1
|
Binod Kumar S, Kalwasińska A, Swiontek Brzezinska M, Wróbel M. Using halotolerant Azotobacter chroococcum W4ii from technosoils to mitigate wheat salt stress. OPEN RESEARCH EUROPE 2024; 3:76. [PMID: 39148935 PMCID: PMC11325138 DOI: 10.12688/openreseurope.15821.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 09/05/2024] [Indexed: 08/17/2024]
Abstract
Background Technosoils in Inowrocław, central Poland, are impacted by human activities and exhibit high salinity (ECe up to 70 dS/m) due to a soda lime repository. These saline environments pose challenges to plant growth and soil health. However, they also offer an opportunity for the evolution of microorganisms adapted to such conditions, including plant growth-promoting rhizospheric (PGPR) bacteria. The hypothesis tested here was that introducing PGPR bacteria from these environments could boost degraded soil performance, leading to better plant biomass and improved pathogen defense. Methods Azotobacter chroococcum W4ii was isolated from the rhizosphere of wheat ( Triticum aestivum L.) for its plant growth properties on wheat plants under salt stress. Results Wheat seeds co-inoculated with A. chroococcum W4ii under 200 mM salt stress showed significant improvement in various growth parameters such as seeds germination (by 130%), shoot biomass (15%), chlorophyll b content (40%) compared to un-inoculated ones. Bacterial inoculation decreased the level of malondialdehyde (MDA) by 55.5% (P<0.001), whereas it elevated the antioxidative enzymatic activities of peroxidase (POD) by 33.69% (P<0.001). The test isolate also significantly (P<0.05) enhanced the level of defense enzymes like β-1,3-glucanase, which can protect plants from infection by pathogens. The bacterium could also successfully colonize the wheat plants. Conclusions These results indicate that A. chroococcum isolated from the technosoil has the potential to promote wheat growth under salt stress and can be further used as a bioinoculant in the salt affected agricultural fields.
Collapse
Affiliation(s)
- Sweta Binod Kumar
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Toruń, Kuyavian-Pomeranian Voivodeship, 87-100, Poland
| | - Agnieszka Kalwasińska
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Toruń, Kuyavian-Pomeranian Voivodeship, 87-100, Poland
| | - Maria Swiontek Brzezinska
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Toruń, Kuyavian-Pomeranian Voivodeship, 87-100, Poland
| | - Monika Wróbel
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Toruń, Kuyavian-Pomeranian Voivodeship, 87-100, Poland
| |
Collapse
|
2
|
Matassa S, Boeckx P, Boere J, Erisman JW, Guo M, Manzo R, Meerburg F, Papirio S, Pikaar I, Rabaey K, Rousseau D, Schnoor J, Smith P, Smolders E, Wuertz S, Verstraete W. How can we possibly resolve the planet's nitrogen dilemma? Microb Biotechnol 2022; 16:15-27. [PMID: 36378579 PMCID: PMC9803332 DOI: 10.1111/1751-7915.14159] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/25/2022] [Accepted: 10/01/2022] [Indexed: 11/17/2022] Open
Abstract
Nitrogen is the most crucial element in the production of nutritious feeds and foods. The production of reactive nitrogen by means of fossil fuel has thus far been able to guarantee the protein supply for the world population. Yet, the production and massive use of fertilizer nitrogen constitute a major threat in terms of environmental health and sustainability. It is crucial to promote consumer acceptance and awareness towards proteins produced by highly effective microorganisms, and their potential to replace proteins obtained with poor nitrogen efficiencies from plants and animals. The fact that reactive fertilizer nitrogen, produced by the Haber Bosch process, consumes a significant amount of fossil fuel worldwide is of concern. Moreover, recently, the prices of fossil fuels have increased the cost of reactive nitrogen by a factor of 3 to 5 times, while international policies are fostering the transition towards a more sustainable agro-ecology by reducing mineral fertilizers inputs and increasing organic farming. The combination of these pressures and challenges opens opportunities to use the reactive nitrogen nutrient more carefully. Time has come to effectively recover used nitrogen from secondary resources and to upgrade it to a legal status of fertilizer. Organic nitrogen is a slow-release fertilizer, it has a factor of 2.5 or higher economic value per unit nitrogen as fertilizer and thus adequate technologies to produce it, for instance by implementing photobiological processes, are promising. Finally, it appears wise to start the integration in our overall feed and food supply chains of the exceptional potential of biological nitrogen fixation. Nitrogen produced by the nitrogenase enzyme, either in the soil or in novel biotechnology reactor systems, deserves to have a 'renaissance' in the context of planetary governance in general and the increasing number of people who desire to be fed in a sustainable way in particular.
Collapse
Affiliation(s)
- Silvio Matassa
- Department of Civil, Architectural and Environmental EngineeringUniversity of Naples Federico IINaplesItaly
| | - Pascal Boeckx
- Department of Green Chemistry and Technology, Faculty of Bioscience EngineeringGhent UniversityGhentBelgium
| | - Jos Boere
- Allied Waters B.V.NieuwegeinThe Netherlands
| | - Jan Willem Erisman
- Institute of Environmental SciencesLeiden UniversityLeidenThe Netherlands
| | - Miao Guo
- Department of Engineering, Faculty of Natural, Mathematical and Engineering SciencesKing's College LondonLondonUK
| | - Raffaele Manzo
- Department of Civil, Architectural and Environmental EngineeringUniversity of Naples Federico IINaplesItaly
| | | | - Stefano Papirio
- Department of Civil, Architectural and Environmental EngineeringUniversity of Naples Federico IINaplesItaly
| | - Ilje Pikaar
- School of Civil EngineeringThe University of QueenslandBrisbaneQueenslandAustralia
| | - Korneel Rabaey
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience EngineeringGhent UniversityGhentBelgium
| | - Diederik Rousseau
- Department of Green Chemistry and Technology, Faculty of Bioscience EngineeringGhent UniversityGhentBelgium
| | - Jerald Schnoor
- Department of Civil and Environmental EngineeringUniversity of IowaIowa CityIowaUSA
| | - Peter Smith
- Institute of Biological and Environmental SciencesUniversity of AberdeenAberdeenUK
| | - Erik Smolders
- Division Soil and Water ManagementKatholieke Universiteit LeuvenLeuvenBelgium
| | - Stefan Wuertz
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological UniversitySingaporeSingapore,School of Civil and Environmental Engineering, Nanyang Technological UniversitySingaporeSingapore
| | - Willy Verstraete
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience EngineeringGhent UniversityGhentBelgium
| |
Collapse
|
3
|
Jani M, Azad RK. Discovery of mosaic genomic islands in Pseudomonas spp. Arch Microbiol 2021; 203:2735-2742. [PMID: 33646340 DOI: 10.1007/s00203-021-02253-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 01/04/2021] [Accepted: 02/17/2021] [Indexed: 10/22/2022]
Abstract
Genomic islands, defined as large clusters of genes mobilized through horizontal gene transfer, have a profound impact on evolution of prokaryotes. Recently, we developed a new program, IslandCafe, for identifying such large localized structures in bacterial genomes. A unique attribute of IslandCafe is its ability to decipher mosaic structures within genomic islands. Mosaic genomic islands have generated immense interest due to novel traits that have been attributed to such islands. To provide the Pseudomonas research community a catalogue of mosaic islands in Pseudomonas spp., we applied IslandCafe to decipher genomic islands in 224 completely sequenced genomes of Pseudomonas spp. We also performed comparative genomic analysis using BLAST to infer potential sources of distinct segments within genomic islands. Of the total 4271 genomic islands identified in Pseudomonas spp., 1036 were found to be mosaic. We also identified drug-resistant and pathogenic genomic islands and their potential donors. Our analysis provides a useful resource for Pseudomonas research community to further examine and interrogate mosaic islands in the genomes of interest and understand their role in the emergence and evolution of novel traits.
Collapse
Affiliation(s)
- Mehul Jani
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX, USA
| | - Rajeev K Azad
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX, USA. .,Department of Mathematics, University of North Texas, Denton, TX, USA.
| |
Collapse
|
4
|
Identification of Beneficial Microbial Consortia and Bioactive Compounds with Potential as Plant Biostimulants for a Sustainable Agriculture. Microorganisms 2021; 9:microorganisms9020426. [PMID: 33669534 PMCID: PMC7922931 DOI: 10.3390/microorganisms9020426] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 01/28/2023] Open
Abstract
A growing body of evidence demonstrates the potential of various microbes to enhance plant productivity in cropping systems although their successful field application may be impaired by several biotic and abiotic constraints. In the present work, we aimed at developing multifunctional synthetic microbial consortia to be used in combination with suitable bioactive compounds for improving crop yield and quality. Plant growth-promoting microorganisms (PGPMs) with different functional attributes were identified by a bottom-up approach. A comprehensive literature survey on PGPMs associated with maize, wheat, potato and tomato, and on commercial formulations, was conducted by examining peer-reviewed scientific publications and results from relevant European projects. Metagenome fragment recruitments on genomes of potential PGPMs represented in databases were also performed to help identify plant growth-promoting (PGP) strains. Following evidence of their ability to coexist, isolated PGPMs were synthetically assembled into three different microbial consortia. Additionally, the effects of bioactive compounds on the growth of individually PGPMs were tested in starvation conditions. The different combination products based on microbial and non-microbial biostimulants (BS) appear worth considering for greenhouse and open field trials to select those potentially adoptable in sustainable agriculture.
Collapse
|
5
|
Ci F, Jiang H, Zhang Z, Mao X. Properties and potential applications of mannuronan C5-epimerase: A biotechnological tool for modifying alginate. Int J Biol Macromol 2021; 168:663-675. [PMID: 33220370 DOI: 10.1016/j.ijbiomac.2020.11.123] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 11/23/2022]
Abstract
Given the excellent characteristics of alginate, it is an industrially important polysaccharide. Mannuronan C5-epimerase (MC5E) is an alginate-modifying enzyme that catalyzes the conversion of β-D-mannuronate (M) to its C5 epimer α-L-guluronate (G) in alginate. Both the biological activities and physical properties of alginate are determined by M/G ratios and distribution patterns. Therefore, MC5E is regarded as a biotechnological tool for modifying and processing alginate. Various MC5Es derived from brown algae, Pseudomonas and Azotobacter have been isolated and characterized. With the rapid development of structural biology, the crystal structures and catalytic mechanisms of several MC5Es have been elucidated. It is necessary to comprehensively understand the research status of this alginate-modifying enzyme. In this review, the properties and potential applications of MC5Es isolated from different kinds of organisms are summarized and reviewed. Moreover, future research directions of MC5Es as well as strategies to enhance their properties are elucidated, highlighted, and prospected.
Collapse
Affiliation(s)
- Fangfang Ci
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Hong Jiang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| | - Zhaohui Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
6
|
Strategy of Salt Tolerance and Interactive Impact of Azotobacter chroococcum and/or Alcaligenes faecalis Inoculation on Canola ( Brassica napus L.) Plants Grown in Saline Soil. PLANTS 2021; 10:plants10010110. [PMID: 33430173 PMCID: PMC7825586 DOI: 10.3390/plants10010110] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/27/2020] [Accepted: 12/31/2020] [Indexed: 12/11/2022]
Abstract
A pot experiment was designed and performed in a completely randomized block design (CRBD) to determine the main effect of two plant growth-promoting rhizobacteria (PGPR) and their co-inoculation on growth criteria and physio-biochemical attributes of canola plants (Brassica napus L.) plant grown in saline soil. The results showed that inoculation with two PGPR (Azotobacter chroococcum and/or Alcaligenes faecalis) energized the growth parameters and photosynthetic pigments of stressed plants. Moreover, soluble sugars’ and proteins’ contents were boosted due to the treatments mentioned above. Proline, malondialdehyde (MDA), and hydrogen peroxide (H2O2) contents were markedly declined. At the same time, antioxidant enzymes, viz. superoxide dismutase (SOD), ascorbate peroxidase (APX), and peroxidase (POD), were augmented due to the inoculation with Azotobacter chroococcum and/or Alcaligenes faecalis. Regarding minerals’ uptake, there was a decline in sodium (Na) and an increase in nitrogen (N), potassium (K), calcium (Ca), and magnesium (Mg) uptake due to the application of either individual or co-inoculation with the mentioned bacterial isolates. This study showed that co-inoculation with Azotobacter chroococcum and Alcaligenes faecalis was the most effective treatment and could be considered a premium tool used in facing environmental problems, especially saline soils.
Collapse
|
7
|
Gawin A, Tietze L, Aarstad OA, Aachmann FL, Brautaset T, Ertesvåg H. Functional characterization of three Azotobacter chroococcum alginate-modifying enzymes related to the Azotobacter vinelandii AlgE mannuronan C-5-epimerase family. Sci Rep 2020; 10:12470. [PMID: 32719381 PMCID: PMC7385640 DOI: 10.1038/s41598-020-68789-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/01/2020] [Indexed: 12/19/2022] Open
Abstract
Bacterial alginate initially consists of 1–4-linked β-D-mannuronic acid residues (M) which can be later epimerized to α-L-guluronic acid (G). The family of AlgE mannuronan C-5-epimerases from Azotobacter vinelandii has been extensively studied, and three genes putatively encoding AlgE-type epimerases have recently been identified in the genome of Azotobacter chroococcum. The three A. chroococcum genes, here designated AcalgE1, AcalgE2 and AcalgE3, were recombinantly expressed in Escherichia coli and the gene products were partially purified. The catalytic activities of the enzymes were stimulated by the addition of calcium ions in vitro. AcAlgE1 displayed epimerase activity and was able to introduce long G-blocks in the alginate substrate, preferentially by attacking M residues next to pre-existing G residues. AcAlgE2 and AcAlgE3 were found to display lyase activities with a substrate preference toward M-alginate. AcAlgE2 solely accepted M residues in the positions − 1 and + 2 relative to the cleavage site, while AcAlgE3 could accept either M or G residues in these two positions. Both AcAlgE2 and AcAlgE3 were bifunctional and could also catalyze epimerization of M to G. Together, we demonstrate that A. chroococcum encodes three different AlgE-like alginate-modifying enzymes and the biotechnological and biological impact of these findings are discussed.
Collapse
Affiliation(s)
- Agnieszka Gawin
- Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Sem Sælandsvei 6/8, 7491, Trondheim, Norway
| | - Lisa Tietze
- Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Sem Sælandsvei 6/8, 7491, Trondheim, Norway
| | - Olav A Aarstad
- Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Sem Sælandsvei 6/8, 7491, Trondheim, Norway
| | - Finn L Aachmann
- Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Sem Sælandsvei 6/8, 7491, Trondheim, Norway
| | - Trygve Brautaset
- Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Sem Sælandsvei 6/8, 7491, Trondheim, Norway
| | - Helga Ertesvåg
- Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Sem Sælandsvei 6/8, 7491, Trondheim, Norway.
| |
Collapse
|
8
|
Genome Assembly of Azotobacter chroococcum Strain W5, a Free-Living Diazotroph Isolated from India. Microbiol Resour Announc 2020; 9:9/20/e00259-20. [PMID: 32409538 PMCID: PMC7225537 DOI: 10.1128/mra.00259-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Azotobacter chroococcum strain W5 (MTCC 25045) is an effective diazotrophic bacterium with plant growth-promoting traits. Here, we report the draft genome assembly of this biologically and agronomically evaluated A. chroococcum strain. The genome assembly in 55 contigs is 4,617,864 bp long, with a G+C content of 66.83%. Azotobacter chroococcum strain W5 (MTCC 25045) is an effective diazotrophic bacterium with plant growth-promoting traits. Here, we report the draft genome assembly of this biologically and agronomically evaluated A. chroococcum strain. The genome assembly in 55 contigs is 4,617,864 bp long, with a G+C content of 66.83%.
Collapse
|
9
|
Zhang X, Baars O, Morel FMM. Genetic, structural, and functional diversity of low and high-affinity siderophores in strains of nitrogen fixing Azotobacter chroococcum. Metallomics 2020; 11:201-212. [PMID: 30444515 DOI: 10.1039/c8mt00236c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
To increase iron (Fe) bioavailability in surface soils, microbes secrete siderophores, chelators with widely varying Fe affinities. Strains of the soil bacterium Azotobacter chroococcum (AC), plant-growth promoting rhizobacteria used as agricultural inoculants, require high Fe concentrations for aerobic respiration and nitrogen fixation. Recently, A. chroococcum str. NCIMB 8003 was shown to synthesize three siderophore classes: (1) vibrioferrin, a low-affinity α-hydroxy carboxylate (pFe = 18.4), (2) amphibactins, high-affinity tris-hydroxamates, and (3) crochelin A, a high-affinity siderophore with mixed Fe-chelating groups (pFe = 23.9). The relevance and specific functions of these siderophores in AC strains remain unclear. We analyzed the genome and siderophores of a second AC strain, A. chroococcum str. B3, and found that it also produces vibrioferrin and amphibactins, but not crochelin A. Genome comparisons indicate that vibrioferrin production is a vertically inherited, conserved strategy for Fe uptake in A. chroococcum and other species of Azotobacter. Amphibactin and crochelin biosynthesis reflects a more complex evolutionary history, shaped by vertical gene transfer, gene gain and loss through recombination at a genomic hotspot. We found conserved patterns of low vs. high-affinity siderophore production across strains: the low-affinity vibrioferrin was produced by mildly Fe limited cultures. As cells became more severely Fe starved, vibrioferrin production decreased in favor of high-affinity amphibactins (str. B3, NCIMB 8003) and crochelin A (str. NCIMB 8003). Our results show the evolution of low and high-affinity siderophore families and conserved patterns for their production in response to Fe bioavailability in a common soil diazotroph.
Collapse
Affiliation(s)
- Xinning Zhang
- Department of Geosciences, Princeton University, USA.
| | | | | |
Collapse
|
10
|
Zanello P. Structure and electrochemistry of proteins harboring iron-sulfur clusters of different nuclearities. Part V. Nitrogenases. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
11
|
Abstract
Azotobacters have been used as biofertilizer since more than a century. Azotobacters fix nitrogen aerobically, elaborate plant hormones, solubilize phosphates and also suppress phytopathogens or reduce their deleterious effect. Application of wild type Azotobacters results in better yield of cereals like corn, wheat, oat, barley, rice, pearl millet and sorghum, of oil seeds like mustard and sunflower, of vegetable crops like tomato, eggplant, carrot, chillies, onion, potato, beans and sugar beet, of fruits like mango and sugar cane, of fiber crops like jute and cotton and of tree like oak. In addition to the structural genes of the enzyme nitrogenase and of other accessory proteins, A. vinelandii chromosomes contain the regulatory genes nifL and nifA. NifA must bind upstream of the promoters of all nif operons for enabling their expression. NifL on activation by oxygen or ammonium, interacts with NifA and neutralizes it. Nitrogen fixation has been enhanced by deletion of nifL and by bringing nifA under the control of a constitutive promoter, resulting in a strain that continues to fix nitrogen in presence of urea fertilizer. Additional copies of nifH (the gene for the Fe-protein of nitrogenase) have been introduced into A. vinelandii, thereby augmenting nitrogen fixation. The urease gene complex ureABC has been deleted, the ammonia transport gene amtB has been disrupted and the expression of the glutamine synthase gene has been regulated to enhance urea and ammonia excretion. Gluconic acid has been produced by introducing the glucose dehydrogenase gene, resulting in enhanced solubilization of phosphate.
Collapse
|
12
|
Velmourougane K, Prasanna R, Supriya P, Ramakrishnan B, Thapa S, Saxena AK. Transcriptome profiling provides insights into regulatory factors involved in Trichoderma viride-Azotobacter chroococcum biofilm formation. Microbiol Res 2019; 227:126292. [PMID: 31421719 DOI: 10.1016/j.micres.2019.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/30/2019] [Accepted: 06/15/2019] [Indexed: 12/14/2022]
Abstract
Azotobacter chroococcum (Az) and Trichoderma viride (Tv) represent agriculturally important and beneficial plant growth promoting options which contribute towards nutrient management and biocontrol, respectively. When Az and Tv are co-cultured, they form a biofilm, which has proved promising as an inoculant in several crops; however, the basic aspects related to regulation of biofilm formation were not investigated. Therefore, whole transcriptome sequencing (Illumina NextSeq500) and gene expression analyses were undertaken, related to biofilm formation vis a vis Tv and Az growing individually. Significant changes in the transcriptome profiles of biofilm were recorded and validated through qPCR analyses. In-depth evaluation also identified several genes (phoA, phoB, glgP, alg8, sipW, purB, pssA, fadD) specifically involved in biofilm formation in Az, Tv and Tv-Az. Genes coding for RNA-dependent RNA polymerase, ABC transporters, translation elongation factor EF-1, molecular chaperones and double homeobox 4 were either up-regulated or down-regulated during biofilm formation. To our knowledge, this is the first report on the modulation of gene expression in an agriculturally beneficial association, as a biofilm. Our results provide insights into the regulatory factors involved during biofilm formation, which can help to improve the beneficial effects and develop more effective and promising plant- microbe associations.
Collapse
Affiliation(s)
| | - Radha Prasanna
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, India.
| | - Puram Supriya
- Centre for Agricultural Bioinformatics, ICAR- Indian Agricultural Statistics Research Institute, New Delhi, India
| | | | - Shobit Thapa
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Anil Kumar Saxena
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Kusmaur, PO Kaitholi, Mau Nath Bhanjan, Uttar Pradesh 275101, India
| |
Collapse
|
13
|
Sharma M, Akhter Y, Chatterjee S. A review on remediation of cyanide containing industrial wastes using biological systems with special reference to enzymatic degradation. World J Microbiol Biotechnol 2019; 35:70. [DOI: 10.1007/s11274-019-2643-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 04/08/2019] [Indexed: 11/24/2022]
|
14
|
Akoulina E, Dudun A, Bonartsev A, Bonartseva G, Voinova V. Effect of bacterial alginate on growth of mesenchymal stem cells. INT J POLYM MATER PO 2019; 68:115-118. [DOI: 10.1080/00914037.2018.1525730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/11/2018] [Accepted: 09/15/2018] [Indexed: 10/27/2022]
Affiliation(s)
- Elizaveta Akoulina
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
- Research Center of Biotechnology RAS, Moscow, Russia
| | - Andrej Dudun
- Research Center of Biotechnology RAS, Moscow, Russia
| | - Anton Bonartsev
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
- Research Center of Biotechnology RAS, Moscow, Russia
| | | | - Vera Voinova
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
15
|
Noar JD, Bruno-Bárcena JM. Azotobacter vinelandii: the source of 100 years of discoveries and many more to come. MICROBIOLOGY-SGM 2018. [PMID: 29533747 DOI: 10.1099/mic.0.000643] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Azotobacter vinelandii has been studied for over 100 years since its discovery as an aerobic nitrogen-fixing organism. This species has proved useful for the study of many different biological systems, including enzyme kinetics and the genetic code. It has been especially useful in working out the structures and mechanisms of different nitrogenase enzymes, how they can function in oxic environments and the interactions of nitrogen fixation with other aspects of metabolism. Interest in studying A. vinelandii has waned in recent decades, but this bacterium still possesses great potential for new discoveries in many fields and commercial applications. The species is of interest for research because of its genetic pliability and natural competence. Its features of particular interest to industry are its ability to produce multiple valuable polymers - bioplastic and alginate in particular; its nitrogen-fixing prowess, which could reduce the need for synthetic fertilizer in agriculture and industrial fermentations, via coculture; its production of potentially useful enzymes and metabolic pathways; and even its biofuel production abilities. This review summarizes the history and potential for future research using this versatile microbe.
Collapse
Affiliation(s)
- Jesse D Noar
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Jose M Bruno-Bárcena
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
16
|
Baars O, Zhang X, Gibson MI, Stone AT, Morel FMM, Seyedsayamdost MR. Crochelins: Siderophores with an Unprecedented Iron‐Chelating Moiety from the Nitrogen‐Fixing Bacterium
Azotobacter chroococcum. Angew Chem Int Ed Engl 2017; 57:536-541. [DOI: 10.1002/anie.201709720] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/04/2017] [Indexed: 11/12/2022]
Affiliation(s)
- Oliver Baars
- Department of Geosciences Princeton University Princeton NJ 08544 USA
| | - Xinning Zhang
- Department of Geosciences Princeton University Princeton NJ 08544 USA
| | - Marcus I. Gibson
- Department of Chemistry Princeton University Princeton NJ 08544 USA
| | - Alan T. Stone
- Department of Environmental Health and Engineering Johns Hopkins University Baltimore MD 21218 USA
| | | | | |
Collapse
|
17
|
Baars O, Zhang X, Gibson MI, Stone AT, Morel FMM, Seyedsayamdost MR. Crochelins: Siderophores with an Unprecedented Iron‐Chelating Moiety from the Nitrogen‐Fixing Bacterium
Azotobacter chroococcum. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201709720] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Oliver Baars
- Department of Geosciences Princeton University Princeton NJ 08544 USA
| | - Xinning Zhang
- Department of Geosciences Princeton University Princeton NJ 08544 USA
| | - Marcus I. Gibson
- Department of Chemistry Princeton University Princeton NJ 08544 USA
| | - Alan T. Stone
- Department of Environmental Health and Engineering Johns Hopkins University Baltimore MD 21218 USA
| | | | | |
Collapse
|
18
|
Velmourougane K, Prasanna R, Singh SB, Kumar R, Saha S. Sequence of inoculation influences the nature of extracellular polymeric substances and biofilm formation in Azotobacter chroococcum and Trichoderma viride. FEMS Microbiol Ecol 2017; 93:3814244. [DOI: 10.1093/femsec/fix066] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 05/10/2017] [Indexed: 11/13/2022] Open
|
19
|
Velmourougane K, Prasanna R, Saxena AK. Agriculturally important microbial biofilms: Present status and future prospects. J Basic Microbiol 2017; 57:548-573. [PMID: 28407275 DOI: 10.1002/jobm.201700046] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/17/2017] [Accepted: 03/19/2017] [Indexed: 11/07/2022]
Abstract
Microbial biofilms are a fascinating subject, due to their significant roles in the environment, industry, and health. Advances in biochemical and molecular techniques have helped in enhancing our understanding of biofilm structure and development. In the past, research on biofilms primarily focussed on health and industrial sectors; however, lately, biofilms in agriculture are gaining attention due to their immense potential in crop production, protection, and improvement. Biofilms play an important role in colonization of surfaces - soil, roots, or shoots of plants and enable proliferation in the desired niche, besides enhancing soil fertility. Although reports are available on microbial biofilms in general; scanty information is published on biofilm formation by agriculturally important microorganisms (bacteria, fungi, bacterial-fungal) and their interactions in the ecosystem. Better understanding of agriculturally important bacterial-fungal communities and their interactions can have several implications on climate change, soil quality, plant nutrition, plant protection, bioremediation, etc. Understanding the factors and genes involved in biofilm formation will help to develop more effective strategies for sustainable and environment-friendly agriculture. The present review brings together fundamental aspects of biofilms, in relation to their formation, regulatory mechanisms, genes involved, and their application in different fields, with special emphasis on agriculturally important microbial biofilms.
Collapse
Affiliation(s)
| | - Radha Prasanna
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Anil Kumar Saxena
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau Nath Bhanjan, Uttar Pradesh, India
| |
Collapse
|
20
|
Gangoiti J, Lamothe L, van Leeuwen SS, Vafiadi C, Dijkhuizen L. Characterization of the Paenibacillus beijingensis DSM 24997 GtfD and its glucan polymer products representing a new glycoside hydrolase 70 subfamily of 4,6-α-glucanotransferase enzymes. PLoS One 2017; 12:e0172622. [PMID: 28399167 PMCID: PMC5388325 DOI: 10.1371/journal.pone.0172622] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 01/25/2017] [Indexed: 11/18/2022] Open
Abstract
Previously we have reported that the Gram-negative bacterium Azotobacter chroococcum NCIMB 8003 uses the 4,6-α-glucanotransferase GtfD to convert maltodextrins and starch into a reuteran-like polymer consisting of (α1→4) glucan chains connected by alternating (α1→4)/(α1→6) linkages and (α1→4,6) branching points. This enzyme constituted the single evidence for this reaction and product specificity in the GH70 family, mostly containing glucansucrases encoded by lactic acid bacteria (http://www.CAZy.org). In this work, 4 additional GtfD-like proteins were identified in taxonomically diverse plant-associated bacteria forming a new GH70 subfamily with intermediate characteristics between the evolutionary related GH13 and GH70 families. The GtfD enzyme encoded by Paenibacillus beijingensis DSM 24997 was characterized providing the first example of a reuteran-like polymer synthesizing 4,6-α-glucanotransferase in a Gram-positive bacterium. Whereas the A. chroococcum GtfD activity on amylose resulted in the synthesis of a high molecular polymer, in addition to maltose and other small oligosaccharides, two reuteran-like polymer distributions are produced by P. beijingensis GtfD: a high-molecular mass polymer and a low-molecular mass polymer with an average Mw of 27 MDa and 19 kDa, respectively. Compared to the A. chroooccum GtfD product, both P. beijingensis GtfD polymers contain longer linear (α1→4) sequences in their structure reflecting a preference for transfer of even longer glucan chains by this enzyme. Overall, this study provides new insights into the evolutionary history of GH70 enzymes, and enlarges the diversity of natural enzymes that can be applied for modification of the starch present in food into less and/or more slowly digestible carbohydrate structures.
Collapse
Affiliation(s)
- Joana Gangoiti
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, The Netherlands
| | - Lisa Lamothe
- Nestlé Research Center, Vers-Chez-Les-Blanc, Lausanne, Switzerland
| | - Sander Sebastiaan van Leeuwen
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, The Netherlands
| | | | - Lubbert Dijkhuizen
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, The Netherlands
- * E-mail:
| |
Collapse
|
21
|
|
22
|
Sturmberger L, Chappell T, Geier M, Krainer F, Day KJ, Vide U, Trstenjak S, Schiefer A, Richardson T, Soriaga L, Darnhofer B, Birner-Gruenberger R, Glick BS, Tolstorukov I, Cregg J, Madden K, Glieder A. Refined Pichia pastoris reference genome sequence. J Biotechnol 2016; 235:121-31. [PMID: 27084056 PMCID: PMC5089815 DOI: 10.1016/j.jbiotec.2016.04.023] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/08/2016] [Accepted: 04/11/2016] [Indexed: 11/16/2022]
Abstract
Strains of the species Komagataella phaffii are the most frequently used "Pichia pastoris" strains employed for recombinant protein production as well as studies on peroxisome biogenesis, autophagy and secretory pathway analyses. Genome sequencing of several different P. pastoris strains has provided the foundation for understanding these cellular functions in recent genomics, transcriptomics and proteomics experiments. This experimentation has identified mistakes, gaps and incorrectly annotated open reading frames in the previously published draft genome sequences. Here, a refined reference genome is presented, generated with genome and transcriptome sequencing data from multiple P. pastoris strains. Twelve major sequence gaps from 20 to 6000 base pairs were closed and 5111 out of 5256 putative open reading frames were manually curated and confirmed by RNA-seq and published LC-MS/MS data, including the addition of new open reading frames (ORFs) and a reduction in the number of spliced genes from 797 to 571. One chromosomal fragment of 76kbp between two previous gaps on chromosome 1 and another 134kbp fragment at the end of chromosome 4, as well as several shorter fragments needed re-orientation. In total more than 500 positions in the genome have been corrected. This reference genome is presented with new chromosomal numbering, positioning ribosomal repeats at the distal ends of the four chromosomes, and includes predicted chromosomal centromeres as well as the sequence of two linear cytoplasmic plasmids of 13.1 and 9.5kbp found in some strains of P. pastoris.
Collapse
Affiliation(s)
- Lukas Sturmberger
- Austrian Center of Industrial Biotechnology (ACIB), Petersgasse 14, 8010 Graz, Austria
| | - Thomas Chappell
- BioGrammatics Inc., 2120 Las Palmas Drive, Carlsbad, CA 92011, United States
| | - Martina Geier
- Austrian Center of Industrial Biotechnology (ACIB), Petersgasse 14, 8010 Graz, Austria
| | - Florian Krainer
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria
| | - Kasey J Day
- Department of Molecular Genetics and Cell Biology, University of Chicago, 920 East 58th St., Chicago, IL 60637, United States
| | - Ursa Vide
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria
| | - Sara Trstenjak
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria
| | - Anja Schiefer
- Austrian Center of Industrial Biotechnology (ACIB), Petersgasse 14, 8010 Graz, Austria
| | - Toby Richardson
- Synthetic Genomics, Inc., 11149 North Torrey Pines Rd., La Jolla, CA 92037, United States
| | - Leah Soriaga
- Synthetic Genomics, Inc., 11149 North Torrey Pines Rd., La Jolla, CA 92037, United States
| | - Barbara Darnhofer
- Austrian Center of Industrial Biotechnology (ACIB), Petersgasse 14, 8010 Graz, Austria; Institute of Pathology, Research Unit Functional Proteomics and Metabolic Pathways, Medical University of Graz, Stiftingtalstrasse 24, 8010 Graz, Austria; Omics Center Graz, BioTechMed-Graz, Stiftingtalstrasse 24, 8010 Graz, Austria
| | - Ruth Birner-Gruenberger
- Austrian Center of Industrial Biotechnology (ACIB), Petersgasse 14, 8010 Graz, Austria; Institute of Pathology, Research Unit Functional Proteomics and Metabolic Pathways, Medical University of Graz, Stiftingtalstrasse 24, 8010 Graz, Austria; Omics Center Graz, BioTechMed-Graz, Stiftingtalstrasse 24, 8010 Graz, Austria
| | - Benjamin S Glick
- Department of Molecular Genetics and Cell Biology, University of Chicago, 920 East 58th St., Chicago, IL 60637, United States
| | - Ilya Tolstorukov
- BioGrammatics Inc., 2120 Las Palmas Drive, Carlsbad, CA 92011, United States; Keck Graduate Institute, 535 Watson Drive, Claremont, CA 91711, United States
| | - James Cregg
- BioGrammatics Inc., 2120 Las Palmas Drive, Carlsbad, CA 92011, United States; Keck Graduate Institute, 535 Watson Drive, Claremont, CA 91711, United States
| | - Knut Madden
- BioGrammatics Inc., 2120 Las Palmas Drive, Carlsbad, CA 92011, United States
| | - Anton Glieder
- Austrian Center of Industrial Biotechnology (ACIB), Petersgasse 14, 8010 Graz, Austria; Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria; bisy e.U., Wetzawinkel 20, 8200 Hofstaetten/Raab, Austria.
| |
Collapse
|
23
|
Weinstock MT, Hesek ED, Wilson CM, Gibson DG. Vibrio natriegens as a fast-growing host for molecular biology. Nat Methods 2016; 13:849-51. [DOI: 10.1038/nmeth.3970] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 08/01/2016] [Indexed: 01/02/2023]
|
24
|
Gangoiti J, van Leeuwen SS, Vafiadi C, Dijkhuizen L. The Gram-negative bacterium Azotobacter chroococcum NCIMB 8003 employs a new glycoside hydrolase family 70 4,6-α-glucanotransferase enzyme (GtfD) to synthesize a reuteran like polymer from maltodextrins and starch. Biochim Biophys Acta Gen Subj 2016; 1860:1224-36. [DOI: 10.1016/j.bbagen.2016.02.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 10/22/2022]
|
25
|
Huerta JM, Aguilar I, López-Pliego L, Fuentes-Ramírez LE, Castañeda M. The Role of the ncRNA RgsA in the Oxidative Stress Response and Biofilm Formation in Azotobacter vinelandii. Curr Microbiol 2016; 72:671-9. [PMID: 26858204 DOI: 10.1007/s00284-016-1003-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 12/27/2015] [Indexed: 12/23/2022]
Abstract
Azotobacter vinelandii is a soil bacterium that forms desiccation-resistant cysts, and the exopolysaccharide alginate is essential for this process. A. vinelandii also produces alginate under vegetative growth conditions, and this production has biotechnological significance. Poly-β-hydroxybutyrate (PHB) is another polymer synthetized by A. vinelandii that is of biotechnological interest. The GacS/A two-component signal transduction system plays an important role in regulating alginate production, PHB synthesis, and encystment. GacS/A in turn controls other important regulators such as RpoS and the ncRNAs that belong to the Rsm family. In A. vinelandii, RpoS is necessary for resisting oxidative stress as a result of its control over the expression of the catalase Kat1. In this work, we characterized a new ncRNA in A. vinelandii that is homologous to the P16/RsgA reported in Pseudomonas. We found that the expression of rgsA is regulated by GacA and RpoS and that it was essential for oxidative stress resistance. However, the activity of the catalase Kat1 is unaffected in rgsA mutants. Unlike those reported in Pseudomonas, RgsA in A. vinelandii regulates biofilm formation but not polymer synthesis or the encystment process.
Collapse
Affiliation(s)
- Jesús Manuel Huerta
- CICM-Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Israel Aguilar
- CICM-Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Liliana López-Pliego
- CICM-Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | | | - Miguel Castañeda
- CICM-Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico.
| |
Collapse
|
26
|
Noar JD, Bruno-Bárcena JM. Protons and pleomorphs: aerobic hydrogen production in Azotobacters. World J Microbiol Biotechnol 2016; 32:29. [DOI: 10.1007/s11274-015-1980-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 11/05/2015] [Indexed: 11/28/2022]
|
27
|
Baars O, Zhang X, Morel FMM, Seyedsayamdost MR. The Siderophore Metabolome of Azotobacter vinelandii. Appl Environ Microbiol 2016; 82:27-39. [PMID: 26452553 PMCID: PMC4702634 DOI: 10.1128/aem.03160-15] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 10/02/2015] [Indexed: 12/14/2022] Open
Abstract
In this study, we performed a detailed characterization of the siderophore metabolome, or "chelome," of the agriculturally important and widely studied model organism Azotobacter vinelandii. Using a new high-resolution liquid chromatography-mass spectrometry (LC-MS) approach, we found over 35 metal-binding secondary metabolites, indicative of a vast chelome in A. vinelandii. These include vibrioferrin, a siderophore previously observed only in marine bacteria. Quantitative analyses of siderophore production during diazotrophic growth with different sources and availabilities of Fe showed that, under all tested conditions, vibrioferrin was present at the highest concentration of all siderophores and suggested new roles for vibrioferrin in the soil environment. Bioinformatic searches confirmed the capacity for vibrioferrin production in Azotobacter spp. and other bacteria spanning multiple phyla, habitats, and lifestyles. Moreover, our studies revealed a large number of previously unreported derivatives of all known A. vinelandii siderophores and rationalized their origins based on genomic analyses, with implications for siderophore diversity and evolution. Together, these insights provide clues as to why A. vinelandii harbors multiple siderophore biosynthesis gene clusters. Coupled with the growing evidence for alternative functions of siderophores, the vast chelome in A. vinelandii may be explained by multiple, disparate evolutionary pressures that act on siderophore production.
Collapse
Affiliation(s)
- Oliver Baars
- Department of Geosciences, Princeton University, Princeton, New Jersey, USA
| | - Xinning Zhang
- Department of Geosciences, Princeton University, Princeton, New Jersey, USA
| | - François M M Morel
- Department of Geosciences, Princeton University, Princeton, New Jersey, USA
| | | |
Collapse
|
28
|
Luque-Almagro VM, Moreno-Vivián C, Roldán MD. Biodegradation of cyanide wastes from mining and jewellery industries. Curr Opin Biotechnol 2015; 38:9-13. [PMID: 26745356 DOI: 10.1016/j.copbio.2015.12.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 11/24/2015] [Accepted: 12/01/2015] [Indexed: 10/22/2022]
Abstract
Cyanide, one of the known most toxic chemicals, is widely used in mining and jewellery industries for gold extraction and recovery from crushed ores or electroplating residues. Cyanide toxicity occurs because this compound strongly binds to metals, inactivating metalloenzymes such as cytochrome c oxidase. Despite the toxicity of cyanide, cyanotrophic microorganisms such as the alkaliphilic bacterium Pseudomonas pseudoalcaligenes CECT5344 may use cyanide and its derivatives as a nitrogen source for growth, making biodegradation of cyanurated industrial waste possible. Genomic, transcriptomic and proteomic techniques applied to cyanide biodegradation ('cyan-omics') provide a holistic view that increases the global insights into the genetic background of cyanotrophic microorganisms that could be used for biodegradation of industrial cyanurated wastes and other biotechnological applications.
Collapse
Affiliation(s)
- Víctor M Luque-Almagro
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, 1ª Planta, Campus de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Conrado Moreno-Vivián
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, 1ª Planta, Campus de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain
| | - María Dolores Roldán
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, 1ª Planta, Campus de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain.
| |
Collapse
|
29
|
Ertesvåg H. Alginate-modifying enzymes: biological roles and biotechnological uses. Front Microbiol 2015; 6:523. [PMID: 26074905 PMCID: PMC4444821 DOI: 10.3389/fmicb.2015.00523] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 05/11/2015] [Indexed: 11/26/2022] Open
Abstract
Alginate denotes a group of industrially important 1-4-linked biopolymers composed of the C-5-epimers β-D-mannuronic acid (M) and α-L-guluronic acid (G). The polysaccharide is manufactured from brown algae where it constitutes the main structural cell wall polymer. The physical properties of a given alginate molecule, e.g., gel-strength, water-binding capacity, viscosity and biocompatibility, are determined by polymer length, the relative amount and distribution of G residues and the acetyl content, all of which are controlled by alginate modifying enzymes. Alginate has also been isolated from some bacteria belonging to the genera Pseudomonas and Azotobacter, and bacterially synthesized alginate may be O-acetylated at O-2 and/or O-3. Initially, alginate is synthesized as polymannuronic acid, and some M residues are subsequently epimerized to G residues. In bacteria a mannuronan C-5-epimerase (AlgG) and an alginate acetylase (AlgX) are integral parts of the protein complex necessary for alginate polymerization and export. All alginate-producing bacteria use periplasmic alginate lyases to remove alginate molecules aberrantly released to the periplasm. Alginate lyases are also produced by organisms that utilize alginate as carbon source. Most alginate-producing organisms encode more than one mannuronan C-5 epimerase, each introducing its specific pattern of G residues. Acetylation protects against further epimerization and from most alginate lyases. An enzyme from Pseudomonas syringae with alginate deacetylase activity has been reported. Functional and structural studies reveal that alginate lyases and epimerases have related enzyme mechanisms and catalytic sites. Alginate lyases are now utilized as tools for alginate characterization. Secreted epimerases have been shown to function well in vitro, and have been engineered further in order to obtain enzymes that can provide alginates with new and desired properties for use in medical and pharmaceutical applications.
Collapse
Affiliation(s)
- Helga Ertesvåg
- Department of Biotechnology, Norwegian University of Science and Technology Trondheim, Norway
| |
Collapse
|