1
|
Subramaniam J, Yamankurt G, Cunha SR. Obscurin regulates ankyrin macromolecular complex formation. J Mol Cell Cardiol 2022; 168:44-57. [PMID: 35447147 PMCID: PMC11057898 DOI: 10.1016/j.yjmcc.2022.04.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 03/28/2022] [Accepted: 04/12/2022] [Indexed: 10/18/2022]
Abstract
Obscurin is a large scaffolding protein in striated muscle that maintains sarcolemmal integrity and aligns the sarcoplasmic reticulum with the underlying contractile machinery. Ankyrins are a family of adaptor proteins with some isoforms that interact with obscurin. Previous studies have examined obscurin interacting with individual ankyrins. In this study, we demonstrate that two different ankyrins interact with obscurin's carboxyl terminus via independent ankyrin-binding domains (ABDs). Using in-vitro binding assays, co-precipitation assays, and FLIM-FRET analysis, we show that obscurin interacts with small ankyrin 1.5 (sAnk1.5) and the muscle-specific ankyrin-G isoform (AnkG107). While there is no direct interaction between sAnk1.5 and AnkG107, obscurin connects the two ankyrins both in vitro and in cells. Moreover, AnkG107 recruits β-spectrin to this macromolecular protein complex and mutating obscurin's ABDs disrupts complex formation. To further characterize AnkG107 interaction with obscurin, we measure obscurin-binding to different AnkG107 isoforms expressed in the heart and find that the first obscurin-binding domain in AnkG107 principally mediates this interaction. We also find that AnkG107 does not bind to filamin-C and displays minimal binding to plectin-1 compared to obscurin. Finally, both sAnk1.5-GFP and AnkG107-CTD-RFP are targeted to the M-lines of ventricular cardiomyocytes and mutating their obscurin-binding domains disrupts the M-line localization of these ankyrin constructs. Altogether, these findings support a model in which obscurin can interact via independent binding domains with two different ankyrin protein complexes to target them to the sarcomeric M-line of ventricular cardiomyocytes.
Collapse
Affiliation(s)
- Janani Subramaniam
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77030, United States of America
| | - Gokay Yamankurt
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77030, United States of America
| | - Shane R Cunha
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77030, United States of America.
| |
Collapse
|
2
|
Abd El-Aziz TM, Soares AG, Mironova E, Boiko N, Kaur A, Archer CR, Stockand JD, Berman JM. Mechanisms and consequences of casein kinase II and ankyrin-3 regulation of the epithelial Na + channel. Sci Rep 2021; 11:14600. [PMID: 34272444 PMCID: PMC8285517 DOI: 10.1038/s41598-021-94118-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 07/01/2021] [Indexed: 01/21/2023] Open
Abstract
Activity of the Epithelial Na+ Channel (ENaC) in the distal nephron fine-tunes renal sodium excretion. Appropriate sodium excretion is a key factor in the regulation of blood pressure. Consequently, abnormalities in ENaC function can cause hypertension. Casein Kinase II (CKII) phosphorylates ENaC. The CKII phosphorylation site in ENaC resides within a canonical "anchor" ankyrin binding motif. CKII-dependent phosphorylation of ENaC is necessary and sufficient to increase channel activity and is thought to influence channel trafficking in a manner that increases activity. We test here the hypothesis that phosphorylation of ENaC by CKII within an anchor motif is necessary for ankyrin-3 (Ank-3) regulation of the channel, which is required for normal channel locale and function, and the proper regulation of renal sodium excretion. This was addressed using a fluorescence imaging strategy combining total internal reflection fluorescence (TIRF) microscopy with fluorescence recovery after photobleaching (FRAP) to quantify ENaC expression in the plasma membrane in living cells; and electrophysiology to quantify ENaC activity in split-open collecting ducts from principal cell-specific Ank-3 knockout mice. Sodium excretion studies also were performed in parallel in this knockout mouse. In addition, we substituted a key serine residue in the consensus CKII site in β-ENaC with alanine to abrogate phosphorylation and disrupt the anchor motif. Findings show that disrupting CKII signaling decreases ENaC activity by decreasing expression in the plasma membrane. In the principal cell-specific Ank-3 KO mouse, ENaC activity and sodium excretion were significantly decreased and increased, respectively. These results are consistent with CKII phosphorylation of ENaC functioning as a "switch" that favors Ank-3 binding to increase channel activity.
Collapse
Affiliation(s)
- Tarek Mohamed Abd El-Aziz
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center At San Antonio, San Antonio, TX, 78229-3900, USA
- Zoology Department, Faculty of Science, Minia University, El-Minia, 61519, Egypt
| | - Antonio G Soares
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center At San Antonio, San Antonio, TX, 78229-3900, USA
| | - Elena Mironova
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center At San Antonio, San Antonio, TX, 78229-3900, USA
| | - Nina Boiko
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center At San Antonio, San Antonio, TX, 78229-3900, USA
| | - Amanpreet Kaur
- Department of Biochemistry, University of Washington, Seattle, Washington, 98195, USA
| | - Crystal R Archer
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center At San Antonio, San Antonio, TX, 78229-3900, USA
| | - James D Stockand
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center At San Antonio, San Antonio, TX, 78229-3900, USA.
| | - Jonathan M Berman
- Department of Basic Science, New York Institute of Technology College of Osteopathic Medicine at Arkansas State University, Jonesboro, AR, 72401, USA
| |
Collapse
|
3
|
ANK3 related neurodevelopmental disorders: expanding the spectrum of heterozygous loss-of-function variants. Neurogenetics 2021; 22:263-269. [PMID: 34218362 PMCID: PMC8426245 DOI: 10.1007/s10048-021-00655-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/20/2021] [Indexed: 11/03/2022]
Abstract
ANK3 encodes multiple isoforms of ankyrin-G, resulting in variegated tissue expression and function, especially regarding its role in neuronal development. Based on the zygosity, location, and type, ANK3 variants result in different neurodevelopmental phenotypes. Autism spectrum disorder has been associated with heterozygous missense variants in ANK3, whereas a more severe neurodevelopmental phenotype is caused by isoform-dependent, autosomal-dominant, or autosomal-recessive loss-of-function variants. Here, we present four individuals affected by a variable neurodevelopmental phenotype harboring a heterozygous frameshift or nonsense variant affecting all ANK3 transcripts. Thus, we provide further evidence of an isoform-based phenotypic continuum underlying ANK3-associated pathologies and expand its phenotypic spectrum.
Collapse
|
4
|
Gordovez FJA, McMahon FJ. The genetics of bipolar disorder. Mol Psychiatry 2020; 25:544-559. [PMID: 31907381 DOI: 10.1038/s41380-019-0634-7] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 11/22/2019] [Accepted: 12/11/2019] [Indexed: 12/11/2022]
Abstract
Bipolar disorder (BD) is one of the most heritable mental illnesses, but the elucidation of its genetic basis has proven to be a very challenging endeavor. Genome-Wide Association Studies (GWAS) have transformed our understanding of BD, providing the first reproducible evidence of specific genetic markers and a highly polygenic architecture that overlaps with that of schizophrenia, major depression, and other disorders. Individual GWAS markers appear to confer little risk, but common variants together account for about 25% of the heritability of BD. A few higher-risk associations have also been identified, such as a rare copy number variant on chromosome 16p11.2. Large scale next-generation sequencing studies are actively searching for other alleles that confer substantial risk. As our understanding of the genetics of BD improves, there is growing optimism that some clear biological pathways will emerge, providing a basis for future studies aimed at molecular diagnosis and novel therapeutics.
Collapse
Affiliation(s)
- Francis James A Gordovez
- Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Department of Health and Human Services, National Institutes of Health, Bethesda, MD, USA.,College of Medicine, University of the Philippines Manila, 1000, Ermita, Manila, Philippines
| | - Francis J McMahon
- Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Department of Health and Human Services, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
5
|
|
6
|
Kloth K, Denecke J, Hempel M, Johannsen J, Strom TM, Kubisch C, Lessel D. First de novo ANK3 nonsense mutation in a boy with intellectual disability, speech impairment and autistic features. Eur J Med Genet 2017; 60:494-498. [PMID: 28687526 DOI: 10.1016/j.ejmg.2017.07.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/28/2017] [Accepted: 07/03/2017] [Indexed: 11/30/2022]
Abstract
Ankyrin-G, encoded by ANK3, plays an important role in neurodevelopment and neuronal function. There are multiple isoforms of Ankyrin-G resulting in differential tissue expression and function. Heterozygous missense mutations in ANK3 have been associated with autism spectrum disorder. Further, in three siblings a homozygous frameshift mutation affecting only the longest isoform and a patient with a balanced translocation disrupting all isoforms were documented. The latter four patients were affected by a variable degree of intellectual disability, attention deficit hyperactivity disorder and autism. Here, we report on a boy with speech impairment, intellectual disability, autistic features, macrocephaly, macrosomia, chronic hunger and an altered sleeping pattern. By trio-whole-exome sequencing, we identified the first de novo nonsense mutation affecting all ANK3 transcripts. Thus, our data expand the phenotype of ANK3-associated diseases and suggest an isoform-based, phenotypic continuum between dominant and recessive ANK3-associated pathologies.
Collapse
Affiliation(s)
- Katja Kloth
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jonas Denecke
- Department of Paediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maja Hempel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jessika Johannsen
- Department of Paediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tim M Strom
- Institute of Human Genetics, Helmholtz Center Munich, Neuherberg, Germany; Institute of Human Genetics, Technical University of Munich, Munich, Germany
| | - Christian Kubisch
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Davor Lessel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
7
|
NF-κB regulates neuronal ankyrin-G via a negative feedback loop. Sci Rep 2017; 7:42006. [PMID: 28181483 PMCID: PMC5299403 DOI: 10.1038/srep42006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 01/05/2017] [Indexed: 12/13/2022] Open
Abstract
The axon initial segment (AIS) is a neuronal compartment defined by ankyrin-G expression. We here demonstrate that the IKK-complex co-localizes and interacts with the cytoskeletal anchor protein ankyrin-G in immunoprecipitation and proximity-ligation experiments in cortical neurons. Overexpression of the 270 kDa variant of ankyrin-G suppressed, while gene-silencing of ankyrin-G expression increased nuclear factor-κB (NF-κB) activity in primary neurons, suggesting that ankyrin-G sequesters the transcription factor in the AIS. We also found that p65 bound to the ank3 (ankyrin-G) promoter sequence in chromatin immunoprecipitation analyses thereby increasing ank3 expression and ankyrin-G levels at the AIS. Gene-silencing of p65 or ankyrin-G overexpression suppressed ank3 reporter activity. Collectively these data demonstrate that p65/NF-κB controls ankyrin-G levels via a negative feedback loop, thereby linking NF-κB signaling with neuronal polarity and axonal plasticity.
Collapse
|
8
|
Wu HC, Yamankurt G, Luo J, Subramaniam J, Hashmi SS, Hu H, Cunha SR. Identification and characterization of two ankyrin-B isoforms in mammalian heart. Cardiovasc Res 2015; 107:466-77. [PMID: 26109584 DOI: 10.1093/cvr/cvv184] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 06/17/2015] [Indexed: 11/13/2022] Open
Abstract
AIMS Excitation-contraction coupling in cardiomyocytes requires the proper targeting and retention of membrane proteins to unique domains by adaptor proteins like ankyrin-B. While ankyrin-B has been shown to interact with a variety of membrane and structural proteins located at different subcellular domains in cardiomyocytes, what regulates the specificity of ankyrin-B for particular interacting proteins remains elusive. METHODS AND RESULTS Here, we report the identification of two novel ankyrin-B isoforms AnkB-188 and AnkB-212 in human, rat, and mouse hearts. Novel cDNAs for both isoforms were isolated by long-range PCR of reverse-transcribed mRNA isolated from human ventricular tissue. The isoforms can be discriminated based on their function and subcellular distribution in cardiomyocytes. Heterologous overexpression of AnkB-188 increases sodium-calcium exchanger (NCX) membrane expression and current, while selective knockdown of AnkB-188 in cardiomyocytes reduces NCX expression and localization in addition to causing irregular contraction rhythms. Using an isoform-specific antibody, we demonstrate that the expression of AnkB-212 is restricted to striated muscles and is localized to the M-line of cardiomyocytes by interacting with obscurin. Selective knockdown of AnkB-212 significantly attenuates the expression of endogenous ankyrin-B at the M-line but does not disrupt NCX expression at transverse tubules in cardiomyocytes. CONCLUSION The identification and characterization of two functionally distinct ankyrin-B isoforms in heart provide compelling evidence that alternative splicing of the ANK2 gene regulates the fidelity of ankyrin-B interactions with proteins.
Collapse
Affiliation(s)
- Henry C Wu
- Department of Integrative Biology and Pharmacology, The University of Texas Medical School at Houston, 6431 Fannin Street, MSE R331, Houston, TX 77030, USA
| | - Gokay Yamankurt
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - JiaLie Luo
- Department of Anesthesiology, the Center for the Study of Itch, Washington University Pain Center, Washington University School of Medicine in St Louis, St Louis, MO 63110, USA
| | - Janani Subramaniam
- Department of Integrative Biology and Pharmacology, The University of Texas Medical School at Houston, 6431 Fannin Street, MSE R331, Houston, TX 77030, USA
| | - Syed Shahrukh Hashmi
- Department of Pediatrics, The University of Texas Medical School at Houston, Houston, TX 77030, USA
| | - Hongzhen Hu
- Department of Anesthesiology, the Center for the Study of Itch, Washington University Pain Center, Washington University School of Medicine in St Louis, St Louis, MO 63110, USA
| | - Shane R Cunha
- Department of Integrative Biology and Pharmacology, The University of Texas Medical School at Houston, 6431 Fannin Street, MSE R331, Houston, TX 77030, USA
| |
Collapse
|