1
|
Cheng J, Zhu J, Chen R, Zhang M, Han B, Zhu M, He Y, Yi H, Tang S. Genetic polymorphisms and anti-tuberculosis drug-induced liver injury: an umbrella review of the evidence. Int J Clin Pharm 2025:10.1007/s11096-025-01880-9. [PMID: 39954223 DOI: 10.1007/s11096-025-01880-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 01/28/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND Anti-tuberculosis drug-induced liver injury (ATLI) is a significant adverse drug reaction with genetic susceptibility implications. AIM This study aimed to integrate findings from systematic reviews and meta-analyses on genetic polymorphisms associated with ATLI risk, enhance evidence synthesis, and identify susceptibility gene polymorphisms linked to ATLI occurrence. METHOD The protocol was registered in PROSPERO (CRD42024517311). Systematic searches of PubMed, EMBASE, Web of Science, and Cochrane Library databases were conducted to identify eligible studies from inception to February 21, 2024. Two authors independently reviewed eligibility, extracted data, and assessed quality. Odds ratios (ORs) with 95% confidence intervals (CIs) were used to evaluate associations between genetic polymorphisms and ATLI susceptibility. RESULTS A total of 25 meta-analyses were included, including 57 single nucleotide polymorphisms (SNPs) in 15 candidate genes. Significant associations were found for the glutathione S-transferase M1 (GSTM1) null genotype (OR = 1.43, 95% CI: 1.18-1.73, P < 0.001) and N-acetyltransferase 2 (NAT2) polymorphisms, including rs1799929 (dominant model, OR = 1.35, 95% CI: 1.12-1.63, P < 0.001), rs1799930 (dominant model, OR = 1.43, 95% CI: 1.23-1.66, P < 0.001), rs1799931 (dominant model, OR = 1.22, 95% CI: 1.02-1.46, P = 0.03), and the slow acetylator (SA) phenotype (OR = 2.91, 95% CI: 2.43-3.49, P < 0.001). No significant association was found between the CYP2E1 RsaI/PstI polymorphism (C1/C1 genotype) and ATLI risk (dominant model, OR = 0.79, 95% CI: 0.61-1.02, P = 0.08). CONCLUSION This umbrella review confirms that the GSTM1 null genotype, NAT2 polymorphisms (rs1799929, rs1799930, rs1799931), and the slow acetylator phenotype are associated with increased ATLI risk. These findings provide a foundation for further research on genotype-guided approaches to mitigating ATLI.
Collapse
Affiliation(s)
- Jingru Cheng
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, People's Republic of China
| | - Jia Zhu
- Department of Prevention and Healthcare, Changzhou Xinbei District Sanjing People's Hospital, Changzhou, China
| | - Ruina Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, People's Republic of China
| | - Meiling Zhang
- Department of Infectious Disease, The Jurong Hospital Affiliated to Jiangsu University, Jurong, China
| | - Bing Han
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, People's Republic of China
| | - Min Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, People's Republic of China
| | - Yiwen He
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, People's Republic of China
| | - Honggang Yi
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, People's Republic of China
| | - Shaowen Tang
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, People's Republic of China.
| |
Collapse
|
2
|
Salama A, Hamed Salama A, Hasanein Asfour M. Tannic acid coated nanosuspension for oral delivery of chrysin intended for anti-schizophrenic effect in mice. Int J Pharm 2024; 656:124085. [PMID: 38580073 DOI: 10.1016/j.ijpharm.2024.124085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/17/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
Chrysin is a flavonoid drug with numerous therapeutic activities. It suffers from low intestinal absorption owing to its hydrophobicity. Therefore, the aim of this study is to exploit the efficient technique of nanosuspension (NSP) to formulate chrysin-NSP coated with tannic acid (TA) to improve the solubility and anti-schizophrenic activity of chrysin. A 23 full factorial design was constructed where the independent factors were type of polymer, surfactant concentration (0.5 or 1 %) and the aqueous phase volume (5 or 15 mL), while the dependent responses were the particle size (PS) of the obtained formulation as well as the % chrysin dissolved after 2 h (Q2h). The optimum formulation (NSP-4) composed of 1 % PEG 400 and 1 % Cremophor RH40 in 15 mL aqueous phase. It achieved a PS and Q2h values of 108.00 nm and 38.77 %, respectively. NSP-4 was then coated with TA (TA-coated NSP-4) for further enhancement of chrysin solubility. TA-coated NSP-4 revealed PS and zeta potential values of 150 ± 14 nm and -32.54 ± 2.45 mV, respectively. After 6 h, chrysin dissolved % were 53.97 and 80.22 for uncoated NSP-4 and TA-coated NSP-4, respectively, compared with only 9.47 for free chrysin. The developed formulations and free chrysin were assessed regarding their effect on schizophrenia induced in mice by cuprizone (CPZ). Treatment with the developed formulations and free chrysin ameliorated demyelination and behavioral deficit induced by CPZ via elevating MBP and PI3K/PKC activities as well as reducing GFAP expression levels. The developed formulations and free chrysin inhibited Galactin-3 and TGF-β expressions and stimulated GST antioxidant enzyme. Furthermore, they maintained the balances in glutamatergic and dopaminergic neurotransmission via modulation on neuregulin-1 and alleviated nuclear pyknosis and degeneration in the neurons. The order of activity was: TA-coated NSP-4 > NSP-4 > free chrysin.
Collapse
Affiliation(s)
- Abeer Salama
- Pharmacology Department, National Research Centre, El- Buhouth St., Dokki, Cairo 12622, Egypt
| | - Alaa Hamed Salama
- Pharmaceutical Technology Department, National Research Centre, El-Buhouth St., Dokki, Cairo 12622, Egypt; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ahram Canadian University, 6(th) of October City, Cairo, Egypt
| | - Marwa Hasanein Asfour
- Pharmaceutical Technology Department, National Research Centre, El-Buhouth St., Dokki, Cairo 12622, Egypt.
| |
Collapse
|
3
|
Liu H, Xu Y, Peng J. Glutathione S-Transferase M1/ T1 Polymorphisms and Schizophrenia Risk: A New Method for Quality Assessment and a Systematic Review. Neuropsychiatr Dis Treat 2023; 19:97-107. [PMID: 36643584 PMCID: PMC9833125 DOI: 10.2147/ndt.s376942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/28/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND GST genes were reported to be involved in susceptibility to mental disorder. The results between deletions of GST genes and schizophrenia were inconclusive and confusing. Therefore, we performed this updated meta-analysis to outline the association using a new method for quality assessment. METHODS Sixteen reported studies were selected, and the overall OR and 95% CI were calculated and analyzed by Review Manager 5.4 and STATE 12. The Newcastle-Ottawa Quality Assessment Scale (NOS) for case-control studies was rewritten to evaluate the quality of published studies, as there was no "Exposure" in these studies and other factors should be suggested to assess the quality. RESULTS There was no significant association between deletions of GST genes and SZ risk (p > 0.05 in Random model). We also failed to find a significant relation between null genotypes and SZ risk in East Asian population. Based on further analysis of PCR methods, GSTM1 null was weakly associated with SZ risk in 8 studies using multiplex PCR (OR = 1.17, 95% CI = 1.00-1.37, p = 0.05), but GSTT1 null was a protective factor for SZ risk (OR = 0.73, 95% CI = 0.56-0.94, p = 0.02). When stratified by rewritten NOS stars and deductions, GSTM1 null was significantly associated with SZ risk in 9 studies with high quality (OR = 1.24, 95% CI = 1.08-1.43, p = 0.002), and in 10 studies with no deductions (OR = 1.20, 95% CI = 1.05-1.38, p = 0.007). CONCLUSION GSTM1 null genotype may be a genetic risk factor for SZ in studies using multiplex PCR and high-quality studies. However, GSTT1 null might be a protective factor. Besides, we provided a new method for quality assessment and it was useful and should be promoted in further analysis.
Collapse
Affiliation(s)
- Hongzhou Liu
- School of Clinical Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, People's Republic of China
| | - Ying Xu
- School of Clinical Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, People's Republic of China
| | - Jie Peng
- School of Clinical Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, People's Republic of China
| |
Collapse
|
4
|
Evidence that the pituitary gland connects type 2 diabetes mellitus and schizophrenia based on large-scale trans-ethnic genetic analyses. J Transl Med 2022; 20:501. [PMID: 36329495 PMCID: PMC9632150 DOI: 10.1186/s12967-022-03704-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/05/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Previous studies on European (EUR) samples have obtained inconsistent results regarding the genetic correlation between type 2 diabetes mellitus (T2DM) and Schizophrenia (SCZ). A large-scale trans-ethnic genetic analysis may provide additional evidence with enhanced power. OBJECTIVE We aimed to explore the genetic basis for both T2DM and SCZ based on large-scale genetic analyses of genome-wide association study (GWAS) data from both East Asian (EAS) and EUR subjects. METHODS A range of complementary approaches were employed to cross-validate the genetic correlation between T2DM and SCZ at the whole genome, autosomes (linkage disequilibrium score regression, LDSC), loci (Heritability Estimation from Summary Statistics, HESS), and causal variants (MiXeR and Mendelian randomization, MR) levels. Then, genome-wide and transcriptome-wide cross-trait/ethnic meta-analyses were performed separately to explore the effective shared organs, cells and molecular pathways. RESULTS A weak genome-wide negative genetic correlation between SCZ and T2DM was found for the EUR (rg = - 0.098, P = 0.009) and EAS (rg =- 0.053 and P = 0.032) populations, which showed no significant difference between the EUR and EAS populations (P = 0.22). After Bonferroni correction, the rg remained significant only in the EUR population. Similar results were obtained from analyses at the levels of autosomes, loci and causal variants. 25 independent variants were firstly identified as being responsible for both SCZ and T2DM. The variants associated with the two disorders were significantly correlated to the gene expression profiles in the brain (P = 1.1E-9) and pituitary gland (P = 1.9E-6). Then, 61 protein-coding and non-coding genes were identified as effective genes in the pituitary gland (P < 9.23E-6) and were enriched in metabolic pathways related to glutathione mediated arsenate detoxification and to D-myo-inositol-trisphosphate. CONCLUSION Here, we show that a negative genetic correlation exists between SCZ and T2DM at the whole genome, autosome, locus and causal variant levels. We identify pituitary gland as a common effective organ for both diseases, in which non-protein-coding effective genes, such as lncRNAs, may be responsible for the negative genetic correlation. This highlights the importance of molecular metabolism and neuroendocrine modulation in the pituitary gland, which may be responsible for the initiation of T2DM in SCZ patients.
Collapse
|
5
|
Placebo effect in the treatment of non-small cell lung cancer: a meta-analysis. JOURNAL OF BIO-X RESEARCH 2022. [DOI: 10.1097/jbr.0000000000000123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
6
|
Chanhom N, Udomsinprasert W, Chaikledkaew U, Mahasirimongkol S, Wattanapokayakit S, Jittikoon J. GSTM1 and GSTT1 genetic polymorphisms and their association with antituberculosis drug-induced liver injury. Biomed Rep 2020; 12:153-162. [PMID: 32190303 PMCID: PMC7054707 DOI: 10.3892/br.2020.1275] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 12/17/2019] [Indexed: 12/31/2022] Open
Abstract
Antituberculosis (anti-TB) drugs are the most common cause of drug-induced liver injury (DILI). There are numerous studies revealing the associations between the polymorphisms of pharmacogenes and the risk of anti-TB DILI (ATDILI). In the present study, relevant studies regarding the pharmacogenes associated with ATDILI were systematically searched in PubMed and Scopus. A total of 24 genes associated with ATDILI were reported on and the top five reported genes in terms of frequency were revealed to be N-acetyltransferase 2, cytochrome P450 family 2 subfamily E member 1, glutathione S-transferases [glutathione S-transferase mu 1 (GSTM1) and glutathione S-transferase theta 1 (GSTT1)] and solute carrier organic anion transporter family member 1B1. As ATDILI may be the result of direct and indirect interactions, the encoded proteins were further analysed using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) to observe the protein-protein interactions and the associations amongst these proteins. The results suggested that only GSTT1 and GSTM1 were central proteins associated with all the other analysed proteins. Therefore, the association between GSTT1 or GSTM1 and the risk of developing ATDILI were further analysed. The results revealed that a GSTM1 deletion genotype was significantly associated with risk of ATDILI [odds ratio (OR), 1.28; 95% confidence interval (CI), 1.08-1.51; P=0.004], whereas the GSTT1 deletion genotype and GSTM1/GSTT1 dual-deletion genotype were not significantly associated with risk of ATDILI. Subgroup analysis based on ethnicity was performed and the results demonstrated a significant association between GSTM1 and ATDILI in South Asian individuals (OR, 1.48; 95% CI, 1.12-1.95; P=0.005), which has not been reported previously, to the best of our knowledge. In conclusion, GSTM1 was associated with ATDILI in South Asian individuals.
Collapse
Affiliation(s)
- Noppadol Chanhom
- Department of Biochemistry, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Wanvisa Udomsinprasert
- Department of Biochemistry, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Usa Chaikledkaew
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Surakameth Mahasirimongkol
- Genomic Medicine Centre, Division of Genomic Medicine and Innovation Support, Department of Medical Sciences, Ministry of Public Health, Nonthaburi 11000, Thailand
| | - Sukanya Wattanapokayakit
- Genomic Medicine Centre, Division of Genomic Medicine and Innovation Support, Department of Medical Sciences, Ministry of Public Health, Nonthaburi 11000, Thailand
| | - Jiraphun Jittikoon
- Department of Biochemistry, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
7
|
Fu S, Wu D, Jiang W, Li J, Long J, Jia C, Zhou T. Molecular Biomarkers in Drug-Induced Liver Injury: Challenges and Future Perspectives. Front Pharmacol 2020; 10:1667. [PMID: 32082163 PMCID: PMC7002317 DOI: 10.3389/fphar.2019.01667] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 12/20/2019] [Indexed: 02/05/2023] Open
Abstract
Drug-induced liver injury (DILI) is one among the common adverse drug reactions and the leading causes of drug development attritions, black box warnings, and post-marketing withdrawals. Despite having relatively low clinical incidence, its potentially severe adverse events should be considered in the individual patients due to the high risk of acute liver failure. Although traditional liver parameters have been applied to the diagnosis of DILI, the lack of specific and sensitive biomarkers poses a major limitation, and thus accurate prediction of the subsequent clinical course remains a significant challenge. These drawbacks prompt the investigation and discovery of more effective biomarkers, which could lead to early detection of DILI, and improve its diagnosis and prognosis. Novel promising biomarkers include glutamate dehydrogenase, keratin 18, sorbitol dehydrogenase, glutathione S-transferase, bile acids, cytochrome P450, osteopontin, high mobility group box-1 protein, fatty acid binding protein 1, cadherin 5, miR-122, genetic testing, and omics technologies, among others. Furthermore, several clinical scoring systems have gradually emerged for the diagnosis of DILI including the Roussel Uclaf Causality Assessment Method (RUCAM), Clinical Diagnostic Scale (CDS), and Digestive Disease Week Japan (DDW-J) systems. However, currently their predictive value is limited with certain inherent deficiencies. Thus, perhaps the greatest benefit would be achieved by simultaneously combining the scoring systems and those biomarkers. Herein, we summarized the recent research progress on molecular biomarkers for DILI to improved approaches for its diagnosis and clinical management.
Collapse
Affiliation(s)
- Siyu Fu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Dongbo Wu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Jiang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Juan Li
- Department of Infectious Diseases, Pidu District People's Hospital, Chengdu, China
| | - Jiang Long
- The Mental Health Center and the Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, China
| | - Chengyao Jia
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Taoyou Zhou
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Association of PXR and CAR Polymorphisms and Antituberculosis Drug-Induced Hepatotoxicity. Sci Rep 2019; 9:2217. [PMID: 30778091 PMCID: PMC6379441 DOI: 10.1038/s41598-018-38452-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 12/28/2018] [Indexed: 02/05/2023] Open
Abstract
A combination therapy of multiple drugs including isoniazid, rifampicin, ethambutol and pyrazinamide has been proven to be an effective option for the vast majority of tuberculosis (TB) patients. However, various adverse drug reactions (ADRs) limit its merit, with anti-TB drug-induced hepatotoxicity (ATDH) being a common and sometimes severe ADR. This study aimed to investigate the association between polymorphisms in two nuclear receptor genes, pregnane X receptor (PXR) and constitutive androstane receptor (CAR), and the risk of ATDH in a Chinese population. Subjects with or without hepatotoxicity during anti-TB treatment were recruited. DNA was extracted from peripheral blood and genotypes of the selected single nucleotide polymorphisms (SNPs) were determined by using the improved multiplex ligation detection reaction technique. Three genetic models (additive, dominant, and recessive) as well as haplotype, SNP-SNP interaction analyses were used to evaluate the genetic risk of ATDH. A total of 502 subjects (203 ATDH and 299 non-ATDH) were enrolled. The results showed that the minor allele of rs7643645 and the H0010001 haplotype in PXR were associated with decreased risk of ATDH, suggesting that drug-metabolizing enzymes regulated by PXR are involved in the pathogenesis of ATDH. More studies are required to verify this result.
Collapse
|
9
|
Cai L, Huang T, Su J, Zhang X, Chen W, Zhang F, He L, Chou KC. Implications of Newly Identified Brain eQTL Genes and Their Interactors in Schizophrenia. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 12:433-442. [PMID: 30195780 PMCID: PMC6041437 DOI: 10.1016/j.omtn.2018.05.026] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 05/19/2018] [Accepted: 05/30/2018] [Indexed: 12/21/2022]
Abstract
Schizophrenia (SCZ) is a devastating genetic mental disorder. Identification of the SCZ risk genes in brains is helpful to understand this disease. Thus, we first used the minimum Redundancy-Maximum Relevance (mRMR) approach to integrate the genome-wide sequence analysis results on SCZ and the expression quantitative trait locus (eQTL) data from ten brain tissues to identify the genes related to SCZ. Second, we adopted the variance inflation factor regression algorithm to identify their interacting genes in brains. Third, using multiple analysis methods, we explored and validated their roles. By means of the aforementioned procedures, we have found that (1) the cerebellum may play a crucial role in the pathogenesis of SCZ and (2) ITIH4 may be utilized as a clinical biomarker for the diagnosis of SCZ. These interesting findings may stimulate novel strategy for developing new drugs against SCZ. It has not escaped our notice that the approach reported here is of use for studying many other genome diseases as well.
Collapse
Affiliation(s)
- Lei Cai
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Genetics and Development, Shanghai Mental Health Center, Shanghai Jiaotong University, Shanghai 200240, China; Gordon Life Science Institute, Boston, MA 02478, USA; Shanghai Center for Women and Children's Health, Shanghai 200062, China.
| | - Tao Huang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Genetics and Development, Shanghai Mental Health Center, Shanghai Jiaotong University, Shanghai 200240, China; Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jingjing Su
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Xinxin Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Genetics and Development, Shanghai Mental Health Center, Shanghai Jiaotong University, Shanghai 200240, China
| | - Wenzhong Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Genetics and Development, Shanghai Mental Health Center, Shanghai Jiaotong University, Shanghai 200240, China
| | - Fuquan Zhang
- Department of Psychiatry, Wuxi Mental Health Center, Nanjing Medical University, Wuxi 214015, China
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Genetics and Development, Shanghai Mental Health Center, Shanghai Jiaotong University, Shanghai 200240, China; Shanghai Center for Women and Children's Health, Shanghai 200062, China.
| | - Kuo-Chen Chou
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Genetics and Development, Shanghai Mental Health Center, Shanghai Jiaotong University, Shanghai 200240, China; Gordon Life Science Institute, Boston, MA 02478, USA; Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China; Faculty of Computing and Information Technology in Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
10
|
Abstract
Purpose of this Review In order to combat the development of drug resistance, the clinical treatment of tuberculosis requires the combined use of several anti-tuberculosis (anti-TB) drugs, including isoniazid and rifampicin. Combinational treatment approaches are suggested by the World Health Organization (WHO) and are widely accepted throughout the world. Unfortunately, a major side effect of the treatment is the development of anti-tuberculosis drug-induced liver injury (AT-DILI). Many factors contribute to isoniazid- and rifampicin-mediated AT-DILI and genetic variations are among the most common factors. The purpose of this review is to provide information on genetic variations associated with isoniazid- and rifampicin-mediated AT-DILI. Recent Findings The genetic variations associated with AT-DILI have been identified in the genomic regions within or near genes encoding proteins in the following pathways: drug metabolizing enzymes (NAT2, CYP2E1, and GSTs), accumulation of bile acids, lipids, and heme metabolites (CYP7A1, BSEP, UGTs, and PXR), immune adaptation (HLAs and TNF-α), and oxidant challenge (TXNRD1, SOD1, BACH1, and MAFK). Summary The information summarized in this review considers the genetic bases of risk factors contributing to AT-DILI and provides information that may help for future studies. Some of the implicated genetic variations can be used in the design of genetic tests and serve as biomarkers for the prediction of isoniazid- and rifampicin-mediated AT-DILI risk in personalized medicine.
Collapse
|
11
|
Wang L, Shao Z, Chen S, Shi L, Li Z. A SLC24A2 Gene Variant Uncovered in Pancreatic Ductal Adenocarcinoma by Whole Exome Sequencing. TOHOKU J EXP MED 2018; 241:287-295. [PMID: 28413183 DOI: 10.1620/tjem.241.287] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) presents as an aggressive malignancy caused by environmental and genetic factors. In order to identify causal genes for PDAC, we performed whole exome sequencing (WES) to detect gene mutations in seven pairs of PDAC tissue and adjacent non-tumor tissue samples. Finally, we found a new nonsynonymous single nucleotide variant (nsSNV) in solute carrier 24 family member 2 (SLC24A2) gene resulting in the substitution of native glutamic acid (E) into aspartic acid (D) at position of 287 amino acid (E287D) in SLC24A2 protein, and confirmed this variant by Sanger gene sequencing. SLC24A2 is a potassium-dependent sodium-calcium exchanger and can transport metal ion across cell membrane. Multiple in silico variants' effects analyses methods including SIFT, PolyPhen, PROVEAN, and PANTHER demonstrated this variant had probably damaging effects, which was consistent with the results obtained from Mutation Taster software analysis with a probability of 0.99999997 to be "disease causing." The three dimension (3D) structure analysis results suggested this variant had little effects on the solubility and hydrophobicity of the protein; but it could decrease the protein stability by increasing the total protein structure energy (-8874.33 kJ/mol for the mutant and -8963.54 kJ/mol for the native) and by causing the mutant protein decreasing three stabilizing residues. Less stability of the mutant 287D protein than the native E287 protein was also supported by I-Mutant and Western-blotting analysis results. Overall, a new mutation in SLC24A2 gene was identified to decrease the stability of SLC24A2, which may have potential clinical usages.
Collapse
Affiliation(s)
- Lei Wang
- Digestive Endoscopy Center, Department of Gastroenterology, Changhai Hospital, Second Military Medical University
| | - Zhuo Shao
- Department of General Surgery, Changhai Hospital, Second Military Medical University
| | - Shiyue Chen
- Department of Radiology, Changhai Hospital, Second Military Medical University
| | - Lu Shi
- Department of Public Health Sciences, Clemson University
| | - Zhaoshen Li
- Digestive Endoscopy Center, Department of Gastroenterology, Changhai Hospital, Second Military Medical University
| |
Collapse
|
12
|
Richardson M, Kirkham J, Dwan K, Sloan D, Davies G, Jorgensen A. Influence of genetic variants on toxicity to anti-tubercular agents: a systematic review and meta-analysis (protocol). Syst Rev 2017; 6:142. [PMID: 28701180 PMCID: PMC5508765 DOI: 10.1186/s13643-017-0533-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 06/23/2017] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Tuberculosis patients receiving anti-tuberculosis treatment may experience serious adverse drug reactions, such as hepatotoxicity. Genetic risk factors, such as polymorphisms of the NAT2, CYP2E1 and GSTM1 genes, may increase the risk of experiencing such toxicity events. Many pharmacogenetic studies have investigated the association between genetic variants and anti-tuberculosis drug-related toxicity events, and several meta-analyses have synthesised data from these studies, although conclusions from these meta-analyses are conflicting. Many meta-analyses also have serious methodological limitations, such as applying restrictive inclusion criteria, or not assessing the quality of included studies. Most also only consider hepatotoxicity outcomes and specific genetic variants. The purpose of this systematic review and meta-analysis is to give a comprehensive evaluation of the evidence base for associations between any genetic variant and anti-tuberculosis drug-related toxicity. METHODS We will search for studies in MEDLINE, EMBASE, BIOSIS and Web of Science. We will also hand search reference lists from relevant studies and contact experts in the field. We will include cohort studies, case-control studies and randomised controlled trials that recruited patients with tuberculosis who were either already established on anti-tuberculosis treatment or were commencing treatment and who were genotyped to investigate the effect of genetic variants on any anti-tuberculosis drug-related toxicity outcome. One author will screen abstracts to identify potentially relevant studies and will then obtain the full text for each potentially relevant study in order to assess eligibility. At each of these stages, a second author will independently screen/assess 10% of studies. Two authors will independently extract data and assess the quality of studies using a pre-piloted data extraction form. If appropriate, we will pool estimates of effect for each genotype on each outcome using meta-analyses stratified by ethnicity. DISCUSSION Our review and meta-analysis will update and add to the existing research in this field. By not restricting the scope of the review to a specific drug, genetic variant, or toxicity outcome, we hope to synthesise data for associations between genetic variants and anti-tuberculosis drug-related toxicity outcomes that have previously not been summarised in systematic reviews, and consequently, add to the knowledge base of the pharmacogenetics of anti-tuberculosis drugs. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD42017068448.
Collapse
Affiliation(s)
- Marty Richardson
- Department of Biostatistics, University of Liverpool, Whelan Building, Liverpool, L69 3GB UK
| | - Jamie Kirkham
- Department of Biostatistics, University of Liverpool, Whelan Building, Liverpool, L69 3GB UK
| | - Kerry Dwan
- Cochrane Editorial Unit, London, SW1Y 4QX UK
| | - Derek Sloan
- School of Medicine, University of St Andrews, St. Andrews, KY16 9TF UK
| | - Geraint Davies
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, L69 3GB UK
| | - Andrea Jorgensen
- Department of Biostatistics, University of Liverpool, Whelan Building, Liverpool, L69 3GB UK
| |
Collapse
|
13
|
Cai L, Yuan W, Zhang Z, He L, Chou KC. In-depth comparison of somatic point mutation callers based on different tumor next-generation sequencing depth data. Sci Rep 2016; 6:36540. [PMID: 27874022 PMCID: PMC5118795 DOI: 10.1038/srep36540] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 10/17/2016] [Indexed: 12/26/2022] Open
Abstract
Four popular somatic single nucleotide variant (SNV) calling methods (Varscan, SomaticSniper, Strelka and MuTect2) were carefully evaluated on the real whole exome sequencing (WES, depth of ~50X) and ultra-deep targeted sequencing (UDT-Seq, depth of ~370X) data. The four tools returned poor consensus on candidates (only 20% of calls were with multiple hits by the callers). For both WES and UDT-Seq, MuTect2 and Strelka obtained the largest proportion of COSMIC entries as well as the lowest rate of dbSNP presence and high-alternative-alleles-in-control calls, demonstrating their superior sensitivity and accuracy. Combining different callers does increase reliability of candidates, but narrows the list down to very limited range of tumor read depth and variant allele frequency. Calling SNV on UDT-Seq data, which were of much higher read-depth, discovered additional true-positive variations, despite an even more tremendous growth in false positive predictions. Our findings not only provide valuable benchmark for state-of-the-art SNV calling methods, but also shed light on the access to more accurate SNV identification in the future.
Collapse
Affiliation(s)
- Lei Cai
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders (No.13dz2260500), Shanghai Jiao Tong University, Shanghai, 200030, China.,Gordon Life Science Institute, Boston, Massachusetts, 02478, USA
| | - Wei Yuan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders (No.13dz2260500), Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Zhou Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders (No.13dz2260500), Shanghai Jiao Tong University, Shanghai, 200030, China.,Institute of Biliary Tract Disease, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders (No.13dz2260500), Shanghai Jiao Tong University, Shanghai, 200030, China.,Women's Hospital School Of Medicine Zhejiang University, Hangzhou, 310006, China
| | - Kuo-Chen Chou
- Gordon Life Science Institute, Boston, Massachusetts, 02478, USA.,Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
14
|
Huang T, Liu CL, Li LL, Cai MH, Chen WZ, Xu YF, O’Reilly PF, Cai L, He L. A new method for identifying causal genes of schizophrenia and anti-tuberculosis drug-induced hepatotoxicity. Sci Rep 2016; 6:32571. [PMID: 27580934 PMCID: PMC5007646 DOI: 10.1038/srep32571] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 08/10/2016] [Indexed: 12/21/2022] Open
Abstract
Schizophrenia (SCZ) may cause tuberculosis, the treatments for which can induce anti-tuberculosis drug-induced hepatotoxicity (ATDH) and SCZ-like disorders. To date, the causal genes of both SCZ and ATDH are unknown. To identify them, we proposed a new network-based method by integrating network random walk with restart algorithm, gene set enrichment analysis, and hypergeometric test; using this method, we identified 500 common causal genes. For gene validation, we created a regularly updated online database ATDH-SCZgenes and conducted a systematic meta-analysis of the association of each gene with either disease. Till now, only GSTM1 and GSTT1 have been well studied with respect to both diseases; and a total of 23 high-quality association studies were collected for the current meta-analysis validation. Finally, the GSTM1 present genotype was confirmed to be significantly associated with both ATDH [Odds Ratio (OR): 0.71, 95% confidence interval (CI): 0.56-0.90, P = 0.005] and SCZ (OR: 0.78, 95% CI: 0.66-0.92, P = 0.004) according to the random-effect model. Furthermore, these significant results were supported by "moderate" evidence according to the Venice criteria. Our findings indicate that GSTM1 may be a causal gene of both ATDH and SCZ, although further validation pertaining to other genes, such as CYP2E1 or DRD2, is necessary.
Collapse
Affiliation(s)
- Tao Huang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders (No. 13dz2260500), Shanghai Jiaotong University, Shanghai 200030, China
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Cheng-Lin Liu
- School of Life Sciences and Biotechnology, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Lin-Lin Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders (No. 13dz2260500), Shanghai Jiaotong University, Shanghai 200030, China
| | - Mei-Hong Cai
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders (No. 13dz2260500), Shanghai Jiaotong University, Shanghai 200030, China
| | - Wen-Zhong Chen
- Shanghai Mental Health Center, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Yi-Feng Xu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders (No. 13dz2260500), Shanghai Jiaotong University, Shanghai 200030, China
- Shanghai Mental Health Center, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Paul F. O’Reilly
- MRC SGDP Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London WC2R 2LS, United Kingdom
| | - Lei Cai
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders (No. 13dz2260500), Shanghai Jiaotong University, Shanghai 200030, China
- Shanghai Mental Health Center, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders (No. 13dz2260500), Shanghai Jiaotong University, Shanghai 200030, China
- Shanghai Mental Health Center, Shanghai Jiaotong University, Shanghai, 200240, China
| |
Collapse
|
15
|
Fang S, Zhang Y, Xu M, Xue C, He L, Cai L, Xing X. Identification of Damaging nsSNVs in HumanERCC2 Gene. Chem Biol Drug Des 2016; 88:441-50. [PMID: 27085493 DOI: 10.1111/cbdd.12772] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 01/05/2023]
Abstract
The hERCC2 gene is an important DNA repair molecule for initiating Cutaneous melanoma (CM). Therefore, it is advisable to study the possible functional SNVs in hERCC2. To achieve this goal, we collected total 2, 253 SNVs in hERCC2from the EMBL website, of which 303 are non-synonymous single nucleotide variants (nsSNVs). Then, SIFT and PolyPhen were used to predict the damaging nsSNVs, and four nsSNVs (rs368866996, rs377739017, rs370819591, and rs121913022) were suggested to be damaging mutations. Since I-Mutant2.0 showed a decrease in stability for the mutants containing each of the four nsSNVs, a 3D protein structure was modeled. Based on the comparison of the energy after minimization, RMSD and stabilizing residues between the native and mutant proteins' structure, rs121913022 was proposed to be the most damaging variant among the nsSNVs in hERCC2 gene by decreasing the stability of protein. The mutant G713R of hERCC2 protein caused by rs121913022 was found to have less expression level than native hERCC2 protein in melanoma cells. These results suggest that rs121913022 may have potentially important clinical and drug target implications.
Collapse
Affiliation(s)
- Shuo Fang
- Department of Plastic and Reconstruction, Shanghai Changhai Hospital Affiliated to Second Military Medical University, Shanghai, 200433, China.,Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders (No. 13dz2260500), Bio-X Institutes, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Yuntong Zhang
- Department of Orthopedics, Shanghai Changhai Hospital Affiliated to Second Military Medical University, Shanghai, 200433, China
| | - Miao Xu
- Department of Plastic and Reconstruction Surgery, Xinhua Hospital, Shanghai Jiaotong University, Shanghai, 200092, China
| | - Chunyu Xue
- Department of Plastic and Reconstruction, Shanghai Changhai Hospital Affiliated to Second Military Medical University, Shanghai, 200433, China
| | - Lin He
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders (No. 13dz2260500), Bio-X Institutes, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Lei Cai
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders (No. 13dz2260500), Bio-X Institutes, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Xin Xing
- Department of Plastic and Reconstruction, Shanghai Changhai Hospital Affiliated to Second Military Medical University, Shanghai, 200433, China
| |
Collapse
|