1
|
Rollot Y, Evers SW, Ferreira GS, Girard LC, Werneburg I, Joyce WG. Skull osteology, neuroanatomy, and jaw-related myology of the pig-nosed turtle Carettochelys insculpta (Cryptodira, Trionychia). Anat Rec (Hoboken) 2024; 307:2966-3020. [PMID: 38421128 DOI: 10.1002/ar.25411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 03/02/2024]
Abstract
The osteology, neuroanatomy, and musculature are known for most primary clades of turtles (i.e., "families"), but knowledge is still lacking for one particular clade, the Carettochelyidae. Carettochelyids are represented by only one living taxon, the pig-nosed turtle Carettochelys insculpta. Here, we use micro-computed tomography of osteological and contrast-enhanced stained specimens to describe the cranial osteology, neuroanatomy, circulatory system, and jaw musculature of Carettochelys insculpta. The jaw-related myology is described in detail for the first time for this taxon, including m. zygomaticomandibularis, a muscular unit only found in trionychians. We also document a unique arterial pattern for the internal carotid artery and its subordinate branches and provide an extensive list of osteological ontogenetic differences. The present work provides new insights into the craniomandibular anatomy of turtles and will allow a better understanding of the evolutionary history of the circulatory system of trionychians and intraspecific variation among turtles.
Collapse
Affiliation(s)
- Yann Rollot
- Department of Geosciences, University of Fribourg, Fribourg, Switzerland
| | - Serjoscha W Evers
- Department of Geosciences, University of Fribourg, Fribourg, Switzerland
| | - Gabriel S Ferreira
- Fachbereich Geowissenschaften, Universität Tübingen, Tübingen, Germany
- Senckenberg Centre for Human Evolution and Palaeoenvironment, Tübingen, Germany
| | - Léa C Girard
- Department of Geosciences, University of Fribourg, Fribourg, Switzerland
| | - Ingmar Werneburg
- Fachbereich Geowissenschaften, Universität Tübingen, Tübingen, Germany
- Senckenberg Centre for Human Evolution and Palaeoenvironment, Tübingen, Germany
| | - Walter G Joyce
- Department of Geosciences, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
2
|
Miller E, Lee HW, Abzhanov A, Evers SW. The topological organization of the turtle cranium is constrained and conserved over long evolutionary timescales. Anat Rec (Hoboken) 2024; 307:2713-2748. [PMID: 38102921 DOI: 10.1002/ar.25356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/30/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023]
Abstract
The cranium of turtles (Testudines) is characterized by the secondary reduction of temporal fenestrae and loss of cranial joints (i.e., characteristics of anapsid, akinetic skulls). Evolution and ontogeny of the turtle cranium are associated with shape changes. Cranial shape variation among Testudines can partially be explained by dietary and functional adaptations (neck retraction), but it is unclear if cranial topology shows similar ecomorphological signal, or if it is decoupled from shape evolution. We assess the topological arrangement of cranial bones (i.e., number, relative positioning, connections), using anatomical network analysis. Non-shelled stem turtles have similar cranial arrangements to archosauromorph outgroups. Shelled turtles (Testudinata) evolve a unique cranial organization that is associated with bone losses (e.g., supratemporal, lacrimal, ectopterygoid) and an increase in complexity (i.e., densely and highly interconnected skulls with low path lengths between bones), resulting from the closure of skull openings and establishment of unusual connections such as a parietal-pterygoid contact in the secondary braincase. Topological changes evolutionarily predate many shape changes. Topological variation and taxonomic morphospace discrimination among crown turtles are low, indicating that cranial topology may be constrained. Observed variation results from repeated losses of nonintegral bones (i.e., premaxilla, nasal, epipterygoid, quadratojugal), and changes in temporal emarginations and palate construction. We observe only minor ontogenetic changes. Topology is not influenced by diet and habitat, contrasting cranial shape. Our results indicate that turtles have a unique cranial topology among reptiles that is conserved after its initial establishment, and shows that cranial topology and shape have different evolutionary histories.
Collapse
Affiliation(s)
- Eve Miller
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Berkshire, UK
- Natural History Museum, London, UK
| | - Hiu Wai Lee
- Department of Earth Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Arkhat Abzhanov
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Berkshire, UK
- Natural History Museum, London, UK
| | - Serjoscha W Evers
- Department of Geosciences, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
3
|
Menon JCL, Brinkman DB, Hermanson G, Joyce WG, Evers SW. New insights into the early morphological evolution of sea turtles by re-investigation of Nichollsemys baieri, a three-dimensionally preserved fossil stem chelonioid from the Campanian of Alberta, Canada. SWISS JOURNAL OF PALAEONTOLOGY 2024; 143:27. [PMID: 39006951 PMCID: PMC11245440 DOI: 10.1186/s13358-024-00323-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/03/2024] [Indexed: 07/16/2024]
Abstract
The early evolution of Pan-Chelonioidea (sea turtles) is poorly understood. This is in part due to the rarity of undeformed skulls of definitive early stem chelonioids. In this work, we redescribe the holotype of Nichollsemys baieri using µCT scans and segmentations of the skull. This fossil is the best 3D preserved skull of any Campanian sea turtle, and includes partial "soft tissue" preservation. Nichollsemys is morphologically similar but clearly distinct from Toxochelys spp., and both show a mosaic of plesiomorphic and derived chelonioid features. The internal cranial anatomy documents the presence of derived characters in Nichollsemys baieri that are absent in Toxochelys spp., such as the loss of the epipterygoids and the rod-like shape of the rostrum basisphenoidale. Among the numerous plesiomorphic characters is the presence of a splenial bone, which was unnoticed before. An updated phylogenetic analysis retrieves Nichollsemys baieri as a non-protostegid early stem chelonioid in a slightly more crownward position than Toxochelys latiremis. Our phylogeny includes macrobaenids and protostegids as pan-chelonioids, and we find unorthodox results for dermochelyids. Thus, although Nichollsemys baieri provides important new insights into the early morphological evolution of sea turtles, much work remains to be done. As a completely 3D preserved specimen, we included Nichollsemys baieri into a recent landmark-based skull shape dataset of turtles. Morphospace analysis reveals an intermediate position between cryptodires and crown chelonioids. Based on these data, we also predict that Nichollsemys baieri was still capable of neck retraction, constraining the loss of this trait to more crownward pan-chelonioids. Supplementary Information The online version contains supplementary material available at 10.1186/s13358-024-00323-8.
Collapse
Affiliation(s)
- Juliette C. L. Menon
- Department of Geosciences, University of Fribourg, Chemin du Musée 6, 1700 Fribourg, Switzerland
| | - Donald B. Brinkman
- Royal Tyrrell Museum of Palaeontology, Drumheller, AB Canada
- Department of Biological Sciences, University of Alberta, Edmonton, AB Canada
| | - Guilherme Hermanson
- Department of Geosciences, University of Fribourg, Chemin du Musée 6, 1700 Fribourg, Switzerland
| | - Walter G. Joyce
- Department of Geosciences, University of Fribourg, Chemin du Musée 6, 1700 Fribourg, Switzerland
| | - Serjoscha W. Evers
- Department of Geosciences, University of Fribourg, Chemin du Musée 6, 1700 Fribourg, Switzerland
| |
Collapse
|
4
|
Serafini G, Gordon CM, Amalfitano J, Wings O, Esteban N, Stokes H, Giusberti L. First evidence of marine turtle gastroliths in a fossil specimen: Paleobiological implications in comparison to modern analogues. PLoS One 2024; 19:e0302889. [PMID: 38709805 PMCID: PMC11073738 DOI: 10.1371/journal.pone.0302889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/15/2024] [Indexed: 05/08/2024] Open
Abstract
Semi-articulated remains of a large chelonioid turtle from the Turonian strata (Upper Cretaceous; ca. 93.9-89.8 Myr) near Sant'Anna d'Alfaedo (Verona province, northeastern Italy) are described for the first time. Together with the skeletal elements, the specimen also preserves pebbles inside the thoracic area which are lithologically distinct from the surrounding matrix. These allochthonous clasts are here interpreted as geo-gastroliths, in-life ingested stones that resided in the digestive tract of the animal. This interpretation marks the first reported evidence of geophagy in a fossil marine turtle. SEM-EDS analysis, together with macroscopic petrological characterization, confirm the presence of both siliceous and carbonatic pebbles. These putative geo-gastroliths have morphometries and size ranges more similar to those of gastroliths in different taxa (fossils and extant) than allochthonous "dropstone" clasts from the same deposit that were carried by floating vegetation A dense pitted pattern of superficial erosion is microscopically recognizable on the carbonatic gastroliths, consistent with surface etching due to gastric acids. The occurrence of a similar pattern was demonstrated by the experimental etching of carbonatic pebbles with synthetic gastric juice. Gut contents of modern green sea turtles (Chelonia mydas) were surveyed for substrate ingestion, providing direct evidence of geophagic behavior in extant chelonioids. Comparison with modern turtle dietary habits may suggests that the pebbles were ingested as a way to supplement calcium after or in preparation for egg deposition, implying that the studied specimen was possibly a gravid female.
Collapse
Affiliation(s)
- Giovanni Serafini
- Dipartimento di Scienze Chimiche e Geologiche, Università di Modena e Reggio Emilia, Modena, Emilia-Romagna, Italy
| | - Caleb M. Gordon
- Department of Earth & Planetary Sciences, Yale University, New Haven, CT, United States of America
| | - Jacopo Amalfitano
- Centro di Ateneo per i Musei, Università Degli Studi di Padova, Padova, Veneto, Italy
| | - Oliver Wings
- Naturkundemuseum Bamberg, Bamberg, Bavaria, Germany
- Staatliche Naturwissenschaftliche Sammlungen Bayerns, München, Germany
| | - Nicole Esteban
- Faculty of Science and Engineering, Swansea University, Swansea, Wales, United Kingdom
| | - Holly Stokes
- Faculty of Science and Engineering, Swansea University, Swansea, Wales, United Kingdom
| | - Luca Giusberti
- Dipartimento di Geoscienze, Università Degli Studi di Padova, Padova, Veneto, Italy
| |
Collapse
|
5
|
Evers SW, Chapelle KEJ, Joyce WG. Cranial and mandibular anatomy of Plastomenus thomasii and a new time-tree of trionychid evolution. SWISS JOURNAL OF PALAEONTOLOGY 2023; 142:1. [PMID: 36941994 PMCID: PMC10020266 DOI: 10.1186/s13358-023-00267-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Trionychid (softshell) turtles have a peculiar bauplan, which includes shell reductions and cranial elongation. Despite a rich fossil record dating back to the Early Cretaceous, the evolutionary origin of the trionychid bauplan is poorly understood, as even old fossils show great anatomical similarities to extant species. Documenting structural detail of fossil trionychids may help resolve the evolutionary history of the group. Here, we study the cranial and mandibular anatomy of Plastomenus thomasii using µCT scanning. Plastomenus thomasii belongs to the Plastomenidae, a long-lived (Santonian-Eocene) clade with uncertain affinities among trionychid subclades. The skulls of known plastomenids are characterized by unusual features otherwise not known among trionychids, such as extremely elongated, spatulate mandibular symphyses. We use anatomical observations for updated phylogenetic analyses using both parsimony and Bayesian methods. There is strong support across methods for stem-cyclanorbine affinities for plastomenids. The inclusion of stratigraphic data in our Bayesian analysis indicates that a range of Cretaceous Asian fossils including Perochelys lamadongensis may be stem-trionychids, suggesting that many features of trionychid anatomy evolved prior to the appearance of the crown group. Divergence time estimates from Bayesian tip-dating for the origin of crown Trionychia (134.0 Ma) and Pan-Trionychidae (123.8 Ma) constrain the evolutionary time span during which the trionychid bauplan has evolved to a range of < 11 million years. Bayesian rate estimation implies high morphological rates during early softshell turtle evolution. If correct, plastomenids partially fill the stratigraphic gap which results from shallow divergence times of crown cyclanorbines during the late Eocene. Supplementary Information The online version contains supplementary material available at 10.1186/s13358-023-00267-5.
Collapse
Affiliation(s)
- Serjoscha W. Evers
- Department of Geosciences, University of Fribourg, Chemin du Musée 6, 1700 Fribourg, Switzerland
| | - Kimberley E. J. Chapelle
- Division of Paleontology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024-5192 USA
| | - Walter G. Joyce
- Department of Geosciences, University of Fribourg, Chemin du Musée 6, 1700 Fribourg, Switzerland
| |
Collapse
|
6
|
Evers SW, Ponstein J, Jansen MA, Gray JA, Fröbisch J. A systematic compendium of turtle mandibular anatomy using digital dissections of soft tissue and osteology. Anat Rec (Hoboken) 2022; 306:1228-1303. [PMID: 35900121 DOI: 10.1002/ar.25037] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 11/11/2022]
Abstract
Turtles are a charismatic reptile group with a peculiar body plan, which most notably includes the shell. Anatomists have often focused descriptive efforts on the shell and other strongly derived body parts, such as the akinetic skull, or the cervical vertebrae. Other parts of turtle osteology, like the girdles, limbs, and mandibles, are documented with less rigor and detail. The mandible is the primary skeletal element involved in food acquisition and initial food processing of turtles, and its features are thus likely linked to feeding ecology. In addition, the mandible of turtles is composed of up to seven bones (sometimes fused to as little as three) and has thus anatomical complexity that may be insightful for systematic purposes and phylogenetic research. Despite apparent complexity and diversity to the mandible of turtles, this anatomical system has not been systematically studied, not even in search of characters that might improve phylogenetic resolution. Here, we describe the mandibular osteology for all major subclades of extant turtles with the help of digitally dissected 3D models derived from high-resolution computed tomography (μCT) scans of 70 extant species. We provide 31 fully segmented mandibles, as well as 3D models of the mandibular musculature, innervation, and arterial circulation of the cryptodire Dermatemys mawii. We synthesize observed variation into 51 morphological characters, which we optimize onto a molecular phylogeny. This analysis shows some mandibular characters to have high systematic value, whereas others are highly homoplastic and may underlie ecological influences or other factors invoking variation.
Collapse
Affiliation(s)
- Serjoscha W Evers
- Department of Geosciences, University of Fribourg, Fribourg, Switzerland
| | - Jasper Ponstein
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Berlin, Germany.,Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Maren A Jansen
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Berlin, Germany.,Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jaimi A Gray
- Division of Herpetology, Florida Museum of Natural History, University of Florida, Gainesville, Florida, USA
| | - Jörg Fröbisch
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Berlin, Germany.,Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
7
|
Rollot Y, Evers SW, Joyce WG. A redescription of the Late Jurassic (Tithonian) turtle Uluops uluops and a new phylogenetic hypothesis of Paracryptodira. SWISS JOURNAL OF PALAEONTOLOGY 2021; 140:23. [PMID: 34721284 PMCID: PMC8550081 DOI: 10.1186/s13358-021-00234-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
UNLABELLED We study the Late Jurassic (Tithonian) turtle Uluops uluops using micro-computed tomography scans to investigate the cranial anatomy of paracryptodires, and provide new insights into the evolution of the internal carotid artery and facial nerve systems, as well as the phylogenetic relationships of this group. We demonstrate the presence of a canalis caroticus lateralis in Uluops uluops, the only pleurosternid for which a palatine artery canal can be confidently identified. Our phylogenetic analysis retrieves Uluops uluops as the earliest branching pleurosternid, Helochelydridae within Pleurosternidae, and Compsemydidae including Kallokibotion bajazidi within Baenidae, which suggests at least two independent losses of the palatine artery within paracryptodires. We expect future studies will provide additional insights into the evolution of the circulation system of paracryptodires, as well as clarifying relationships along the turtle stem. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1186/s13358-021-00234-y.
Collapse
Affiliation(s)
- Yann Rollot
- Department of Geosciences, University of Fribourg, Chemin de Musée 6, 1700 Fribourg, Switzerland
| | - Serjoscha W. Evers
- Department of Geosciences, University of Fribourg, Chemin de Musée 6, 1700 Fribourg, Switzerland
| | - Walter G. Joyce
- Department of Geosciences, University of Fribourg, Chemin de Musée 6, 1700 Fribourg, Switzerland
| |
Collapse
|
8
|
Joyce WG, Mäuser M, Evers SW. Two turtles with soft tissue preservation from the platy limestones of Germany provide evidence for marine flipper adaptations in Late Jurassic thalassochelydians. PLoS One 2021; 16:e0252355. [PMID: 34081728 PMCID: PMC8174742 DOI: 10.1371/journal.pone.0252355] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/12/2021] [Indexed: 01/07/2023] Open
Abstract
Late Jurassic deposits across Europe have yielded a rich fauna of extinct turtles. Although many of these turtles are recovered from marine deposits, it is unclear which of these taxa are habitually marine and which may be riverine species washed into nearby basins, as adaptations to open marine conditions are yet to be found. Two new fossils from the Late Jurassic of Germany provide unusually strong evidence for open marine adaptations. The first specimen is a partial shell and articulated hind limb from the Late Jurassic (early Tithonian) platy limestones of Schernfeld near Eichstätt, which preserves the integument of the hind limb as an imprint. The skin is fully covered by flat, polygonal scales, which stiffen the pes into a paddle. Although taxonomic attribution is not possible, similarities are apparent with Thalassemys. The second specimen is a large, articulated skeleton with hypertrophied limbs referable to Thalassemys bruntrutana from the Late Jurassic (early Late Kimmeridgian) platy limestone of Wattendorf, near Bamberg. Even though the skin is preserved as a phosphatic film, the scales are not preserved. This specimen can nevertheless be inferred to have had paddles stiffened by scales based on the pose in which they are preserved, the presence of epibionts between the digits, and by full morphological correspondence to the specimen from Schernfeld. An analysis of scalation in extant turtles demonstrated that elongate flippers stiffed by scales are a marine adaptation, in contrast to the elongate but flexible flippers of riverine turtles. Phylogenetic analysis suggests that Thalassemys bruntrutana is referable to the mostly Late Jurassic turtle clade Thalassochelydia. The marine adapted flippers of this taxon therefore evolved convergently with those of later clades of marine turtles. Although thalassochelydian fossils are restricted to Europe, with one notable exception from Argentina, their open marine adaptations combined with the interconnectivity of Jurassic oceans predict that the clade must have been even more wide-spread during that time.
Collapse
Affiliation(s)
- Walter G. Joyce
- Departement für Geowissenschaften, Universität Freiburg, Freiburg, Switzerland
| | - Matthias Mäuser
- Staatliche Naturwissenschaftliche Sammlungen Bayerns, Naturkunde-Museum Bamberg, Bamberg, Germany
| | - Serjoscha W. Evers
- Departement für Geowissenschaften, Universität Freiburg, Freiburg, Switzerland
| |
Collapse
|
9
|
Anquetin J, Püntener C. A new species of the large-headed coastal marine turtle Solnhofia (Testudinata, Thalassochelydia) from the Late Jurassic of NW Switzerland. PeerJ 2020; 8:e9931. [PMID: 33240584 PMCID: PMC7666818 DOI: 10.7717/peerj.9931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/22/2020] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The large-headed turtle Solnhofia parsonsi is known by a handful of specimens from the Late Jurassic of Germany and Switzerland (maybe also France). Solnhofia parsonsi is traditionally regarded as a "eurysternid" Thalassochelydia, a group of small to medium sized, mostly lagoonal or marginal turtles found almost exclusively in the Late Jurassic of Europe. More recently, Solnhofia parsonsi has been proposed to be a close relative of Sandownidae, an enigmatic group of Cretaceous to Paleogene turtles characterized by a derived cranial anatomy and a wider geographical distribution. Sandownids may therefore have evolved from thalassochelydian ancestors such as Solnhofia parsonsi. METHODS We herein describe new material of Solnhofia from the Kimmeridgian (Late Jurassic) of Porrentruy, NW Switzerland. The bulk of the material consists of an association of a cranium and over 180 shell bones found together in a block of marly limestone. A second cranium and a mandible from slightly younger, but nearby localities are also described. RESULTS We refer the new material to Solnhofia brachyrhyncha n. sp. The new species shares with Solnhofia parsonsi a relatively large head, an extensive secondary palate formed primarily by the maxillae, a greatly developed processus trochlearis oticum with a contribution from the parietal and quadratojugal, a large jugal-palatine contact in the floor of the fossa orbitalis, and a posteromedial process of the jugal running on the dorsal surface of the maxilla and pterygoid. Some of these characteristics are also present in sandownids, but our morphological study clearly shows that Solnhofia brachyrhyncha is closer to Solnhofia parsonsi than to any sandownids. DISCUSSION Solnhofia brachyrhyncha differs from Solnhofia parsonsi in many aspects, notably: a shortened and broader cranium, a shorter and posteriorly broader upper triturating surface with a slightly sinusoidal lateral margin and without contribution from the palatine, a processus trochlearis oticum more oblique in dorsal or ventral view and less concave in anterior view, choanae that do not extend posteriorly on the pterygoids, a more developed processus pterygoideus externus, a condylus mandibularis situated anterior to the level of the occipital plane, a greater ventral exposure of the parabasisphenoid, a mandible about as wide as long, a relatively short symphysis, a lower triturating surface widened posterolaterally thanks to the presence of large laterally projecting dentary tubercles, a stouter and shorter coronoid process, a splenial positioned more anteriorly along the mandibular ramus, costo-peripheral fontanelles extending more anteriorly and posteriorly along the costal series, and an escutcheon shaped central plastral fontanelle formed mostly by the hypoplastra. In addition to the morphology of the new species, we also briefly discuss about observable ontogenetic variations and possible taphonomic origin of the assemblage.
Collapse
Affiliation(s)
- Jérémy Anquetin
- JURASSICA Museum, Porrentruy, Switzerland
- Department of Geosciences, University of Fribourg, Fribourg, Switzerland
| | - Christian Püntener
- Naturmuseum Solothurn, Solothurn, Switzerland
- Section d’archéologie et paléontologie, Office de la culture, République et Canton du Jura, Porrentruy, Switzerland
| |
Collapse
|
10
|
Evers SW, Rollot Y, Joyce WG. Cranial osteology of the Early Cretaceous turtle Pleurosternon bullockii (Paracryptodira: Pleurosternidae). PeerJ 2020; 8:e9454. [PMID: 32655997 PMCID: PMC7333654 DOI: 10.7717/peerj.9454] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/09/2020] [Indexed: 11/20/2022] Open
Abstract
Pleurosternon bullockii is a turtle from the Early Cretaceous of Europe known from numerous postcranial remains. Only one skull has so far been referred to the species. Pleurosternon bullockii belongs to a group of turtles called pleurosternids, which is thought to include several poorly known taxa from the Late Jurassic and Early Cretaceous of Europe and North America. Pleurosternids and baenids, a group of North American turtles that lived from the Late Cretaceous to the Eocene, define a clade called Paracryptodira. Additionally, Paracryptodira likely includes compsemydids, and, potentially, helochelydrids. Character support for Paracryptodira is relatively weak, and many global phylogenetic studies fail to support paracryptodiran monophyly altogether. Proposed paracryptodiran synapomorphies are largely cranial, despite the poor characterization of pleurosternid cranial material. In addition to their questionable monophyly, the global position of paracryptodires is debated. Early studies suggest crown-turtle affinities, but most phylogenies find them as stem-turtles, irrespective of their monophyly. Here, we document the cranial osteology of Pleurosternon bullockii with the use of three-dimensional models derived from segmenting high-resolution X-ray micro-computed tomography (CT) scans. Pleurosternon bullockii has a primitive basipterygoid region of the skull, but a cryptodire-like acustico-jugular region. A surprising number of similarities with pleurodires exist, particularly in the laterally expanded external process of the pterygoid and in the posterior orbital wall. Our observations constitute an important step toward a phylogenetic re-evaluation of Paracryptodira.
Collapse
Affiliation(s)
- Serjoscha W. Evers
- Department of Geosciences, University of Fribourg, Fribourg, Switzerland
| | - Yann Rollot
- Department of Geosciences, University of Fribourg, Fribourg, Switzerland
| | - Walter G. Joyce
- Department of Geosciences, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
11
|
New material of named fossil turtles from the Late Jurassic (late Kimmeridgian) of Wattendorf, Germany. PLoS One 2020; 15:e0233483. [PMID: 32492031 PMCID: PMC7269257 DOI: 10.1371/journal.pone.0233483] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 03/21/2020] [Indexed: 11/26/2022] Open
Abstract
The newly discovered plattenkalk (platy limestone) locality of Wattendorf, southern Germany, has yielded a diverse fauna and flora dated to the base of the late Kimmeridgian, Late Jurassic. We here describe three fossil turtle specimens that were recovered during systematic excavations of a distinct, 15 cm thick package of plattenkalks by the Naturkunde-Museum Bamberg. The first specimen is a large shell of Achelonia formosa, a taxon that is based on material from the late Kimmeridgian of Cerin, France. The new specimen suggests synonymy with Enaliochelys chelonia from the late Kimmeridgian of the United Kingdom. The second is a near-complete skeleton of the enigmatic Tropidemys seebachi, which was previously known only from the late Kimmeridgian of Hannover, northern Germany. The third specimen is a partial skeleton of Eurysternum wagleri, which had previously been known only from the early Tithonian of the Solnhofen region, southern Germany. In addition to new anatomical insights, the new material provides further evidence for spatial links during the late Kimmeridgian between northern and southern Germany, France, and the United Kingdom and temporal link from the late Kimmeridgian to the early Tithonian. The prevalence of partial, though articulated specimens is suggestive of predation by an unknown large marine reptile.
Collapse
|
12
|
Evers SW, Joyce WG. A re-description of Sandownia harrisi (Testudinata: Sandownidae) from the Aptian of the Isle of Wight based on computed tomography scans. ROYAL SOCIETY OPEN SCIENCE 2020; 7:191936. [PMID: 32257345 PMCID: PMC7062094 DOI: 10.1098/rsos.191936] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/27/2020] [Indexed: 05/26/2023]
Abstract
Sandownidae is an enigmatic group of Cretaceous-Paleogene turtles with highly derived cranial anatomy. Although sandownid monophyly is not debated, relationships with other turtles remain unclear. Sandownids have been recovered in significantly different parts of the turtle tree: as stem-turtles, stem-cryptodires and stem-chelonioid sea turtles. Latest phylogenetic studies find sandownids as the sister-group of the Late Jurassic thalassochelydians and as stem-turtles. Here, we provide a detailed study of the cranial and mandibular anatomy of Sandownia harrisi from the Aptian of the Isle of Wight, based on high resolution computed tomography scanning of the holotype. Our results confirm a high number of anatomical similarities with thalassochelydians and particularly Solnhofia parsonsi, which is interpreted as an early member of the sandownid lineage. Sandownids + Solnhofia show many cranial modifications related to the secondary palate and a durophagous diet. Sandownia is additionally highly derived in features related to its arterial circulation and neuroanatomy, including the endosseous labyrinth. Our results imply rapid morphological evolution during the early history of sandownids. Sandownids likely evolved in central Europe from thalassochelydian ancestors during the Late Jurassic. The durophagous diet of sandownids possibly facilitated their survival of the Cretaceous/Paleogene mass extinction.
Collapse
|
13
|
Gentry AD, Ebersole JA, Kiernan CR. Asmodochelys parhami, a new fossil marine turtle from the Campanian Demopolis Chalk and the stratigraphic congruence of competing marine turtle phylogenies. ROYAL SOCIETY OPEN SCIENCE 2019; 6:191950. [PMID: 31903219 PMCID: PMC6936288 DOI: 10.1098/rsos.191950] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 11/26/2019] [Indexed: 05/25/2023]
Abstract
Resolving the phylogeny of sea turtles is uniquely challenging given the high potential for the unification of convergent lineages due to systematic homoplasy. Equivocal reconstructions of marine turtle evolution subsequently inhibit efforts to establish fossil calibrations for molecular divergence estimates and prevent the accurate reconciliation of biogeographic or palaeoclimatic data with phylogenetic hypotheses. Here we describe a new genus and species of marine turtle, Asmodochelys parhami, from the Upper Campanian Demopolis Chalk of Alabama and Mississippi, USA represented by three partial shells. Phylogenetic analysis shows that A. parhami belongs to the ctenochelyids, an extinct group that shares characteristics with both pan-chelonioids and pan-cheloniids. In addition to supporting Ctenochelyidae as a sister taxon of Chelonioidea, our analysis places Protostegidae outside of the Chelonioidea crown group and recovers Allopleuron hofmanni as a stem dermochelyid. Gap excess ratio (GER) results indicate a strong stratigraphic congruence of our phylogenetic hypothesis; however, the highest GER value is associated with the phylogenetic hypothesis of marine turtles which excludes Protostegidae from the Cryptodira crown group. Ancestral range estimations derived from our phylogeny imply a European or North American origin of Chelonioidea in the middle-to-late Campanian, approximately 20 Myr earlier than current molecular divergence studies suggest.
Collapse
Affiliation(s)
- Andrew D. Gentry
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Department of Collections, McWane Science Center, Birmingham, AL 35203, USA
| | - Jun A. Ebersole
- Department of Collections, McWane Science Center, Birmingham, AL 35203, USA
| | - Caitlin R. Kiernan
- Department of Collections, McWane Science Center, Birmingham, AL 35203, USA
| |
Collapse
|
14
|
Evers SW, Neenan JM, Ferreira GS, Werneburg I, Barrett PM, Benson RBJ. Neurovascular anatomy of the protostegid turtle Rhinochelys pulchriceps and comparisons of membranous and endosseous labyrinth shape in an extant turtle. Zool J Linn Soc 2019. [DOI: 10.1093/zoolinnean/zlz063] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
AbstractChelonioid turtles are the only surviving group of reptiles that secondarily evolved marine lifestyles during the Mesozoic Early chelonioid evolution is documented by fossils of their stem group, such as protostegids, which yield insights into the evolution of marine adaptation. Neuroanatomical features are commonly used to infer palaeoecology owing to the functional adaptation of the senses of an organism to its environment. We investigated the neuroanatomy and carotid circulation of the early Late Cretaceous protostegid Rhinochelys pulchriceps based on micro-computed tomography data. We show that the trigeminal foramen of turtles is not homologous to that of other reptiles. The endosseous labyrinth of R. pulchriceps has thick semicircular canals and a high aspect ratio. Comparisons among turtles and other reptiles show that the endosseous labyrinth aspect ratio is not a reliable predictor of the degree of aquatic adaptation, contradicting previous hypotheses. We provide the first models of neuroanatomical soft tissues of an extant turtle. Turtle brain morphology is not reflected by the brain cavity, and the endosseous labyrinth provides an incomplete reflection of membranous semicircular duct morphology. Membranous labyrinth geometry is conserved across gnathostomes, which allows approximate reconstruction of the total membranous labyrinth morphology from the endosseous labyrinth despite their poor reflection of duct morphology.
Collapse
Affiliation(s)
- Serjoscha W Evers
- Department of Earth Sciences, University of Oxford, Oxford, UK
- Department of Earth Sciences, Natural History Museum, London, UK
| | | | - Gabriel S Ferreira
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- Fachbereich Geowissenschaften der Eberhard-Karls-Universität Tübingen, Hölderlinstraße, Tübingen, Germany
| | - Ingmar Werneburg
- Fachbereich Geowissenschaften der Eberhard-Karls-Universität Tübingen, Hölderlinstraße, Tübingen, Germany
- Senckenberg Center for Human Evolution and Palaeoenvironment (HEP) an der Eberhard Karls Universität, Sigwartstraße, Tübingen, Germany
| | - Paul M Barrett
- Department of Earth Sciences, Natural History Museum, London, UK
| | | |
Collapse
|
15
|
Raselli I, Anquetin J. Novel insights into the morphology of Plesiochelys bigleri from the early Kimmeridgian of Northwestern Switzerland. PLoS One 2019; 14:e0214629. [PMID: 31091241 PMCID: PMC6519798 DOI: 10.1371/journal.pone.0214629] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 04/07/2019] [Indexed: 11/18/2022] Open
Abstract
Plesiochelyidae were relatively large coastal marine turtles, which inhabited the epicontinental seas of Western Europe during the Late Jurassic. Their fossil record can be tracked in Germany, Switzerland, the United Kingdom, France, Spain and Portugal. The Jura Mountains, in northwestern Switzerland, have been the main source for the study of this group, mostly thanks to the rich and famous historical locality of Solothurn. In the last two decades, numerous plesiochelyid remains have been collected from Kimmeridgian deposits (Lower Virgula Marls and Banné Marls) in the area of Porrentruy (Canton of Jura, Switzerland). This material was revealed by construction works of the A16 Transjurane highway between 2000 and 2011, and led to the recent description of the new species Plesiochelys bigleri. In the years 2014 and 2016, new fragmentary turtle material was collected from the Banné Marls (Reuchenette Formation, lower Kimmeridgian) near the village of Glovelier, Canton of Jura, Switzerland. The new material consists of a complete shell, additional shell elements, a few bones from the appendicular and vertebral skeleton, and a fragmentary basicranium. This material can be confidently assigned to the species P. bigleri. It supports the presence of this species in the Banné Marls, slightly extends its spatial distribution and confirms the differences with the closely related species P. etalloni. The new material reveals that the split between the cerebral and palatine branches of the internal carotid artery occurs in a vertical plane in P. bigleri. This condition could not be observed in the type material due to poor preservation. This new character clearly distinguishes P. bigleri from P. etalloni and seems to be unique among thalassochelydians.
Collapse
Affiliation(s)
- Irena Raselli
- Jurassica Museum, Porrentruy, Switzerland
- Department of Geosciences, University of Fribourg, Fribourg, Switzerland
- * E-mail:
| | - Jérémy Anquetin
- Jurassica Museum, Porrentruy, Switzerland
- Department of Geosciences, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
16
|
Evers SW, Barrett PM, Benson RBJ. Anatomy of Rhinochelys pulchriceps (Protostegidae) and marine adaptation during the early evolution of chelonioids. PeerJ 2019; 7:e6811. [PMID: 31106054 PMCID: PMC6500378 DOI: 10.7717/peerj.6811] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 03/19/2019] [Indexed: 11/22/2022] Open
Abstract
Knowledge of the early evolution of sea turtles (Chelonioidea) has been limited by conflicting phylogenetic hypotheses resulting from sparse taxon sampling and a superficial understanding of the morphology of key taxa. This limits our understanding of evolutionary adaptation to marine life in turtles, and in amniotes more broadly. One problematic group are the protostegids, Early-Late Cretaceous marine turtles that have been hypothesised to be either stem-cryptodires, stem-chelonioids, or crown-chelonioids. Different phylogenetic hypotheses for protostegids suggest different answers to key questions, including (1) the number of transitions to marine life in turtles, (2) the age of the chelonioid crown-group, and (3) patterns of skeletal evolution during marine adaptation. We present a detailed anatomical study of one of the earliest protostegids, Rhinochelys pulchriceps from the early Late Cretaceous of Europe, using high-resolution μCT. We synonymise all previously named European species and document the variation seen among them. A phylogeny of turtles with increased chelonioid taxon sampling and revised postcranial characters is provided, recovering protostegids as stem-chelonioids. Our results imply a mid Early Cretaceous origin of total-group chelonioids and an early Late Cretaceous age for crown-chelonioids, which may inform molecular clock analyses in future. Specialisations of the chelonioid flipper evolved in a stepwise-fashion, with innovations clustered into pulses at the origin of total-group chelonioids, and subsequently among dermochelyids, crown-cheloniids, and gigantic protostegids from the Late Cretaceous.
Collapse
Affiliation(s)
- Serjoscha W. Evers
- Department of Earth Sciences, University of Oxford, Oxford, UK
- Department of Earth Sciences, Natural History Museum, London, UK
| | - Paul M. Barrett
- Department of Earth Sciences, Natural History Museum, London, UK
| | | |
Collapse
|
17
|
Anquetin J, Püntener C, Joyce WG. A Review of the Fossil Record of Turtles of the Clade Thalassochelydia. BULLETIN OF THE PEABODY MUSEUM OF NATURAL HISTORY 2017. [DOI: 10.3374/014.058.0205] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jérémy Anquetin
- JURASSICA Museum, 2900 Porrentruy, Switzerland, and Department of Geosciences, University of Fribourg, 1700 Fribourg, Switzerland
| | - Christian Püntener
- Section d'archéologie et paléontologie, Office de la culture, République et Canton du Jura, 2900 Porrentruy, Switzerland —
| | - Walter G. Joyce
- Department of Geosciences, University of Fribourg, 1700 Fribourg, Switzerland —
| |
Collapse
|
18
|
Püntener C, Anquetin J, Billon-Bruyat JP. The comparative osteology of Plesiochelys bigleri n. sp., a new coastal marine turtle from the Late Jurassic of Porrentruy (Switzerland). PeerJ 2017; 5:e3482. [PMID: 28674653 PMCID: PMC5493033 DOI: 10.7717/peerj.3482] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 05/31/2017] [Indexed: 11/20/2022] Open
Abstract
Background During the Late Jurassic, several groups of eucryptodiran turtles inhabited the shallow epicontinental seas of Western Europe. Plesiochelyidae are an important part of this first radiation of crown-group turtles into coastal marine ecosystems. Fossils of Plesiochelyidae occur in many European localities, and are especially abundant in the Kimmeridgian layers of the Swiss Jura Mountains (Solothurn and Porrentruy). In the mid-19th century, the quarries of Solothurn (NW Switzerland) already provided a large amount of fossil turtles, most notably Plesiochelys etalloni, the best-known plesiochelyid species. Recent excavations in the Porrentruy area (NW Switzerland) revealed new fossils of Plesiochelys, including numerous well-preserved shells with associated cranial and postcranial material. Methods/results Out of 80 shells referred to Plesiochelys, 41 are assigned to a new species, Plesiochelys bigleri n. sp., including a skull–shell association. We furthermore refer 15 shells to Plesiochelys etalloni, and 24 shells to Plesiochelys sp. Anatomical comparisons show that Plesiochelys bigleri can clearly be differentiated from Plesiochelys etalloni by cranial features. The shell anatomy and the appendicular skeleton of Plesiochelys bigleri and Plesiochelys etalloni are very similar. However, a statistical analysis demonstrates that the thickness of neural bones allows to separate the two species based on incomplete material. This study furthermore illustrates the extent of intraspecific variation in the shell anatomy of Plesiochelys bigleri and Plesiochelys etalloni.
Collapse
Affiliation(s)
- Christian Püntener
- Section d'archéologie et paléontologie, Office de la culture, République et Canton du Jura, Porrentruy, Switzerland
| | - Jérémy Anquetin
- JURASSICA Museum, Porrentruy, Switzerland.,Department of Geosciences, University of Fribourg, Fribourg, Switzerland
| | - Jean-Paul Billon-Bruyat
- Section d'archéologie et paléontologie, Office de la culture, République et Canton du Jura, Porrentruy, Switzerland
| |
Collapse
|
19
|
Foth C, Rabi M, Joyce WG. Skull shape variation in extant and extinct Testudinata and its relation to habitat and feeding ecology. ACTA ZOOL-STOCKHOLM 2016. [DOI: 10.1111/azo.12181] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Christian Foth
- Departement für Geowissenschaften; Universität Freiburg; 1700 Freiburg Switzerland
| | - Márton Rabi
- Department of Earth Sciences; University of Turin; 10125 Turin Italy
- Institut für Geowissenschaften; Universität Tübingen; 72074 Tübingen Germany
| | - Walter G. Joyce
- Departement für Geowissenschaften; Universität Freiburg; 1700 Freiburg Switzerland
| |
Collapse
|
20
|
Anquetin J, Chapman SD. First report of Plesiochelys etalloni and Tropidemys langii from the Late Jurassic of the UK and the palaeobiogeography of plesiochelyid turtles. ROYAL SOCIETY OPEN SCIENCE 2016; 3:150470. [PMID: 26909172 PMCID: PMC4736927 DOI: 10.1098/rsos.150470] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 11/27/2015] [Indexed: 05/11/2023]
Abstract
Plesiochelyidae is a clade of relatively large coastal marine turtles that inhabited the shallow epicontinental seas that covered western Europe during the Late Jurassic. Although the group has been reported from many deposits, the material is rarely identified at the species level. Here, we describe historical plesiochelyid material from the Kimmeridge Clay Formation of England and compare it with contemporaneous localities from the continent. An isolated basicranium is referred to the plesiochelyid Plesiochelys etalloni based notably on the presence of a fully ossified pila prootica. This specimen represents the largest individual known so far for this species and is characterized by remarkably robust features. It is, however, uncertain whether this represents an ontogenetic trend towards robustness in this species, some kind of specific variation (temporal, geographical or sexual), or an abnormal condition of this particular specimen. Four other specimens from the Kimmeridge Clay are referred to the plesiochelyid Tropidemys langii. This contradicts a recent study that failed to identify this species in this formation. This is the first time, to the best of our knowledge, that the presence of Plesiochelys etalloni and Tropidemys langii is confirmed outside the Swiss and French Jura Mountains. Our results indicate that some plesiochelyids had a wide palaeobiogeographic distribution during the Kimmeridgian.
Collapse
Affiliation(s)
- Jérémy Anquetin
- JURASSICA Museum, Route de Fontenais 21, 2900 Porrentruy, Switzerland
- Department of Geosciences, University of Fribourg, Chemin du Musée 6, 1700 Fribourg, Switzerland
- Section d’archéologie et paléontologie, Office de la culture, République et Canton du Jura, Hôtel des Halles, 2900 Porrentruy, Switzerland
- Author for correspondence: Jérémy Anquetin e-mail:
| | - Sandra D. Chapman
- Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| |
Collapse
|
21
|
Cadena E. The first South American sandownid turtle from the Lower Cretaceous of Colombia. PeerJ 2015; 3:e1431. [PMID: 26713227 PMCID: PMC4690369 DOI: 10.7717/peerj.1431] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 11/03/2015] [Indexed: 11/20/2022] Open
Abstract
Sandownids are a group of Early Cretaceous-Paleocene turtles that for several decades have been only known by cranial and very fragmentary postcranial elements. Here I report and describe the most complete sandownid turtle known so far, including articulated skull, lower jaw and postcranial elements, from the Early Cretaceous (upper Barremian-lower Aptian, >120 Ma), Paja Formation, Villa de Leyva town, Colombia. The new Colombian sandownid is defined here as Leyvachelys cipadi new genus, new species and because of its almost identical skull morphology with a previously reported turtle from the Glen Rose Formation, Texas, USA, both are grouped in a single and officially (ICNZ rules) defined taxon. Phylogenetic analysis including L. cipadi supports once again the monophyly of Sandownidae, as belonging to the large and recently redefined Pan-Chelonioidea clade. The morphology of L. cipadi indicates that sandownids were not open marine turtles, but instead littoral to shallow marine durophagous dwellers. Leyvachelys cipadi not only constitutes the first record of sandowinds in South America, but also the earliest global record for the group.
Collapse
Affiliation(s)
- Edwin Cadena
- Centro de Investigaciones Paleontológicas , Villa de Leyva , Colombia
| |
Collapse
|
22
|
Püntener C, Anquetin J, Billon-Bruyat JP. Thalassemys bruntrutana n. sp., a new coastal marine turtle from the Late Jurassic of Porrentruy (Switzerland), and the paleobiogeography of the Thalassemydidae. PeerJ 2015; 3:e1282. [PMID: 26468437 PMCID: PMC4592157 DOI: 10.7717/peerj.1282] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 09/08/2015] [Indexed: 11/20/2022] Open
Abstract
Background. The Swiss Jura Mountains are a key region for Late Jurassic eucryptodiran turtles. Already in the mid 19th century, the Solothurn Turtle Limestone (Solothurn, NW Switzerland) yielded a great amount of Kimmeridgian turtles that are traditionally referred to Plesiochelyidae, Thalassemydidae, and Eurysternidae. In the past few years, fossils of these coastal marine turtles were also abundantly discovered in the Kimmeridgian of the Porrentruy region (NW Switzerland). These findings include numerous sub-complete shells, out of which we present two new specimens of Thalassemys (Thalassemydidae) in this study. Methods. We compare the new material from Porrentruy to the type species Th. hugii, which is based on a well preserved specimen from the Solothurn Turtle Limestone (Solothurn, Switzerland). In order to improve our understanding of the paleogeographic distribution of Thalassemys, anatomical comparisons are extended to Thalassemys remains from other European countries, notably Germany and England. Results. While one of the two Thalassemys specimens from Porrentruy can be attributed to Th. hugii, the other specimen represents a new species, Th. bruntrutana n. sp. It differs from Th. hugii by several features: more elongated nuchal that strongly thickens anterolaterally; wider vertebral scales; proportionally longer plastron; broader and less inclined xiphiplastron; wider angle between scapular process and acromion process. Our results show that Th. hugii and Th. bruntrutana also occur simultaneously in the Kimmeridgian of Solothurn as well as in the Kimmeridgian of England (Kimmeridge Clay). This study is an important step towards a better understanding of the paleobiogeographic distribution of Late Jurassic turtles in Europe.
Collapse
Affiliation(s)
- Christian Püntener
- Section d'archéologie et paléontologie, Office de la Culture, République et Canton du Jura , Porrentruy , Switzerland
| | - Jérémy Anquetin
- Section d'archéologie et paléontologie, Office de la Culture, République et Canton du Jura , Porrentruy , Switzerland
| | - Jean-Paul Billon-Bruyat
- Section d'archéologie et paléontologie, Office de la Culture, République et Canton du Jura , Porrentruy , Switzerland
| |
Collapse
|