1
|
Shaked SA, Weil S, Manor R, Aflalo ED, Moscovitz S, Maman N, Maria R, Kruppke B, Hanke T, Eichler J, Ratzker B, Sokol M, Sagi A. Cuticular proteins (crusticuls) affect 3D chitin bundle nanostructure. NANOSCALE 2025. [PMID: 40405565 DOI: 10.1039/d5nr01455g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2025]
Abstract
The crustacean exoskeleton features a micrometric, three-dimensional chitin scaffold. The intricate organization of this structure makes it an ideal model for investigating scaffold proteins at the nanoscale. Periodic exoskeleton replacement during a rapid and punctual molt cycle involves proteins that govern exoskeleton formation. Relying on binary expression pattern analysis of a molt-related transcriptomic library generated from the cuticle-forming epithelium of the crayfish Cherax quadricarinatus, a family of crustacean cuticle structural proteins termed 'crusticuls' was discovered and shown to present an exoskeleton formation-related expression pattern. All nine crusticuls include a chitin-binding domain bordered by two acidic residue-rich regions, putative functional domains related to exoskeletal formation and biomineralization. Crusticuls knock-down via RNAi resulted in over 95% reduced relative expression in treated versus control crayfish, with phenotypic effects ranging from prolonged molt cycles to lethality. Crusticuls were largely absent from newly formed cuticles following knockdown, resulting in exoskeletal deformities in the three-dimensional organization of chitinous bundles at the micro- and nanometric scales. These structural alterations were phenotypically translated into changes in cuticular hardness and elasticity. The identification of crusticuls as being key for proper nanometric three-dimensional organization of cuticular chitinous scaffolds opens new avenues for synthetic scaffold bio-mimetic applications.
Collapse
Affiliation(s)
- Shai A Shaked
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Simy Weil
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Rivka Manor
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Eliahu D Aflalo
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Department of Life Sciences, Achva Academic College, Israel
| | - Sharon Moscovitz
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | - Nitzan Maman
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Raquel Maria
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Benjamin Kruppke
- Max Bergmann Center of Biomaterials, Institute of Materials Science, Technische Universität Dresden, Dresden, Germany
| | - Thomas Hanke
- Max Bergmann Center of Biomaterials, Institute of Materials Science, Technische Universität Dresden, Dresden, Germany
| | - Jerry Eichler
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | - Barak Ratzker
- Department of Materials Science and Engineering, Tel Aviv University, Ramat Aviv, Israel
| | - Maxim Sokol
- Department of Materials Science and Engineering, Tel Aviv University, Ramat Aviv, Israel
| | - Amir Sagi
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
2
|
Shaked SA, Abehsera S, Levy T, Chalifa-Caspi V, Sagi A. From sporadic single genes to a broader transcriptomic approach: Insights into the formation of the biomineralized exoskeleton in decapod crustaceans. J Struct Biol 2020; 212:107612. [PMID: 32896659 DOI: 10.1016/j.jsb.2020.107612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/27/2020] [Accepted: 08/29/2020] [Indexed: 01/01/2023]
Abstract
One fundamental character common to pancrustaceans (Crustacea and Hexapoda) is a mineralized rigid exoskeleton whose principal organic components are chitin and proteins. In contrast to traditional research in the field that has been devoted to the structural and physicochemical aspects of biomineralization, the present study explores transcriptomic aspects of biomineralization as a first step towards adding a complementary molecular layer to this field. The rigidity of the exoskeleton in pancrustaceans dictates essential molt cycles enabling morphological changes and growth. Thus, formation and mineralization of the exoskeleton are concomitant to the timeline of the molt cycle. Skeletal proteinaceous toolkit elements have been discovered in previous studies using innovative molt-related binary gene expression patterns derived from transcriptomic libraries representing the major stages comprising the molt cycle of the decapod crustacean Cherax quadricarinatus. Here, we revisited some prominent exoskeleton-related structural proteins encoding and, using the above molt-related binary pattern methodology, enlarged the transcriptomic database of C. quadricarinatus. The latter was done by establishing a new transcriptomic library of the cuticle forming epithelium and molar tooth at four different molt stages (i.e., inter-molt, early pre-molt, late pre-molt and post-molt) and incorporating it to a previous transcriptome derived from the gastroliths and mandible. The wider multigenic approach facilitated by the newly expanded transcriptomic database not only revisited single genes of the molecular toolkit, but also provided both scattered and specific information that broaden the overview of proteins and gene clusters which are involved in the construction and biomineralization of the exoskeleton in decapod crustaceans.
Collapse
Affiliation(s)
- Shai A Shaked
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Shai Abehsera
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Tom Levy
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Vered Chalifa-Caspi
- Bioinformatics Core Facility, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Amir Sagi
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
3
|
Fan S, Zheng Z, Hao R, Du X, Jiao Y, Huang R. PmCBP, a novel poly (chitin-binding domain) gene, participates in nacreous layer formation of Pinctada fucata martensii. Comp Biochem Physiol B Biochem Mol Biol 2019; 240:110374. [PMID: 31733296 DOI: 10.1016/j.cbpb.2019.110374] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 09/22/2019] [Accepted: 10/25/2019] [Indexed: 11/29/2022]
Abstract
Chitin participates in shell formation as the main component of an organic framework. Chitin-binding protein contains domains that can bind to chitin specifically. In this study, a novel chitin-binding protein from Pinctada fucata martensii (PmCBP) with poly (chitin-binding domain) was cloned, which contains a 5'-untranslated region (UTR) of 114 bp and 3'UTR of 116 bp, and encodes a putative protein of 2044 amino acids. The predicted PmCBP protein was structurally typical of the CBP family with 20 ChtBD2 domains. Phylogenetic and linear relation analyses showed that the ChtBD2 domain has a highly conserved structure among the three species of P. f. martensii, Crassostrea gigas, and Mizuhopecten yessoensis. qRT-PCR and in-situ hybridization analysis revealed that PmCBP was most abundant in the mantle pallium whose expression level was significantly correlated with the growth traits. After RNAi, PmCBP expression was significantly inhibited in the mantle pallium (P < 0.05) and the microstructure of nacreous layers showed a disordered growth in the experiment group. These results indicated that PmCBP may be involved in nacreous layer formation through participation in the process of binding chitin in pearl oyster P. f. martensii.
Collapse
Affiliation(s)
- Shanshan Fan
- Fishery College, Guangdong Ocean University, Zhanjiang, China
| | - Zhe Zheng
- Fishery College, Guangdong Ocean University, Zhanjiang, China; Guangdong Technology Research Center for Pearl Aquaculture and Process, Guangdong Ocean University, Zhanjiang, China.
| | - Ruijuan Hao
- Fishery College, Guangdong Ocean University, Zhanjiang, China
| | - Xiaodong Du
- Fishery College, Guangdong Ocean University, Zhanjiang, China; Guangdong Technology Research Center for Pearl Aquaculture and Process, Guangdong Ocean University, Zhanjiang, China.
| | - Yu Jiao
- Fishery College, Guangdong Ocean University, Zhanjiang, China; Guangdong Technology Research Center for Pearl Aquaculture and Process, Guangdong Ocean University, Zhanjiang, China
| | - Ronglian Huang
- Fishery College, Guangdong Ocean University, Zhanjiang, China; Guangdong Technology Research Center for Pearl Aquaculture and Process, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
4
|
Abehsera S, Peles S, Tynyakov J, Bentov S, Aflalo ED, Li S, Li F, Xiang J, Sagi A. MARS: A protein family involved in the formation of vertical skeletal elements. J Struct Biol 2017; 198:92-102. [DOI: 10.1016/j.jsb.2017.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 04/04/2017] [Accepted: 04/05/2017] [Indexed: 01/06/2023]
|
5
|
Nesbit KT, Roer RD. Silicification of the medial tooth in the blue crabCallinectes sapidus. J Morphol 2016; 277:1648-1660. [DOI: 10.1002/jmor.20614] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 08/23/2016] [Accepted: 08/28/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Katherine T. Nesbit
- Department of Biology and Marine Biology; University of North Carolina Wilmington; 601 S. College Road Wilmington North Carolina 28403
| | - Robert D. Roer
- Department of Biology and Marine Biology; University of North Carolina Wilmington; 601 S. College Road Wilmington North Carolina 28403
| |
Collapse
|
6
|
Tynyakov J, Bentov S, Abehsera S, Yehezkel G, Roth Z, Khalaila I, Weil S, Berman A, Plaschkes I, Tom M, Aflalo ED, Sagi A. A crayfish molar tooth protein with putative mineralized exoskeletal chitinous matrix properties. ACTA ACUST UNITED AC 2015; 218:3487-98. [PMID: 26385331 DOI: 10.1242/jeb.123539] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 09/04/2015] [Indexed: 01/08/2023]
Abstract
Some crustaceans possess exoskeletons that are reinforced with calcium carbonate. In the crayfish Cherax quadricarinatus, the molar tooth, which is part of the mandibular exoskeleton, contains an unusual crystalline enamel-like apatite layer. As this layer resembles vertebrate enamel in composition and function, it offers an interesting example of convergent evolution. Unlike other parts of the crayfish exoskeleton, which is periodically shed and regenerated during the molt cycle, molar mineral deposition takes place during the pre-molt stage. The molar mineral composition transforms continuously from fluorapatite through amorphous calcium phosphate to amorphous calcium carbonate and is mounted on chitin. The process of crayfish molar formation is entirely extracellular and presumably controlled by proteins, lipids, polysaccharides, low-molecular weight molecules and calcium salts. We have identified a novel molar protein termed Cq-M15 from C. quadricarinatus and cloned its transcript from the molar-forming epithelium. Its transcript and differential expression were confirmed by a next-generation sequencing library. The predicted acidic pI of Cq-M15 suggests its possible involvement in mineral arrangement. Cq-M15 is expressed in several exoskeletal tissues at pre-molt and its silencing is lethal. Like other arthropod cuticular proteins, Cq-M15 possesses a chitin-binding Rebers-Riddiford domain, with a recombinant version of the protein found to bind chitin. Cq-M15 was also found to interact with calcium ions in a concentration-dependent manner. This latter property might make Cq-M15 useful for bone and dental regenerative efforts. We suggest that, in the molar tooth, this protein might be involved in calcium phosphate and/or carbonate precipitation.
Collapse
Affiliation(s)
- Jenny Tynyakov
- Department of Life Sciences, Ben-Gurion University, PO Box 653, Beer-Sheva 84105, Israel National Institute for Biotechnology in the Negev, Ben-Gurion University, PO Box 653, Beer-Sheva 84105, Israel
| | - Shmuel Bentov
- Department of Life Sciences, Ben-Gurion University, PO Box 653, Beer-Sheva 84105, Israel National Institute for Biotechnology in the Negev, Ben-Gurion University, PO Box 653, Beer-Sheva 84105, Israel
| | - Shai Abehsera
- Department of Life Sciences, Ben-Gurion University, PO Box 653, Beer-Sheva 84105, Israel
| | - Galit Yehezkel
- Department of Biotechnology Engineering, Ben-Gurion University, PO Box 653, Beer-Sheva 84105, Israel
| | - Ziv Roth
- Department of Life Sciences, Ben-Gurion University, PO Box 653, Beer-Sheva 84105, Israel
| | - Isam Khalaila
- Department of Biotechnology Engineering, Ben-Gurion University, PO Box 653, Beer-Sheva 84105, Israel
| | - Simy Weil
- Department of Life Sciences, Ben-Gurion University, PO Box 653, Beer-Sheva 84105, Israel
| | - Amir Berman
- Department of Biotechnology Engineering, Ben-Gurion University, PO Box 653, Beer-Sheva 84105, Israel
| | - Inbar Plaschkes
- National Institute for Biotechnology in the Negev, Ben-Gurion University, PO Box 653, Beer-Sheva 84105, Israel
| | - Moshe Tom
- Israel Oceanographic and Limnological Research, Haifa 8511911, Israel
| | - Eliahu D Aflalo
- Department of Life Sciences, Ben-Gurion University, PO Box 653, Beer-Sheva 84105, Israel National Institute for Biotechnology in the Negev, Ben-Gurion University, PO Box 653, Beer-Sheva 84105, Israel
| | - Amir Sagi
- Department of Life Sciences, Ben-Gurion University, PO Box 653, Beer-Sheva 84105, Israel National Institute for Biotechnology in the Negev, Ben-Gurion University, PO Box 653, Beer-Sheva 84105, Israel
| |
Collapse
|