cell-cycle arrest and its alleviation by magnolol. Active DNA synthesis was measured by incorporation of nucleic acid 5-ethynyl-2'-deoxyuridine (EdU). G1-phase cell-cycle-related gene expression was assessed by real-time reverse transcription polymerase chain reaction (RT-PCR) and levels of G1-phase-related proteins by Western blotting. RESULTS HS induced IEC-6 cell injury and decreased cell viability, as demonstrated by data from LDH and MTS assays, respectively. Based on a number of criteria, IEC-6 cells subjected to HS were arrested in the G1 phase of the cell cycle. Magnolol pretreatment decreased HS-induced cell injury through relief of this cell-cycle arrest. CONCLUSIONS Magnolol pretreatment attenuates HS-induced injury in IEC-6 cells. Magnolol is potentially promising as a protective strategy for HS in livestock.
Collapse
Affiliation(s)
- Chen Mei
- Beijing Key Laboratory for Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Sha-Sha He
- College of Veterinary Medicine, China Agricultural University (CAU), Beijing 100193, China
| | - Peng Yin
- College of Veterinary Medicine, China Agricultural University (CAU), Beijing 100193, China
| | - Lei Xu
- Beijing Key Laboratory for Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Ya-Ran Shi
- Beijing Key Laboratory for Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Xiao-Hong Yu
- Beijing Key Laboratory for Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - An Lyu
- Beijing Key Laboratory for Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Feng-Hua Liu
- Beijing Key Laboratory for Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Lin-Shu Jiang
- Beijing Key Laboratory for Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| |
Collapse
|
9
|
Correction: Correction: Hypothermia and Rewarming Induce Gene Expression and Multiplication of Cells in Healthy Rat Prostate Tissue. PLoS One 2015; 10:e0137228. [PMID: 26305783 PMCID: PMC4549316 DOI: 10.1371/journal.pone.0137228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
10
|
Correction: Hypothermia and Rewarming Induce Gene Expression and Multiplication of Cells in Healthy Rat Prostate Tissue. PLoS One 2015; 10:e0131261. [PMID: 26066324 PMCID: PMC4466597 DOI: 10.1371/journal.pone.0131261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|