1
|
Pietluch F, Mackiewicz P, Ludwig K, Gagat P. A New Model and Dating for the Evolution of Complex Plastids of Red Alga Origin. Genome Biol Evol 2024; 16:evae192. [PMID: 39240751 DOI: 10.1093/gbe/evae192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 08/14/2024] [Accepted: 08/31/2024] [Indexed: 09/08/2024] Open
Abstract
Complex plastids, characterized by more than two bounding membranes, still present an evolutionary puzzle for the traditional endosymbiotic theory. Unlike primary plastids that directly evolved from cyanobacteria, complex plastids originated from green or red algae. The Chromalveolata hypothesis proposes a single red alga endosymbiosis that involved the ancestor of all the Chromalveolata lineages: cryptophytes, haptophytes, stramenopiles, and alveolates. As extensive phylogenetic analyses contradict the monophyly of Chromalveolata, serial plastid endosymbiosis models were proposed, suggesting a single secondary red alga endosymbiosis within Cryptophyta, followed by subsequent plastid transfers to other chromalveolates. Our findings based on 97 plastid-encoded markers, 112 species, and robust phylogenetic methods challenge all the existing models. They reveal two independent secondary endosymbioses, one within Cryptophyta and one within stramenopiles, precisely the phylum Ochrophyta, with two different groups of red algae. Consequently, we propose a new model for the emergence of red alga plastid-containing lineages and, through molecular clock analyses, estimate their ages.
Collapse
Affiliation(s)
- Filip Pietluch
- Department of Bioinformatics and Genomics, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland
| | - Paweł Mackiewicz
- Department of Bioinformatics and Genomics, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland
| | - Kacper Ludwig
- Department of Bioinformatics and Genomics, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland
| | - Przemysław Gagat
- Department of Bioinformatics and Genomics, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland
| |
Collapse
|
2
|
Harada R, Hirakawa Y, Yabuki A, Kim E, Yazaki E, Kamikawa R, Nakano K, Eliáš M, Inagaki Y. Encyclopedia of Family A DNA Polymerases Localized in Organelles: Evolutionary Contribution of Bacteria Including the Proto-Mitochondrion. Mol Biol Evol 2024; 41:msae014. [PMID: 38271287 PMCID: PMC10877234 DOI: 10.1093/molbev/msae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/12/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
DNA polymerases synthesize DNA from deoxyribonucleotides in a semiconservative manner and serve as the core of DNA replication and repair machinery. In eukaryotic cells, there are 2 genome-containing organelles, mitochondria, and plastids, which were derived from an alphaproteobacterium and a cyanobacterium, respectively. Except for rare cases of genome-lacking mitochondria and plastids, both organelles must be served by nucleus-encoded DNA polymerases that localize and work in them to maintain their genomes. The evolution of organellar DNA polymerases has yet to be fully understood because of 2 unsettled issues. First, the diversity of organellar DNA polymerases has not been elucidated in the full spectrum of eukaryotes. Second, it is unclear when the DNA polymerases that were used originally in the endosymbiotic bacteria giving rise to mitochondria and plastids were discarded, as the organellar DNA polymerases known to date show no phylogenetic affinity to those of the extant alphaproteobacteria or cyanobacteria. In this study, we identified from diverse eukaryotes 134 family A DNA polymerase sequences, which were classified into 10 novel types, and explored their evolutionary origins. The subcellular localizations of selected DNA polymerases were further examined experimentally. The results presented here suggest that the diversity of organellar DNA polymerases has been shaped by multiple transfers of the PolI gene from phylogenetically broad bacteria, and their occurrence in eukaryotes was additionally impacted by secondary plastid endosymbioses. Finally, we propose that the last eukaryotic common ancestor may have possessed 2 mitochondrial DNA polymerases, POP, and a candidate of the direct descendant of the proto-mitochondrial DNA polymerase I, rdxPolA, identified in this study.
Collapse
Affiliation(s)
- Ryo Harada
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Yoshihisa Hirakawa
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Akinori Yabuki
- Deep-Sea Biodiversity Research Group, Research Institute for Global Change (RIGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Eunsoo Kim
- Division of EcoScience, Ewha Womans University, Seoul, South Korea
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY, USA
| | - Euki Yazaki
- Research Center for Advanced Analysis, National Agriculture and Food Research Organization, Tsukuba, Japan
- Interdisciplinary Theoretical and Mathematical Sciences program (iTHEMS), RIKEN, Wako, Saitama, Japan
| | - Ryoma Kamikawa
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kentaro Nakano
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Marek Eliáš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Yuji Inagaki
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
3
|
Ji M, Kan Y, Kim D, Jung J, Yi G. cPlot: Contig-Plotting Visualization for the Analysis of Short-Read Nucleotide Sequence Alignments. Int J Mol Sci 2022; 23:ijms231911484. [PMID: 36232783 PMCID: PMC9570162 DOI: 10.3390/ijms231911484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/13/2022] [Accepted: 09/21/2022] [Indexed: 11/21/2022] Open
Abstract
Advances in the next-generation sequencing technology have led to a dramatic decrease in read-generation cost and an increase in read output. Reconstruction of short DNA sequence reads generated by next-generation sequencing requires a read alignment method that reconstructs a reference genome. In addition, it is essential to analyze the results of read alignments for a biologically meaningful inference. However, read alignment from vast amounts of genomic data from various organisms is challenging in that it involves repeated automatic and manual analysis steps. We, here, devised cPlot software for read alignment of nucleotide sequences, with automated read alignment and position analysis, which allows visual assessment of the analysis results by the user. cPlot compares sequence similarity of reads by performing multiple read alignments, with FASTA format files as the input. This application provides a web-based interface for the user for facile implementation, without the need for a dedicated computing environment. cPlot identifies the location and order of the sequencing reads by comparing the sequence to a genetically close reference sequence in a way that is effective for visualizing the assembly of short reads generated by NGS and rapid gene map construction.
Collapse
Affiliation(s)
- Mingeun Ji
- Department of Multimedia Engineering, Dongguk University, Seoul 04620, Korea
| | - Yejin Kan
- Department of Multimedia Engineering, Dongguk University, Seoul 04620, Korea
| | - Dongyeon Kim
- Department of Multimedia Engineering, Dongguk University, Seoul 04620, Korea
| | - Jaehee Jung
- Department of Information and Communication Engineering, Myongji University, Yongin-si 17058, Korea
| | - Gangman Yi
- Department of Multimedia Engineering, Dongguk University, Seoul 04620, Korea
- Correspondence:
| |
Collapse
|
4
|
Cavalier-Smith T. Ciliary transition zone evolution and the root of the eukaryote tree: implications for opisthokont origin and classification of kingdoms Protozoa, Plantae, and Fungi. PROTOPLASMA 2022; 259:487-593. [PMID: 34940909 PMCID: PMC9010356 DOI: 10.1007/s00709-021-01665-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 05/03/2021] [Indexed: 05/19/2023]
Abstract
I thoroughly discuss ciliary transition zone (TZ) evolution, highlighting many overlooked evolutionarily significant ultrastructural details. I establish fundamental principles of TZ ultrastructure and evolution throughout eukaryotes, inferring unrecognised ancestral TZ patterns for Fungi, opisthokonts, and Corticata (i.e., kingdoms Plantae and Chromista). Typical TZs have a dense transitional plate (TP), with a previously overlooked complex lattice as skeleton. I show most eukaryotes have centriole/TZ junction acorn-V filaments (whose ancestral function was arguably supporting central pair microtubule-nucleating sites; I discuss their role in centriole growth). Uniquely simple malawimonad TZs (without TP, simpler acorn) pinpoint the eukaryote tree's root between them and TP-bearers, highlighting novel superclades. I integrate TZ/ciliary evolution with the best multiprotein trees, naming newly recognised major eukaryote clades and revise megaclassification of basal kingdom Protozoa. Recent discovery of non-photosynthetic phagotrophic flagellates with genome-free plastids (Rhodelphis), the sister group to phylum Rhodophyta (red algae), illuminates plant and chromist early evolution. I show previously overlooked marked similarities in cell ultrastructure between Rhodelphis and Picomonas, formerly considered an early diverging chromist. In both a nonagonal tube lies between their TP and an annular septum surrounding their 9+2 ciliary axoneme. Mitochondrial dense condensations and mitochondrion-linked smooth endomembrane cytoplasmic partitioning cisternae further support grouping Picomonadea and Rhodelphea as new plant phylum Pararhoda. As Pararhoda/Rhodophyta form a robust clade on site-heterogeneous multiprotein trees, I group Pararhoda and Rhodophyta as new infrakingdom Rhodaria of Plantae within subkingdom Biliphyta, which also includes Glaucophyta with fundamentally similar TZ, uniquely in eukaryotes. I explain how biliphyte TZs generated viridiplant stellate-structures.
Collapse
|
5
|
Suzuki S, Matsuzaki R, Yamaguchi H, Kawachi M. What happened before losses of photosynthesis in cryptophyte algae? Mol Biol Evol 2022; 39:6513384. [PMID: 35079797 PMCID: PMC8829904 DOI: 10.1093/molbev/msac001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
In many lineages of algae and land plants, photosynthesis was lost multiple times independently. Comparative analyses of photosynthetic and secondary nonphotosynthetic relatives have revealed the essential functions of plastids, beyond photosynthesis. However, evolutionary triggers and processes that drive the loss of photosynthesis remain unknown. Cryptophytes are microalgae with complex plastids derived from a red alga. They include several secondary nonphotosynthetic species with closely related photosynthetic taxa. In this study, we found that a cryptophyte, Cryptomonas borealis, is in a stage just prior to the loss of photosynthesis. Cryptomonas borealis was mixotrophic, possessed photosynthetic activity, and grew independent of light. The plastid genome of C. borealis had distinct features, including increases of group II introns with mobility, frequent genome rearrangements, incomplete loss of inverted repeats, and abundant small/medium/large-sized structural variants. These features provide insight into the evolutionary process leading to the loss of photosynthesis.
Collapse
Affiliation(s)
- Shigekatsu Suzuki
- Biodiversity Division, National Institute for Environmental Studies, Tsukuba, Ibaraki, 305-8506, Japan
| | - Ryo Matsuzaki
- Biodiversity Division, National Institute for Environmental Studies, Tsukuba, Ibaraki, 305-8506, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan
| | - Haruyo Yamaguchi
- Biodiversity Division, National Institute for Environmental Studies, Tsukuba, Ibaraki, 305-8506, Japan
| | - Masanobu Kawachi
- Biodiversity Division, National Institute for Environmental Studies, Tsukuba, Ibaraki, 305-8506, Japan
| |
Collapse
|
6
|
Abidizadegan M, Peltomaa E, Blomster J. The Potential of Cryptophyte Algae in Biomedical and Pharmaceutical Applications. Front Pharmacol 2021; 11:618836. [PMID: 33603668 PMCID: PMC7884888 DOI: 10.3389/fphar.2020.618836] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/31/2020] [Indexed: 01/28/2023] Open
Abstract
Microalgae produce a variety of bioactive components that provide benefits to human and animal health. Cryptophytes are one of the major groups of microalgae, with more than 20 genera comprised of 200 species. Recently, cryptophytes have attracted scientific attention because of their characteristics and biotechnological potential. For example, they are rich in a number of chemical compounds, such as fatty acids, carotenoids, phycobiliproteins and polysaccharides, which are mainly used for food, medicine, cosmetics and pharmaceuticals. This paper provides a review of studies that assess protective algal compounds and introduce cryptophytes as a remarkable source of bioactive components that may be usable in biomedical and pharmaceutical sciences.
Collapse
Affiliation(s)
- Maryam Abidizadegan
- Environmental Laboratory, Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| | - Elina Peltomaa
- Institute of Atmospheric and Earth System Research (INAR)/Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Jaanika Blomster
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
7
|
Tanifuji G, Kamikawa R, Moore CE, Mills T, Onodera NT, Kashiyama Y, Archibald JM, Inagaki Y, Hashimoto T. Comparative Plastid Genomics of Cryptomonas Species Reveals Fine-Scale Genomic Responses to Loss of Photosynthesis. Genome Biol Evol 2020; 12:3926-3937. [PMID: 31922581 PMCID: PMC7058160 DOI: 10.1093/gbe/evaa001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2020] [Indexed: 01/20/2023] Open
Abstract
Loss of photosynthesis is a recurring theme in eukaryotic evolution. In organisms that have lost the ability to photosynthesize, nonphotosynthetic plastids are retained because they play essential roles in processes other than photosynthesis. The unicellular algal genus Cryptomonas contains both photosynthetic and nonphotosynthetic members, the latter having lost the ability to photosynthesize on at least three separate occasions. To elucidate the evolutionary processes underlying the loss of photosynthesis, we sequenced the plastid genomes of two nonphotosynthetic strains, Cryptomonas sp. CCAC1634B and SAG977-2f, as well as the genome of the phototroph Cryptomonas curvata CCAP979/52. These three genome sequences were compared with the previously sequenced plastid genome of the nonphotosynthetic species Cryptomonas paramecium CCAP977/2a as well as photosynthetic members of the Cryptomonadales, including C. curvata FBCC300012D. Intraspecies comparison between the two C. curvata strains showed that although their genome structures are stable, the substitution rates of their genes are relatively high. Although most photosynthesis-related genes, such as the psa and psb gene families, were found to have disappeared from the nonphotosynthetic strains, at least ten pseudogenes are retained in SAG977-2f. Although gene order is roughly shared among the plastid genomes of photosynthetic Cryptomonadales, genome rearrangements are seen more frequently in the smaller genomes of the nonphotosynthetic strains. Intriguingly, the light-independent protochlorophyllide reductase comprising chlB, L, and N is retained in nonphotosynthetic SAG977-2f and CCAC1634B. On the other hand, whereas CCAP977/2a retains ribulose-1,5-bisphosphate carboxylase/oxygenase-related genes, including rbcL, rbcS, and cbbX, the plastid genomes of the other two nonphotosynthetic strains have lost the ribulose-1,5-bisphosphate carboxylase/oxygenase protein-coding genes.
Collapse
Affiliation(s)
- Goro Tanifuji
- Department of Zoology, National Museum of Nature and Science, Ibaraki, Japan
| | - Ryoma Kamikawa
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Christa E Moore
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Tyler Mills
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Naoko T Onodera
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Yuichiro Kashiyama
- Department of Applied Chemistry and Food Science, Fukui University of Technology, Fukui, Japan
| | - John M Archibald
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Yuji Inagaki
- Center for Computational Sciences, University of Tsukuba, Ibaraki, Japan.,Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | - Tetsuo Hashimoto
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
8
|
Greenwold MJ, Cunningham BR, Lachenmyer EM, Pullman JM, Richardson TL, Dudycha JL. Diversification of light capture ability was accompanied by the evolution of phycobiliproteins in cryptophyte algae. Proc Biol Sci 2020; 286:20190655. [PMID: 31088271 DOI: 10.1098/rspb.2019.0655] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Evolutionary biologists have long sought to identify phenotypic traits whose evolution enhances an organism's performance in its environment. Diversification of traits related to resource acquisition can occur owing to spatial or temporal resource heterogeneity. We examined the ability to capture light in the Cryptophyta, a phylum of single-celled eukaryotic algae with diverse photosynthetic pigments, to better understand how acquisition of an abiotic resource may be associated with diversification. Cryptophytes originated through secondary endosymbiosis between an unknown eukaryotic host and a red algal symbiont. This merger resulted in distinctive pigment-protein complexes, the cryptophyte phycobiliproteins, which are the products of genes from both ancestors. These novel complexes may have facilitated diversification across environments where the spectrum of light available for photosynthesis varies widely. We measured light capture and pigments under controlled conditions in a phenotypically and phylogenetically diverse collection of cryptophytes. Using phylogenetic comparative methods, we found that phycobiliprotein characteristics were evolutionarily associated with diversification of light capture in cryptophytes, while non-phycobiliprotein pigments were not. Furthermore, phycobiliproteins were evolutionarily labile with repeated transitions and reversals. Thus, the endosymbiotic origin of cryptophyte phycobiliproteins provided an evolutionary spark that drove diversification of light capture, the resource that is the foundation of photosynthesis.
Collapse
Affiliation(s)
- Matthew J Greenwold
- 1 Department of Biological Sciences, University of South Carolina , Columbia, SC 29208 , USA
| | - Brady R Cunningham
- 2 School of the Earth, Ocean, and Environment, University of South Carolina , Columbia, SC 29208 , USA
| | - Eric M Lachenmyer
- 2 School of the Earth, Ocean, and Environment, University of South Carolina , Columbia, SC 29208 , USA
| | - John Michael Pullman
- 1 Department of Biological Sciences, University of South Carolina , Columbia, SC 29208 , USA
| | - Tammi L Richardson
- 1 Department of Biological Sciences, University of South Carolina , Columbia, SC 29208 , USA.,2 School of the Earth, Ocean, and Environment, University of South Carolina , Columbia, SC 29208 , USA
| | - Jeffry L Dudycha
- 1 Department of Biological Sciences, University of South Carolina , Columbia, SC 29208 , USA
| |
Collapse
|
9
|
Genes functioned in kleptoplastids of Dinophysis are derived from haptophytes rather than from cryptophytes. Sci Rep 2019; 9:9009. [PMID: 31227737 PMCID: PMC6588620 DOI: 10.1038/s41598-019-45326-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 06/05/2019] [Indexed: 11/29/2022] Open
Abstract
Toxic dinoflagellates belonging to the genus Dinophysis acquire plastids indirectly from cryptophytes through the consumption of the ciliate Mesodinium rubrum. Dinophysis acuminata harbours three genes encoding plastid-related proteins, which are thought to have originated from fucoxanthin dinoflagellates, haptophytes and cryptophytes via lateral gene transfer (LGT). Here, we investigate the origin of these plastid proteins via RNA sequencing of species related to D. fortii. We identified 58 gene products involved in porphyrin, chlorophyll, isoprenoid and carotenoid biosyntheses as well as in photosynthesis. Phylogenetic analysis revealed that the genes associated with chlorophyll and carotenoid biosyntheses and photosynthesis originated from fucoxanthin dinoflagellates, haptophytes, chlorarachniophytes, cyanobacteria and cryptophytes. Furthermore, nine genes were laterally transferred from fucoxanthin dinoflagellates, whose plastids were derived from haptophytes. Notably, transcription levels of different plastid protein isoforms varied significantly. Based on these findings, we put forth a novel hypothesis regarding the evolution of Dinophysis plastids that ancestral Dinophysis species acquired plastids from haptophytes or fucoxanthin dinoflagellates, whereas LGT from cryptophytes occurred more recently. Therefore, the evolutionary convergence of genes following LGT may be unlikely in most cases.
Collapse
|
10
|
Vedalankar P, Tripathy BC. Evolution of light-independent protochlorophyllide oxidoreductase. PROTOPLASMA 2019; 256:293-312. [PMID: 30291443 DOI: 10.1007/s00709-018-1317-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/27/2018] [Indexed: 06/08/2023]
Abstract
The nonhomologous enzymes, the light-independent protochlorophyllide reductase (DPOR) and the light-dependent protochlorophyllide oxidoreductase (LPOR), catalyze the reduction of protochlorophyllide (Pchlide) to chlorophyllide (Chlide) in the penultimate step of biosynthesis of chlorophyll (Chl) required for photosynthetic light absorption and energy conversion. The two enzymes differ with respect to the requirement of light for catalysis and oxygen sensitivity. DPOR and LPOR initially evolved in the ancestral prokaryotic genome perhaps at different times. DPOR originated in the anoxygenic environment of the Earth from nitrogenase-like enzyme of methanogenic archaea. Due to the transition from anoxygenic to oxygenic photosynthesis in the prokaryote, the DPOR was mostly inactivated in the daytime by photosynthetic O2 leading to the evolution of oxygen-insensitive LPOR that could function in the light. The primary endosymbiotic event transferred the DPOR and LPOR genes to the eukaryotic phototroph; the DPOR remained in the genome of the ancestor that turned into the plastid, whereas LPOR was transferred to the host nuclear genome. From an evolutionary point of view, several compelling theories that explain the disappearance of DPOR from several species cutting across different phyla are as follows: (i) pressure of the oxygenic environment; (ii) change in the light conditions and temperature; and (iii) lineage-specific gene losses, RNA editing, and nonsynonymous substitution. Certain primary amino acid sequence and the physiochemical properties of the ChlL subunit of DPOR have similarity with that of LPOR suggesting a convergence of these two enzymes in certain evolutionary event. The newly obtained sequence data from different phototrophs will further enhance the width of the phylogenetic information on DPOR.
Collapse
Affiliation(s)
| | - Baishnab C Tripathy
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
11
|
Figueroa-Martinez F, Jackson C, Reyes-Prieto A. Plastid Genomes from Diverse Glaucophyte Genera Reveal a Largely Conserved Gene Content and Limited Architectural Diversity. Genome Biol Evol 2019; 11:174-188. [PMID: 30534986 PMCID: PMC6330054 DOI: 10.1093/gbe/evy268] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2018] [Indexed: 12/30/2022] Open
Abstract
Plastid genome (ptDNA) data of Glaucophyta have been limited for many years to the genus Cyanophora. Here, we sequenced the ptDNAs of Gloeochaete wittrockiana, Cyanoptyche gloeocystis, Glaucocystis incrassata, and Glaucocystis sp. BBH. The reported sequences are the first genome-scale plastid data available for these three poorly studied glaucophyte genera. Although the Glaucophyta plastids appear morphologically “ancestral,” they actually bear derived genomes not radically different from those of red algae or viridiplants. The glaucophyte plastid coding capacity is highly conserved (112 genes shared) and the architecture of the plastid chromosomes is relatively simple. Phylogenomic analyses recovered Glaucophyta as the earliest diverging Archaeplastida lineage, but the position of viridiplants as the first branching group was not rejected by the approximately unbiased test. Pairwise distances estimated from 19 different plastid genes revealed that the highest sequence divergence between glaucophyte genera is frequently higher than distances between species of different classes within red algae or viridiplants. Gene synteny and sequence similarity in the ptDNAs of the two Glaucocystis species analyzed is conserved. However, the ptDNA of Gla. incrassata contains a 7.9-kb insertion not detected in Glaucocystis sp. BBH. The insertion contains ten open reading frames that include four coding regions similar to bacterial serine recombinases (two open reading frames), DNA primases, and peptidoglycan aminohydrolases. These three enzymes, often encoded in bacterial plasmids and bacteriophage genomes, are known to participate in the mobilization and replication of DNA mobile elements. It is therefore plausible that the insertion in Gla. incrassata ptDNA is derived from a DNA mobile element.
Collapse
Affiliation(s)
- Francisco Figueroa-Martinez
- Department of Biology, University of New Brunswick, Fredericton, New Brunswick, Canada.,CONACyT-Universidad Autónoma Metropolitana Iztapalapa, Biotechnology Department, Mexico City, Mexico
| | - Christopher Jackson
- Department of Biology, University of New Brunswick, Fredericton, New Brunswick, Canada.,School of Biosciences, University of Melbourne, Melbourne, Australia
| | - Adrian Reyes-Prieto
- Department of Biology, University of New Brunswick, Fredericton, New Brunswick, Canada
| |
Collapse
|
12
|
Kim JI, Yoon HS, Yi G, Shin W, Archibald JM. Comparative mitochondrial genomics of cryptophyte algae: gene shuffling and dynamic mobile genetic elements. BMC Genomics 2018; 19:275. [PMID: 29678149 PMCID: PMC5910586 DOI: 10.1186/s12864-018-4626-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 03/27/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cryptophytes are an ecologically important group of algae comprised of phototrophic, heterotrophic and osmotrophic species. This lineage is of great interest to evolutionary biologists because their plastids are of red algal secondary endosymbiotic origin. Cryptophytes have a clear phylogenetic affinity to heterotrophic eukaryotes and possess four genomes: host-derived nuclear and mitochondrial genomes, and plastid and nucleomorph genomes of endosymbiotic origin. RESULTS To gain insight into cryptophyte mitochondrial genome evolution, we sequenced the mitochondrial DNAs of five species and performed a comparative analysis of seven genomes from the following cryptophyte genera: Chroomonas, Cryptomonas, Hemiselmis, Proteomonas, Rhodomonas, Storeatula and Teleaulax. The mitochondrial genomes were similar in terms of their general architecture, gene content and presence of a large repeat region. However, gene order was poorly conserved. Characteristic features of cryptophyte mtDNAs included large syntenic clusters resembling α-proteobacterial operons that encode bacteria-like rRNAs, tRNAs, and ribosomal protein genes. The cryptophyte mitochondrial genomes retain almost all genes found in many other eukaryotes including the nad, sdh, cox, cob, and atp genes, with the exception of sdh2 and atp3. In addition, gene cluster analysis showed that cryptophytes possess a gene order closely resembling the jakobid flagellates Jakoba and Reclinomonas. Interestingly, the cox1 gene of R. salina, T. amphioxeia, and Storeatula species was found to contain group II introns encoding a reverse transcriptase protein, as did the cob gene of Storeatula species CCMP1868. CONCLUSIONS These newly sequenced genomes increase the breadth of data available from algae and will aid in the identification of general trends in mitochondrial genome evolution. While most of the genomes were highly conserved, extensive gene arrangements have shuffled gene order, perhaps due to genome rearrangements associated with hairpin-containing mobile genetic elements, tRNAs with palindromic sequences, and tandem repeat sequences. The cox1 and cob gene sequences suggest that introns have recently been acquired during cryptophyte evolution. Comparison of phylogenetic trees based on plastid and mitochondrial genome data sets underscore the different evolutionary histories of the host and endosymbiont components of present-day cryptophytes.
Collapse
Affiliation(s)
- Jong Im Kim
- Department of Biology, Chungnam National University, Daejeon, 34134, South Korea
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Gangman Yi
- Department of Multimedia Engineering, Dongguk University, Seoul, 04620, South Korea
| | - Woongghi Shin
- Department of Biology, Chungnam National University, Daejeon, 34134, South Korea.
| | - John M Archibald
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada.
| |
Collapse
|
13
|
Cavalier-Smith T. Kingdom Chromista and its eight phyla: a new synthesis emphasising periplastid protein targeting, cytoskeletal and periplastid evolution, and ancient divergences. PROTOPLASMA 2018; 255:297-357. [PMID: 28875267 PMCID: PMC5756292 DOI: 10.1007/s00709-017-1147-3] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/18/2017] [Indexed: 05/18/2023]
Abstract
In 1981 I established kingdom Chromista, distinguished from Plantae because of its more complex chloroplast-associated membrane topology and rigid tubular multipartite ciliary hairs. Plantae originated by converting a cyanobacterium to chloroplasts with Toc/Tic translocons; most evolved cell walls early, thereby losing phagotrophy. Chromists originated by enslaving a phagocytosed red alga, surrounding plastids by two extra membranes, placing them within the endomembrane system, necessitating novel protein import machineries. Early chromists retained phagotrophy, remaining naked and repeatedly reverted to heterotrophy by losing chloroplasts. Therefore, Chromista include secondary phagoheterotrophs (notably ciliates, many dinoflagellates, Opalozoa, Rhizaria, heliozoans) or walled osmotrophs (Pseudofungi, Labyrinthulea), formerly considered protozoa or fungi respectively, plus endoparasites (e.g. Sporozoa) and all chromophyte algae (other dinoflagellates, chromeroids, ochrophytes, haptophytes, cryptophytes). I discuss their origin, evolutionary diversification, and reasons for making chromists one kingdom despite highly divergent cytoskeletons and trophic modes, including improved explanations for periplastid/chloroplast protein targeting, derlin evolution, and ciliary/cytoskeletal diversification. I conjecture that transit-peptide-receptor-mediated 'endocytosis' from periplastid membranes generates periplastid vesicles that fuse with the arguably derlin-translocon-containing periplastid reticulum (putative red algal trans-Golgi network homologue; present in all chromophytes except dinoflagellates). I explain chromist origin from ancestral corticates and neokaryotes, reappraising tertiary symbiogenesis; a chromist cytoskeletal synapomorphy, a bypassing microtubule band dextral to both centrioles, favoured multiple axopodial origins. I revise chromist higher classification by transferring rhizarian subphylum Endomyxa from Cercozoa to Retaria; establishing retarian subphylum Ectoreta for Foraminifera plus Radiozoa, apicomonad subclasses, new dinozoan classes Myzodinea (grouping Colpovora gen. n., Psammosa), Endodinea, Sulcodinea, and subclass Karlodinia; and ranking heterokont Gyrista as phylum not superphylum.
Collapse
|
14
|
Kim JI, Moore CE, Archibald JM, Bhattacharya D, Yi G, Yoon HS, Shin W. Evolutionary Dynamics of Cryptophyte Plastid Genomes. Genome Biol Evol 2017; 9:1859-1872. [PMID: 28854597 PMCID: PMC5534331 DOI: 10.1093/gbe/evx123] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2017] [Indexed: 12/14/2022] Open
Abstract
Cryptophytes are an ecologically important group of largely photosynthetic unicellular eukaryotes. This lineage is of great interest to evolutionary biologists because their plastids are of red algal secondary endosymbiotic origin and the host cell retains four different genomes (host nuclear, mitochondrial, plastid, and red algal nucleomorph). Here, we report a comparative analysis of plastid genomes from six representative cryptophyte genera. Four newly sequenced cryptophyte plastid genomes of Chroomonas mesostigmatica, Ch. placoidea, Cryptomonas curvata, and Storeatula sp. CCMP1868 share a number of features including synteny and gene content with the previously sequenced genomes of Cryptomonas paramecium, Rhodomonas salina, Teleaulax amphioxeia, and Guillardia theta. Our analysis of these plastid genomes reveals examples of gene loss and intron insertion. In particular, the chlB/chlL/chlN genes, which encode light-independent (dark active) protochlorophyllide oxidoreductase (LIPOR) proteins have undergone recent gene loss and pseudogenization in cryptophytes. Comparison of phylogenetic trees based on plastid and nuclear genome data sets show the introduction, via secondary endosymbiosis, of a red algal derived plastid in a lineage of chlorophyll-c containing algae. This event was followed by additional rounds of eukaryotic endosymbioses that spread the red lineage plastid to diverse groups such as haptophytes and stramenopiles.
Collapse
Affiliation(s)
- Jong Im Kim
- Department of Biology, Chungnam National University, Daejeon, Korea
| | - Christa E Moore
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - John M Archibald
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | - Gangman Yi
- Department of Multimedia Engineering, Dongkuk University, Seoul, Korea
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Woongghi Shin
- Department of Biology, Chungnam National University, Daejeon, Korea
| |
Collapse
|
15
|
Yurchenko T, Ševčíková T, Strnad H, Butenko A, Eliáš M. The plastid genome of some eustigmatophyte algae harbours a bacteria-derived six-gene cluster for biosynthesis of a novel secondary metabolite. Open Biol 2017; 6:rsob.160249. [PMID: 27906133 PMCID: PMC5133447 DOI: 10.1098/rsob.160249] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 10/31/2016] [Indexed: 01/26/2023] Open
Abstract
Acquisition of genes by plastid genomes (plastomes) via horizontal gene transfer (HGT) seems to be a rare phenomenon. Here, we report an interesting case of HGT revealed by sequencing the plastomes of the eustigmatophyte algae Monodopsis sp. MarTras21 and Vischeria sp. CAUP Q 202. These plastomes proved to harbour a unique cluster of six genes, most probably acquired from a bacterium of the phylum Bacteroidetes, with homologues in various bacteria, typically organized in a conserved uncharacterized putative operon. Sequence analyses of the six proteins encoded by the operon yielded the following annotation for them: (i) a novel family without discernible homologues; (ii) a new family within the superfamily of metallo-dependent hydrolases; (iii) a novel subgroup of the UbiA superfamily of prenyl transferases; (iv) a new clade within the sugar phosphate cyclase superfamily; (v) a new family within the xylose isomerase-like superfamily; and (vi) a hydrolase for a phosphate moiety-containing substrate. We suggest that the operon encodes enzymes of a pathway synthesizing an isoprenoid–cyclitol-derived compound, possibly an antimicrobial or other protective substance. To the best of our knowledge, this is the first report of an expansion of the metabolic capacity of a plastid mediated by HGT into the plastid genome.
Collapse
Affiliation(s)
- Tatiana Yurchenko
- Faculty of Science, Department of Biology and Ecology, Life Science Research Centre, University of Ostrava, Chittussiho 10, 710 00 Ostrava, Czech Republic.,Faculty of Science, Institute of Environmental Technologies, University of Ostrava, Chittussiho 10, 710 00 Ostrava, Czech Republic
| | - Tereza Ševčíková
- Faculty of Science, Department of Biology and Ecology, Life Science Research Centre, University of Ostrava, Chittussiho 10, 710 00 Ostrava, Czech Republic
| | - Hynek Strnad
- Institute of Molecular Genetics of the ASCR, v. v. i., Prague, Czech Republic
| | - Anzhelika Butenko
- Faculty of Science, Department of Biology and Ecology, Life Science Research Centre, University of Ostrava, Chittussiho 10, 710 00 Ostrava, Czech Republic
| | - Marek Eliáš
- Faculty of Science, Department of Biology and Ecology, Life Science Research Centre, University of Ostrava, Chittussiho 10, 710 00 Ostrava, Czech Republic .,Faculty of Science, Institute of Environmental Technologies, University of Ostrava, Chittussiho 10, 710 00 Ostrava, Czech Republic
| |
Collapse
|
16
|
A Robust Method for Finding the Automated Best Matched Genes Based on Grouping Similar Fragments of Large-Scale References for Genome Assembly. Symmetry (Basel) 2017. [DOI: 10.3390/sym9090192] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
17
|
Yoo YD, Seong KA, Jeong HJ, Yih W, Rho JR, Nam SW, Kim HS. Mixotrophy in the marine red-tide cryptophyte Teleaulax amphioxeia and ingestion and grazing impact of cryptophytes on natural populations of bacteria in Korean coastal waters. HARMFUL ALGAE 2017; 68:105-117. [PMID: 28962973 DOI: 10.1016/j.hal.2017.07.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 07/25/2017] [Accepted: 07/27/2017] [Indexed: 05/13/2023]
Abstract
Cryptophytes are ubiquitous and one of the major phototrophic components in marine plankton communities. They often cause red tides in the waters of many countries. Understanding the bloom dynamics of cryptophytes is, therefore, of great importance. A critical step in this understanding is unveiling their trophic modes. Prior to this study, several freshwater cryptophyte species and marine Cryptomonas sp. and Geminifera cryophila were revealed to be mixotrophic. The trophic mode of the common marine cryptophyte species, Teleaulax amphioxeia has not been investigated yet. Thus, to explore the mixotrophic ability of T. amphioxeia by assessing the types of prey species that this species is able to feed on, the protoplasms of T. amphioxeia cells were carefully examined under an epifluorescence microscope and a transmission electron microscope after adding each of the diverse prey species. Furthermore, T. amphioxeia ingestion rates heterotrophic bacteria and the cyanobacterium Synechococcus sp. were measured as a function of prey concentration. Moreover, the feeding of natural populations of cryptophytes on natural populations of heterotrophic bacteria was assessed in Masan Bay in April 2006. This study reported for the first time, to our knowledge, that T. amphioxeia is a mixotrophic species. Among the prey organisms offered, T. amphioxeia fed only on heterotrophic bacteria and Synechococcus sp. The ingestion rates of T. amphioxeia on heterotrophic bacteria or Synechococcus sp. rapidly increased with increasing prey concentrations up to 8.6×106 cells ml-1, but slowly at higher prey concentrations. The maximum ingestion rates of T. amphioxeia on heterotrophic bacteria and Synechococcus sp. reached 0.7 and 0.3 cells predator-1 h-1, respectively. During the field experiments, the ingestion rates and grazing coefficients of cryptophytes on natural populations of heterotrophic bacteria were 0.3-8.3 cells predator-1h-1 and 0.012-0.033d-1, respectively. Marine cryptophytes, including T. amphioxeia, are known to be favorite prey species for many mixotrophic and heterotrophic dinoflagellates and ciliates. Cryptophytes, therefore, likely play important roles in marine food webs and may exert a considerable potential grazing impact on the populations of marine bacteria.
Collapse
Affiliation(s)
- Yeong Du Yoo
- Department of Marine Biotechnology, College of Ocean Science and Technology, Kunsan National University, Kunsan 54150, Republic of Korea.
| | - Kyeong Ah Seong
- Department of Marine Biotechnology, College of Ocean Science and Technology, Kunsan National University, Kunsan 54150, Republic of Korea
| | - Hae Jin Jeong
- School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| | - Wonho Yih
- Department of Marine Biotechnology, College of Ocean Science and Technology, Kunsan National University, Kunsan 54150, Republic of Korea
| | - Jung-Rae Rho
- Department of Marine Biotechnology, College of Ocean Science and Technology, Kunsan National University, Kunsan 54150, Republic of Korea
| | - Seung Won Nam
- Nakdonggang National Institute of Biological Resources, Sangju, 37242, Republic of Korea
| | - Hyung Seop Kim
- Department of Marine Biotechnology, College of Ocean Science and Technology, Kunsan National University, Kunsan 54150, Republic of Korea
| |
Collapse
|
18
|
Herfort L, Maxey K, Voorhees I, Simon HM, Grobler K, Peterson TD, Zuber P. Use of Highly Specific Molecular Markers Reveals Positive Correlation between Abundances of
Mesodinium
cf.
major
and Its Preferred Prey,
Teleaulax amphioxeia,
During Red Water Blooms in the Columbia River Estuary. J Eukaryot Microbiol 2017; 64:740-755. [DOI: 10.1111/jeu.12407] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 02/22/2017] [Accepted: 02/23/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Lydie Herfort
- NSF Science & Technology Center for Coastal Margin Observation & Prediction (CMOP) and Institute of Environmental Health Oregon Health & Science University 3181 S.W. Sam Jackson Park Road Portland Oregon 97239 USA
| | - Katie Maxey
- NSF Science & Technology Center for Coastal Margin Observation & Prediction (CMOP) and Institute of Environmental Health Oregon Health & Science University 3181 S.W. Sam Jackson Park Road Portland Oregon 97239 USA
| | - Ian Voorhees
- NSF Science & Technology Center for Coastal Margin Observation & Prediction (CMOP) and Institute of Environmental Health Oregon Health & Science University 3181 S.W. Sam Jackson Park Road Portland Oregon 97239 USA
| | - Holly M. Simon
- NSF Science & Technology Center for Coastal Margin Observation & Prediction (CMOP) and Institute of Environmental Health Oregon Health & Science University 3181 S.W. Sam Jackson Park Road Portland Oregon 97239 USA
| | - Kolette Grobler
- Ministry of Fisheries and Marine Resources (MFMR) Lüderitz PO Box 394 Shark Island Namibia
| | - Tawnya D. Peterson
- NSF Science & Technology Center for Coastal Margin Observation & Prediction (CMOP) and Institute of Environmental Health Oregon Health & Science University 3181 S.W. Sam Jackson Park Road Portland Oregon 97239 USA
| | - Peter Zuber
- NSF Science & Technology Center for Coastal Margin Observation & Prediction (CMOP) and Institute of Environmental Health Oregon Health & Science University 3181 S.W. Sam Jackson Park Road Portland Oregon 97239 USA
| |
Collapse
|
19
|
Suzuki S, Hirakawa Y, Kofuji R, Sugita M, Ishida KI. Plastid genome sequences of Gymnochlora stellata, Lotharella vacuolata, and Partenskyella glossopodia reveal remarkable structural conservation among chlorarachniophyte species. JOURNAL OF PLANT RESEARCH 2016; 129:581-590. [PMID: 26920842 DOI: 10.1007/s10265-016-0804-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 12/21/2015] [Indexed: 06/05/2023]
Abstract
Chlorarachniophyte algae have complex plastids acquired by the uptake of a green algal endosymbiont, and this event is called secondary endosymbiosis. Interestingly, the plastids possess a relict endosymbiont nucleus, referred to as the nucleomorph, in the intermembrane space, and the nucleomorphs contain an extremely reduced and compacted genome in comparison with green algal nuclear genomes. Therefore, chlorarachniophyte plastids consist of two endosymbiotically derived genomes, i.e., the plastid and nucleomorph genomes. To date, complete nucleomorph genomes have been sequenced in four different species, whereas plastid genomes have been reported in only two species in chlorarachniophytes. To gain further insight into the evolution of endosymbiotic genomes in chlorarachniophytes, we newly sequenced the plastid genomes of three species, Gymnochlora stellata, Lotharella vacuolata, and Partenskyella glossopodia. Our findings reveal that chlorarachniophyte plastid genomes are highly conserved in size, gene content, and gene order among species, but their nucleomorph genomes are divergent in such features. Accordingly, the current architecture of the plastid genomes of chlorarachniophytes evolved in a common ancestor, and changed very little during their subsequent diversification. Furthermore, our phylogenetic analyses using multiple plastid genes suggest that chlorarachniophyte plastids are derived from a green algal lineage that is closely related to Bryopsidales in the Ulvophyceae group.
Collapse
Affiliation(s)
- Shigekatsu Suzuki
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | - Yoshihisa Hirakawa
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | - Rumiko Kofuji
- Graduate School of Natural Science and Technology, Kanazawa University, Ishikawa, Japan
| | - Mamoru Sugita
- Center for Gene Research, Nagoya University, Aichi, Japan
| | - Ken-Ichiro Ishida
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan.
| |
Collapse
|
20
|
Tanifuji G, Archibald JM, Hashimoto T. Comparative genomics of mitochondria in chlorarachniophyte algae: endosymbiotic gene transfer and organellar genome dynamics. Sci Rep 2016; 6:21016. [PMID: 26888293 PMCID: PMC4757882 DOI: 10.1038/srep21016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 01/14/2016] [Indexed: 11/09/2022] Open
Abstract
Chlorarachniophyte algae possess four DNA-containing compartments per cell, the nucleus, mitochondrion, plastid and nucleomorph, the latter being a relic nucleus derived from a secondary endosymbiont. While the evolutionary dynamics of plastid and nucleomorph genomes have been investigated, a comparative investigation of mitochondrial genomes (mtDNAs) has not been carried out. We have sequenced the complete mtDNA of Lotharella oceanica and compared it to that of another chlorarachniophyte, Bigelowiella natans. The linear mtDNA of L. oceanica is 36.7 kbp in size and contains 35 protein genes, three rRNAs and 24 tRNAs. The codons GUG and UUG appear to be capable of acting as initiation codons in the chlorarachniophyte mtDNAs, in addition to AUG. Rpl16, rps4 and atp8 genes are missing in L.oceanica mtDNA, despite being present in B. natans mtDNA. We searched for, and found, mitochondrial rpl16 and rps4 genes with spliceosomal introns in the L. oceanica nuclear genome, indicating that mitochondrion-to-host-nucleus gene transfer occurred after the divergence of these two genera. Despite being of similar size and coding capacity, the level of synteny between L. oceanica and B. natans mtDNA is low, suggesting frequent rearrangements. Overall, our results suggest that chlorarachniophyte mtDNAs are more evolutionarily dynamic than their plastid counterparts.
Collapse
Affiliation(s)
- Goro Tanifuji
- Faculty of Life and Environmental Sciences, University of Tsukuba, Japan
| | - John M Archibald
- Department of Biochemistry and Molecular Biology, Dalhousie University, Canada.,Program in Integrated Microbial Biodiversity, Canadian Institute for Advanced Research, Toronto, Ontario Canada
| | - Tetsuo Hashimoto
- Faculty of Life and Environmental Sciences, University of Tsukuba, Japan
| |
Collapse
|
21
|
Tang X, Bi G. The complete chloroplast genome of Guillardia theta strain CCMP2712. Mitochondrial DNA A DNA Mapp Seq Anal 2015; 27:4423-4424. [PMID: 26404017 DOI: 10.3109/19401736.2015.1089554] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The complete chloroplast sequence of Cryptophyceae algae Guillardia theta strain CCMP2712 was determined in this study. The genome consists of 138 455 bp containing a pair of rRNA-coding invert repeats of 4973 bp. The overall GC contents of the chloroplast genome were 32.9%. A total of 159 functional genes were annotated, which included 124 protein-coding genes, 30 tRNAs, 1tmRNA and 4 rRNA genes. Short intergenic regions, no introns and some overlapping genes make this cp genome compact. Phylogenetic analysis with the related algae cp genomes revealed that G. theta strain CCMP2712 a typical Cryptophyta algae and had a close genetic relationship with Rhodomonas salina (EF508371) and another previously reported G. theta (AF041468).
Collapse
Affiliation(s)
- Xianghai Tang
- a Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China , Qingdao , China
| | - Guiqi Bi
- a Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China , Qingdao , China
| |
Collapse
|