1
|
Wan Mohamad Zamri WN, Mohd Yunus N, Abdul Aziz AA, Zulkipli NN, Sulong S. Perspectives on the Application of Cytogenomic Approaches in Chronic Lymphocytic Leukaemia. Diagnostics (Basel) 2023; 13:964. [PMID: 36900108 PMCID: PMC10001075 DOI: 10.3390/diagnostics13050964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 03/06/2023] Open
Abstract
Chronic lymphocytic leukaemia (CLL) is a haematological malignancy characterised by the accumulation of monoclonal mature B lymphocytes (positive for CD5+ and CD23+) in peripheral blood, bone marrow, and lymph nodes. Although CLL is reported to be rare in Asian countries compared to Western countries, the disease course is more aggressive in Asian countries than in their Western counterparts. It has been postulated that this is due to genetic variants between populations. Various cytogenomic methods, either of the traditional type (conventional cytogenetics or fluorescence in situ hybridisation (FISH)) or using more advanced technology such as DNA microarrays, next generation sequencing (NGS), or genome wide association studies (GWAS), were used to detect chromosomal aberrations in CLL. Up until now, conventional cytogenetic analysis remained the gold standard in diagnosing chromosomal abnormality in haematological malignancy including CLL, even though it is tedious and time-consuming. In concordance with technological advancement, DNA microarrays are gaining popularity among clinicians as they are faster and better able to accurately diagnose the presence of chromosomal abnormalities. However, every technology has challenges to overcome. In this review, CLL and its genetic abnormalities will be discussed, as well as the application of microarray technology as a diagnostic platform.
Collapse
Affiliation(s)
| | - Nazihah Mohd Yunus
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
| | - Ahmad Aizat Abdul Aziz
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
| | - Ninie Nadia Zulkipli
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Kuala Terengganu 21300, Malaysia
| | - Sarina Sulong
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
| |
Collapse
|
2
|
Pacholewska A, Grimm C, Herling CD, Lienhard M, Königs A, Timmermann B, Altmüller J, Mücke O, Reinhardt HC, Plass C, Herwig R, Hallek M, Schweiger MR. Altered DNA Methylation Profiles in SF3B1 Mutated CLL Patients. Int J Mol Sci 2021; 22:ijms22179337. [PMID: 34502260 PMCID: PMC8431484 DOI: 10.3390/ijms22179337] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 12/13/2022] Open
Abstract
Mutations in splicing factor genes have a severe impact on the survival of cancer patients. Splicing factor 3b subunit 1 (SF3B1) is one of the most frequently mutated genes in chronic lymphocytic leukemia (CLL); patients carrying these mutations have a poor prognosis. Since the splicing machinery and the epigenome are closely interconnected, we investigated whether these alterations may affect the epigenomes of CLL patients. While an overall hypomethylation during CLL carcinogenesis has been observed, the interplay between the epigenetic stage of the originating B cells and SF3B1 mutations, and the subsequent effect of the mutations on methylation alterations in CLL, have not been investigated. We profiled the genome-wide DNA methylation patterns of 27 CLL patients with and without SF3B1 mutations and identified local decreases in methylation levels in SF3B1mut CLL patients at 67 genomic regions, mostly in proximity to telomeric regions. These differentially methylated regions (DMRs) were enriched in gene bodies of cancer-related signaling genes, e.g., NOTCH1, HTRA3, and BCL9L. In our study, SF3B1 mutations exclusively emerged in two out of three epigenetic stages of the originating B cells. However, not all the DMRs could be associated with the methylation programming of B cells during development, suggesting that mutations in SF3B1 cause additional epigenetic aberrations during carcinogenesis.
Collapse
Affiliation(s)
- Alicja Pacholewska
- Institute for Translational Epigenetics, Faculty of Medicine, University Hospital Cologne, 50931 Cologne, Germany; (A.P.); (C.G.); (A.K.)
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Christina Grimm
- Institute for Translational Epigenetics, Faculty of Medicine, University Hospital Cologne, 50931 Cologne, Germany; (A.P.); (C.G.); (A.K.)
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Carmen D. Herling
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, German CLL Study Group, Department I of Internal Medicine, Faculty of Medicine, University Hospital Cologne, 50931 Cologne, Germany; (C.D.H.); (H.C.R.); (M.H.)
| | - Matthias Lienhard
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; (M.L.); (R.H.)
| | - Anja Königs
- Institute for Translational Epigenetics, Faculty of Medicine, University Hospital Cologne, 50931 Cologne, Germany; (A.P.); (C.G.); (A.K.)
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Bernd Timmermann
- Sequencing Core Facility, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany;
| | - Janine Altmüller
- Cologne Center for Genomics, University of Cologne, 50931 Cologne, Germany;
| | - Oliver Mücke
- German Cancer Research Center, Cancer Epigenomics, 69120 Heidelberg, Germany; (O.M.); (C.P.)
| | - Hans Christian Reinhardt
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, German CLL Study Group, Department I of Internal Medicine, Faculty of Medicine, University Hospital Cologne, 50931 Cologne, Germany; (C.D.H.); (H.C.R.); (M.H.)
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- West German Cancer Center Essen, Department of Hematology and Stem Cell Transplantation, University Hospital Essen, 45147 Essen, Germany
| | - Christoph Plass
- German Cancer Research Center, Cancer Epigenomics, 69120 Heidelberg, Germany; (O.M.); (C.P.)
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Ralf Herwig
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; (M.L.); (R.H.)
| | - Michael Hallek
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, German CLL Study Group, Department I of Internal Medicine, Faculty of Medicine, University Hospital Cologne, 50931 Cologne, Germany; (C.D.H.); (H.C.R.); (M.H.)
| | - Michal R. Schweiger
- Institute for Translational Epigenetics, Faculty of Medicine, University Hospital Cologne, 50931 Cologne, Germany; (A.P.); (C.G.); (A.K.)
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
- Correspondence:
| |
Collapse
|
3
|
Eid OM, Abdel Kader RMA, Fathalla LA, Abdelrahman AH, Rabea A, Mahrous R, Eid MM. Evaluation of MLPA as a comprehensive molecular cytogenetic tool to detect cytogenetic markers of chronic lymphocytic leukemia in Egyptian patients. J Genet Eng Biotechnol 2021; 19:98. [PMID: 34181122 PMCID: PMC8239093 DOI: 10.1186/s43141-021-00198-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/14/2021] [Indexed: 12/03/2022]
Abstract
Background Chronic lymphocytic leukemia (CLL) is the most common form of adult leukemia. This disease is genetically heterogeneous, and approximately 85% of patients with CLL harbor chromosomal aberrations that are considered effective prognostic biomarkers. The most frequent aberrations include deletions in 13q14, followed by trisomy 12, and deletions in 11q22.3 and 17p13 (TP53). Currently, fluorescence in situ hybridization (FISH) is the most widely used molecular cytogenetic technique to detect these aberrations. However, FISH is laborious, time-consuming, expensive, and has a low throughput. In contrast, multiplex ligation-dependent probe amplification (MLPA) is a reliable, cost-effective, and relatively rapid technique that can be used as a first-line screening tool and complement with FISH analysis. This study aimed to evaluate the contributions of MLPA as a routine standalone screening platform for recurrent chromosomal aberrations in CLL in comparison to other procedures. Thirty patients with CLL were screened for the most common genomic aberrations using MLPA with SALSA MLPA probemix P038-B1 CLL and FISH. Results In 24 of the 30 cases (80%), the MLPA and FISH results were concordant. Discordant results were attributed to a low percentage of mosaicism. Moreover, the MLPA probemix contains probes that target other genomic areas known to be linked to CLL in addition to those targeting common recurrent CLL aberrations. Conclusions The usage of MLPA as the first screening platform followed by FISH technique for only the negative cases is the most appropriate approach for CLL diagnosis and prognosis.
Collapse
Affiliation(s)
- Ola M Eid
- Human Cytogenetics Department, Human Genetics and Genome Research Division, National Research Centre, Bohouth Street, 12311 Dokki, Cairo, Egypt
| | - Rania M A Abdel Kader
- Human Cytogenetics Department, Human Genetics and Genome Research Division, National Research Centre, Bohouth Street, 12311 Dokki, Cairo, Egypt.
| | - Lamiaa A Fathalla
- Clinical Pathology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | | | - Ahmed Rabea
- Oncology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Rana Mahrous
- Human Cytogenetics Department, Human Genetics and Genome Research Division, National Research Centre, Bohouth Street, 12311 Dokki, Cairo, Egypt
| | - Maha M Eid
- Human Cytogenetics Department, Human Genetics and Genome Research Division, National Research Centre, Bohouth Street, 12311 Dokki, Cairo, Egypt
| |
Collapse
|
4
|
Larose H, Prokoph N, Matthews JD, Schlederer M, Högler S, Alsulami AF, Ducray SP, Nuglozeh E, Fazaludeen MF, Elmouna A, Ceccon M, Mologni L, Gambacorti-Passerini C, Hoefler G, Lobello C, Pospisilova S, Janikova A, Woessmann W, Welk CD, Zimmermann MT, Fedorova A, Malone A, Smith O, Wasik M, Inghirami G, Lamant L, Blundell TL, Klapper W, Merkel O, Burke GAA, Mian S, Ashankyty I, Kenner L, Turner SD. Whole Exome Sequencing reveals NOTCH1 mutations in anaplastic large cell lymphoma and points to Notch both as a key pathway and a potential therapeutic target. Haematologica 2021; 106:1693-1704. [PMID: 32327503 PMCID: PMC8168516 DOI: 10.3324/haematol.2019.238766] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 04/09/2020] [Indexed: 12/11/2022] Open
Abstract
Patients diagnosed with Anaplastic Large Cell Lymphoma (ALCL) are still treated with toxic multi-agent chemotherapy and as many as 25-50% of patients relapse. To understand disease pathology and to uncover novel targets for therapy, Whole-Exome Sequencing (WES) of Anaplastic Lymphoma Kinase (ALK)+ ALCL was performed as well as Gene-Set Enrichment Analysis. This revealed that the T-cell receptor (TCR) and Notch pathways were the most enriched in mutations. In particular, variant T349P of NOTCH1, which confers a growth advantage to cells in which it is expressed, was detected in 12% of ALK+ and ALK- ALCL patient samples. Furthermore, we demonstrate that NPM-ALK promotes NOTCH1 expression through binding of STAT3 upstream of NOTCH1. Moreover, inhibition of NOTCH1 with γ-secretase inhibitors (GSIs) or silencing by shRNA leads to apoptosis; co-treatment in vitro with the ALK inhibitor Crizotinib led to additive/synergistic anti-tumour activity suggesting this may be an appropriate combination therapy for future use in the circumvention of ALK inhibitor resistance. Indeed, Crizotinib-resistant and sensitive ALCL were equally sensitive to GSIs. In conclusion, we show a variant in the extracellular domain of NOTCH1 that provides a growth advantage to cells and confirm the suitability of the Notch pathway as a second-line druggable target in ALK+ ALCL.
Collapse
Affiliation(s)
- Hugo Larose
- Department of Pathology, University of Cambridge, Cambridge, UK
- European Research Initiative for ALK Related Malignancies (ERIA; www.ERIALCL.net)
| | - Nina Prokoph
- Department of Pathology, University of Cambridge, Cambridge, UK
- European Research Initiative for ALK Related Malignancies (ERIA; www.ERIALCL.net)
| | | | | | - Sandra Högler
- Unit of Laborator y Animal Pathology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Ali F. Alsulami
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, UK
| | - Stephen P. Ducray
- Department of Pathology, University of Cambridge, Cambridge, UK
- European Research Initiative for ALK Related Malignancies (ERIA; www.ERIALCL.net)
| | - Edem Nuglozeh
- Molecular Diagnostics and Personalised Therapeutics Unit, Colleges of Medicine and Applied Medical Sciences, University of Ha’il, Ha’il, Saudi Arabia
| | - Mohammad Feroze Fazaludeen
- Neuroinflammation Research Group, Depar tment of Neurobiology, A.I Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
| | - Ahmed Elmouna
- Molecular Diagnostics and Personalised Therapeutics Unit, Colleges of Medicine and Applied Medical Sciences, University of Ha’il, Ha’il, Saudi Arabia
| | - Monica Ceccon
- European Research Initiative for ALK Related Malignancies (ERIA; www.ERIALCL.net)
- University of Milano-Bicocca, Monza, Italy
| | - Luca Mologni
- European Research Initiative for ALK Related Malignancies (ERIA; www.ERIALCL.net)
- University of Milano-Bicocca, Monza, Italy
| | - Carlo Gambacorti-Passerini
- European Research Initiative for ALK Related Malignancies (ERIA; www.ERIALCL.net)
- University of Milano-Bicocca, Monza, Italy
| | - Gerald Hoefler
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Cosimo Lobello
- European Research Initiative for ALK Related Malignancies (ERIA; www.ERIALCL.net)
- Center of Molecular Medicine, CEITEC, Masar yk University, Brno, Czech Republic
| | - Sarka Pospisilova
- European Research Initiative for ALK Related Malignancies (ERIA; www.ERIALCL.net)
- Center of Molecular Medicine, CEITEC, Masar yk University, Brno, Czech Republic
- Department of Internal Medicine – Hematology and Oncology, University Hospital Brno, Czech Republic
| | - Andrea Janikova
- European Research Initiative for ALK Related Malignancies (ERIA; www.ERIALCL.net)
- Department of Internal Medicine – Hematology and Oncology, University Hospital Brno, Czech Republic
| | - Wilhelm Woessmann
- European Research Initiative for ALK Related Malignancies (ERIA; www.ERIALCL.net)
- University Hospital Hamburg-Eppendor f, Pediatric Hematology and Oncology, Hamburg, Germany
| | - Christine Damm- Welk
- European Research Initiative for ALK Related Malignancies (ERIA; www.ERIALCL.net)
- University Hospital Hamburg-Eppendor f, Pediatric Hematology and Oncology, Hamburg, Germany
| | - Mar tin Zimmermann
- Department of Pediatric Hematology/Oncology and Blood Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Alina Fedorova
- Belarusian Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | | | - Owen Smith
- Our Lady’s Children’s Hospital, Crumlin, Ireland
| | - Mariusz Wasik
- European Research Initiative for ALK Related Malignancies (ERIA; www.ERIALCL.net)
- Perelman School of Medicine, Philadelphia, PA, USA
| | - Giorgio Inghirami
- Department of Pathology and Laboratory Medicine, Cornell University, New York, NY USA
| | - Laurence Lamant
- Institut Universitaire du Cancer Toulouse, Oncopole et Universite Paul-Sabatier, Toulouse, France
| | - Tom L. Blundell
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, UK
| | - Wolfram Klapper
- Department of Pathology, Hematopathology Section, UKSH Campus Kiel, Kiel, Germany
| | - Olaf Merkel
- European Research Initiative for ALK Related Malignancies (ERIA; www.ERIALCL.net)
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - G. A. Amos Burke
- Department of Paediatric Oncology, Addenbrooke’s Hospital, Cambridge, UK
| | - Shahid Mian
- Molecular Diagnostics and Personalised Therapeutics Unit, Colleges of Medicine and Applied Medical Sciences, University of Ha’il, Ha’il, Saudi Arabia
| | - Ibraheem Ashankyty
- Department of Medical Technology Laboratory, College of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Lukas Kenner
- European Research Initiative for ALK Related Malignancies (ERIA; www.ERIALCL.net)
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Ludwig-Boltzmann Institute for Cancer Research, Vienna, Austria
| | - Suzanne D. Turner
- Department of Pathology, University of Cambridge, Cambridge, UK
- European Research Initiative for ALK Related Malignancies (ERIA; www.ERIALCL.net)
- Center of Molecular Medicine, CEITEC, Masar yk University, Brno, Czech Republic
| |
Collapse
|
5
|
Mosquera Orgueira A, Cid López M, Peleteiro Raíndo A, Díaz Arias JÁ, Antelo Rodríguez B, Bao Pérez L, Alonso Vence N, Bendaña López Á, Abuin Blanco A, Melero Valentín P, Ferreiro Ferro R, Aliste Santos C, Fraga Rodríguez MF, González Pérez MS, Pérez Encinas MM, Bello López JL. Detection of Rare Germline Variants in the Genomes of Patients with B-Cell Neoplasms. Cancers (Basel) 2021; 13:cancers13061340. [PMID: 33809641 PMCID: PMC8001490 DOI: 10.3390/cancers13061340] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary The global importance of rare variants in tumorigenesis has been addressed by some pan-cancer analysis, revealing significant enrichments in protein-truncating variants affecting genes such as ATM, BRCA1/2, BRIP1, and MSH6. Germline variants can influence treatment response and contribute to the development of treatment-related second neoplasms, especially in childhood leukemia. We aimed to analyze the genomes of patients with B-cell lymphoproliferative disorders for the discovery of genes enriched in rare pathogenic variants. We discovered a significant enrichment for two genes in germline rare and dysfunctional variants. Additionally, we detected rare and likely pathogenic variants associated with disease prognosis and potential druggability, indicating a relevant role of these events in the variability of cancer phenotypes. Abstract There is growing evidence indicating the implication of germline variation in cancer predisposition and prognostication. Here, we describe an analysis of likely disruptive rare variants across the genomes of 726 patients with B-cell lymphoid neoplasms. We discovered a significant enrichment for two genes in rare dysfunctional variants, both of which participate in the regulation of oxidative stress pathways (CHMP6 and GSTA4). Additionally, we detected 1675 likely disrupting variants in genes associated with cancer, of which 44.75% were novel events and 7.88% were protein-truncating variants. Among these, the most frequently affected genes were ATM, BIRC6, CLTCL1A, and TSC2. Homozygous or germline double-hit variants were detected in 28 cases, and coexisting somatic events were observed in 17 patients, some of which affected key lymphoma drivers such as ATM, KMT2D, and MYC. Finally, we observed that variants in six different genes were independently associated with shorter survival in CLL. Our study results support an important role for rare germline variation in the pathogenesis and prognosis of B-cell lymphoid neoplasms.
Collapse
Affiliation(s)
- Adrián Mosquera Orgueira
- Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (M.C.L.); (A.P.R.); (J.Á.D.A.); (B.A.R.); (N.A.V.); (Á.B.L.); (M.F.F.R.); (M.S.G.P.); (M.M.P.E.); (J.L.B.L.)
- Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Department of Hematology, SERGAS, 15706 Santiago de Compostela, Spain; (L.B.P.); (A.A.B.); (P.M.V.); (R.F.F.)
- Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Department of Pathology, SERGAS, 15706 Santiago de Compostela, Spain;
- Correspondence: ; Tel.: +34-981-950-191
| | - Miguel Cid López
- Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (M.C.L.); (A.P.R.); (J.Á.D.A.); (B.A.R.); (N.A.V.); (Á.B.L.); (M.F.F.R.); (M.S.G.P.); (M.M.P.E.); (J.L.B.L.)
- Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Department of Hematology, SERGAS, 15706 Santiago de Compostela, Spain; (L.B.P.); (A.A.B.); (P.M.V.); (R.F.F.)
- Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Department of Pathology, SERGAS, 15706 Santiago de Compostela, Spain;
| | - Andrés Peleteiro Raíndo
- Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (M.C.L.); (A.P.R.); (J.Á.D.A.); (B.A.R.); (N.A.V.); (Á.B.L.); (M.F.F.R.); (M.S.G.P.); (M.M.P.E.); (J.L.B.L.)
- Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Department of Hematology, SERGAS, 15706 Santiago de Compostela, Spain; (L.B.P.); (A.A.B.); (P.M.V.); (R.F.F.)
- Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Department of Pathology, SERGAS, 15706 Santiago de Compostela, Spain;
| | - José Ángel Díaz Arias
- Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (M.C.L.); (A.P.R.); (J.Á.D.A.); (B.A.R.); (N.A.V.); (Á.B.L.); (M.F.F.R.); (M.S.G.P.); (M.M.P.E.); (J.L.B.L.)
- Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Department of Hematology, SERGAS, 15706 Santiago de Compostela, Spain; (L.B.P.); (A.A.B.); (P.M.V.); (R.F.F.)
| | - Beatriz Antelo Rodríguez
- Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (M.C.L.); (A.P.R.); (J.Á.D.A.); (B.A.R.); (N.A.V.); (Á.B.L.); (M.F.F.R.); (M.S.G.P.); (M.M.P.E.); (J.L.B.L.)
- Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Department of Pathology, SERGAS, 15706 Santiago de Compostela, Spain;
| | - Laura Bao Pérez
- Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Department of Hematology, SERGAS, 15706 Santiago de Compostela, Spain; (L.B.P.); (A.A.B.); (P.M.V.); (R.F.F.)
| | - Natalia Alonso Vence
- Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (M.C.L.); (A.P.R.); (J.Á.D.A.); (B.A.R.); (N.A.V.); (Á.B.L.); (M.F.F.R.); (M.S.G.P.); (M.M.P.E.); (J.L.B.L.)
- Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Department of Hematology, SERGAS, 15706 Santiago de Compostela, Spain; (L.B.P.); (A.A.B.); (P.M.V.); (R.F.F.)
| | - Ángeles Bendaña López
- Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (M.C.L.); (A.P.R.); (J.Á.D.A.); (B.A.R.); (N.A.V.); (Á.B.L.); (M.F.F.R.); (M.S.G.P.); (M.M.P.E.); (J.L.B.L.)
- Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Department of Hematology, SERGAS, 15706 Santiago de Compostela, Spain; (L.B.P.); (A.A.B.); (P.M.V.); (R.F.F.)
- Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Department of Pathology, SERGAS, 15706 Santiago de Compostela, Spain;
| | - Aitor Abuin Blanco
- Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Department of Hematology, SERGAS, 15706 Santiago de Compostela, Spain; (L.B.P.); (A.A.B.); (P.M.V.); (R.F.F.)
| | - Paula Melero Valentín
- Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Department of Hematology, SERGAS, 15706 Santiago de Compostela, Spain; (L.B.P.); (A.A.B.); (P.M.V.); (R.F.F.)
| | - Roi Ferreiro Ferro
- Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Department of Hematology, SERGAS, 15706 Santiago de Compostela, Spain; (L.B.P.); (A.A.B.); (P.M.V.); (R.F.F.)
| | - Carlos Aliste Santos
- Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Department of Pathology, SERGAS, 15706 Santiago de Compostela, Spain;
| | - Máximo Francisco Fraga Rodríguez
- Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (M.C.L.); (A.P.R.); (J.Á.D.A.); (B.A.R.); (N.A.V.); (Á.B.L.); (M.F.F.R.); (M.S.G.P.); (M.M.P.E.); (J.L.B.L.)
- Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Department of Pathology, SERGAS, 15706 Santiago de Compostela, Spain;
- Department of Medicine, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Marta Sonia González Pérez
- Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (M.C.L.); (A.P.R.); (J.Á.D.A.); (B.A.R.); (N.A.V.); (Á.B.L.); (M.F.F.R.); (M.S.G.P.); (M.M.P.E.); (J.L.B.L.)
- Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Department of Hematology, SERGAS, 15706 Santiago de Compostela, Spain; (L.B.P.); (A.A.B.); (P.M.V.); (R.F.F.)
| | - Manuel Mateo Pérez Encinas
- Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (M.C.L.); (A.P.R.); (J.Á.D.A.); (B.A.R.); (N.A.V.); (Á.B.L.); (M.F.F.R.); (M.S.G.P.); (M.M.P.E.); (J.L.B.L.)
- Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Department of Hematology, SERGAS, 15706 Santiago de Compostela, Spain; (L.B.P.); (A.A.B.); (P.M.V.); (R.F.F.)
- Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Department of Pathology, SERGAS, 15706 Santiago de Compostela, Spain;
| | - José Luis Bello López
- Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (M.C.L.); (A.P.R.); (J.Á.D.A.); (B.A.R.); (N.A.V.); (Á.B.L.); (M.F.F.R.); (M.S.G.P.); (M.M.P.E.); (J.L.B.L.)
- Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Department of Hematology, SERGAS, 15706 Santiago de Compostela, Spain; (L.B.P.); (A.A.B.); (P.M.V.); (R.F.F.)
- Department of Medicine, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| |
Collapse
|
6
|
Gonzalez-Rodriguez AP, Payer AR, Menendez-Suarez JJ, Sordo-Bahamonde C, Lorenzo-Herrero S, Zanabili J, Fonseca A, Gonzalez-Huerta AJ, Palomo P, Gonzalez S. Driver Mutations and Single Copy Number Abnormalities Identify Binet Stage A Patients with Chronic Lymphocytic Leukemia with Aggressive Progression. J Clin Med 2020; 9:jcm9113695. [PMID: 33213108 PMCID: PMC7698623 DOI: 10.3390/jcm9113695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 01/24/2023] Open
Abstract
The correlation between progression and the genetic characteristics of Binet stage A patients with chronic lymphocytic leukemia (CLL) detected by whole exome sequencing (WES) was analyzed in 55 patients. The median follow-up for the patients was 102 months. During the follow-up, 24 patients (43%) progressed. Univariate Cox analysis showed that the presence of driver mutations, the accumulation of two or more mutations, the presence of adverse mutations, immunoglobulin heavy chain genes (IGHV) mutation status and unfavorable single copy number abnormalities (SCNAs) were associated with a higher risk of progression. Particularly, the occurrence of an adverse mutation and unfavorable SCNAs increased the risk of progression nine-fold and five-fold, respectively. Nevertheless, only the occurrence of adverse mutations retained statistical significance in the multivariate analysis. All patients carrying an unfavorable mutation progressed with a median progression-free survival (PFS) of 29 months. The accumulation of two or more mutations also increased the risk of progression with a median PFS of 29 months. The median PFS of patients with unfavorable SCNAs was 38 months. Combining mutations and SCNAs, patients may be stratified into three groups with different prognostic outcomes: adverse (17% probability of five-year PFS), protective (86% probability of five-year PFS) and neither (62% probability of five-year PFS, p < 0.001). Overall, the analysis of the mutational status of patients with CLL at an early stage of the disease may allow the identification of patients with a high risk of progression. The feasibility of an early therapeutic intervention in these particular patients requires further investigation.
Collapse
Affiliation(s)
- Ana P. Gonzalez-Rodriguez
- Department of Hematology, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain; (A.R.P.); (J.Z.); (A.F.); (A.J.G.-H.); (P.P.)
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006 Oviedo, Spain; (C.S.-B.); (S.L.-H.); (S.G.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Correspondence:
| | - Angel R. Payer
- Department of Hematology, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain; (A.R.P.); (J.Z.); (A.F.); (A.J.G.-H.); (P.P.)
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006 Oviedo, Spain; (C.S.-B.); (S.L.-H.); (S.G.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Juan J. Menendez-Suarez
- Departamento de Biología Funcional, Inmunología, Universidad de Oviedo, 33006 Oviedo, Spain;
| | - Christian Sordo-Bahamonde
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006 Oviedo, Spain; (C.S.-B.); (S.L.-H.); (S.G.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Departamento de Biología Funcional, Inmunología, Universidad de Oviedo, 33006 Oviedo, Spain;
| | - Seila Lorenzo-Herrero
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006 Oviedo, Spain; (C.S.-B.); (S.L.-H.); (S.G.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Departamento de Biología Funcional, Inmunología, Universidad de Oviedo, 33006 Oviedo, Spain;
| | - Joud Zanabili
- Department of Hematology, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain; (A.R.P.); (J.Z.); (A.F.); (A.J.G.-H.); (P.P.)
| | - Ariana Fonseca
- Department of Hematology, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain; (A.R.P.); (J.Z.); (A.F.); (A.J.G.-H.); (P.P.)
| | - Ana Julia Gonzalez-Huerta
- Department of Hematology, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain; (A.R.P.); (J.Z.); (A.F.); (A.J.G.-H.); (P.P.)
| | - Pilar Palomo
- Department of Hematology, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain; (A.R.P.); (J.Z.); (A.F.); (A.J.G.-H.); (P.P.)
| | - Segundo Gonzalez
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006 Oviedo, Spain; (C.S.-B.); (S.L.-H.); (S.G.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Departamento de Biología Funcional, Inmunología, Universidad de Oviedo, 33006 Oviedo, Spain;
| |
Collapse
|
7
|
Srinivasan VK, Naseem S, Varma N, Lad DP, Malhotra P. Genomic alterations in chronic lymphocytic leukemia and their correlation with clinico-hematological parameters and disease progression. Blood Res 2020; 55:131-138. [PMID: 32747613 PMCID: PMC7536571 DOI: 10.5045/br.2020.2020080] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/29/2020] [Accepted: 07/01/2020] [Indexed: 01/07/2023] Open
Abstract
Background Chronic lymphocytic leukemia (CLL) is a heterogeneous disease, which is attributed to differences in the genetic characteristics of the leukemic clone. We studied the genomic profile of 52 treatment-naïve CLL patients. Methods Genetic analysis was performed by multiplex ligation-dependent probe amplification (MLPA) using the SALSA P038 Probemix (MRC Holland, Amsterdam), which contains probes for 2p (MYCN,ALK,REL), 6q, 8p (TNFRSF10A/B), 8q (EIF3H,MYC), 9p21 (CDKN2A/B), 10q (PTEN), 11q (ATM, RDX, PPP2R1B, CADM1), chromosome 12, 13q14 (RB1, DLEU1/2/7, KCNRG, MIR15A), 14q, 17p (TP53) and chromosome 19, and for NOTCH1 7541-7542delCT, SF3B1 K700E, and MYD88 L265P mutations. Results The median age was 65 years (malefemale=21). The median hemoglobin, total leuko- cyte, and platelet counts were 12.4 g/dL, 57.7×109/L, and 176.5×109/L, respectively. At least one genetic abnormality was observed in 34 (65%) patients. The most common abnormality was del(13q14) (deleted DLEU2 and DLEU1/RB1 genes), which was observed in 22 (42%) cases, followed by trisomy 12 [7 (13%) cases]. Del(11q) (deleted ATM, RDX11/PPP2R1B-4) and del(17p) (deleted TP53) were present in 5 (10%) and 2 (4%) cases, respectively. 19p13.2 (CDKN2D-2) amplification and NOTCH1 mutation were found in one case each. Conclusion Genetic abnormalities are commonly (65%) observed in CLL patients. Del(13q), which is associated with DLEU2 and DLEU1/RB1 gene deletion, was the most common. Compared with other abnormalities, del(11q) and del(17p) patients presented with cytopenia and higher Binet stage, while those with del(13q14) had a longer time to first treatment.
Collapse
Affiliation(s)
- Vishrut K Srinivasan
- Departments of Hematology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Shano Naseem
- Departments of Hematology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Neelam Varma
- Departments of Hematology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Deepesh P Lad
- Departments of Internal Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Pankaj Malhotra
- Departments of Internal Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
8
|
Chauffaille MDLLF, Zalcberg I, Barreto WG, Bendit I. Detection of somatic TP53 mutations and 17p deletions in patients with chronic lymphocytic leukemia: a review of the current methods. Hematol Transfus Cell Ther 2020; 42:261-268. [PMID: 32660851 PMCID: PMC7417461 DOI: 10.1016/j.htct.2020.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 05/11/2020] [Accepted: 05/21/2020] [Indexed: 01/09/2023] Open
Abstract
Chronic lymphocytic leukemia is the most common hematologic malignancy among adults in Western countries. Several studies show that somatic mutations in the TP53 gene are present in up to 50% of patients with relapsed or refractory chronic lymphocytic leukemia. This study aims to review and compare the methods used to detect somatic TP53 mutations and/or 17p deletions and analyze their importance in the chronic lymphocytic leukemia diagnosis and follow-up. In chronic lymphocytic leukemia patients with refractory or recurrent disease, the probability of clonal expansion of cells with the TP53 mutation and/or 17p deletion is very high. The studies assessed showed several methodologies able to detect these changes. For the 17p deletion, the chromosome G-banding (karyotype) and interphase fluorescence in situ hybridization are the most sensitive. For somatic mutations involving the TP53 gene, moderate or high-coverage read next-generation sequencing and Sanger sequencing are the most recommended ones. The TP53 gene mutations represent a strong adverse prognostic factor for patient survival and treatment resistance in chronic lymphocytic leukemia. Patients carrying low-proportion TP53 mutation (less than 20–25% of all alleles) remain a challenge to these tests. Thus, for any of the methods employed, it is essential that the laboratory conduct its analytical validation, documenting its accuracy, precision and sensitivity/limit of detection.
Collapse
Affiliation(s)
| | - Ilana Zalcberg
- Centro de Transplante de Medula Óssea, Instituto Nacional do Cancer (CEMO-INCA), Rio de Janeiro, RJ, Brazil; GeneOne, DASA, São Paulo, SP, Brazil
| | | | - Israel Bendit
- Laboratório de Biologia do Tumor do Serviço de Hematologia do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| |
Collapse
|
9
|
Kaur H, Groubert B, Paulson JC, McMillan S, Hoskins AA. Impact of cancer-associated mutations in Hsh155/SF3b1 HEAT repeats 9-12 on pre-mRNA splicing in Saccharomyces cerevisiae. PLoS One 2020; 15:e0229315. [PMID: 32320410 PMCID: PMC7176370 DOI: 10.1371/journal.pone.0229315] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/20/2020] [Indexed: 11/22/2022] Open
Abstract
Mutations in the splicing machinery have been implicated in a number of human diseases. Most notably, the U2 small nuclear ribonucleoprotein (snRNP) component SF3b1 has been found to be frequently mutated in blood cancers such as myelodysplastic syndromes (MDS). SF3b1 is a highly conserved HEAT repeat (HR)-containing protein and most of these blood cancer mutations cluster in a hot spot located in HR4-8. Recently, a second mutational hotspot has been identified in SF3b1 located in HR9-12 and is associated with acute myeloid leukemias, bladder urothelial carcinomas, and uterine corpus endometrial carcinomas. The consequences of these mutations on SF3b1 functions during splicing have not yet been tested. We incorporated the corresponding mutations into the yeast homolog of SF3b1 and tested their impact on splicing. We find that all of these HR9-12 mutations can support splicing in yeast, and this suggests that none of them are loss of function alleles in humans. The Hsh155V502F mutation alters splicing of several pre-mRNA reporters containing weak branch sites as well as a genetic interaction with Prp2 and physical interactions with Prp5 and Prp3. The ability of a single allele of Hsh155 to perturb interactions with multiple factors functioning at different stages of the splicing reaction suggests that some SF3b1-mutant disease phenotypes may have a complex origin on the spliceosome.
Collapse
Affiliation(s)
- Harpreet Kaur
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Brent Groubert
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Joshua C. Paulson
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Sarah McMillan
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Integrated Program in Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Aaron A. Hoskins
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Integrated Program in Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
10
|
de Groen RAL, Schrader AMR, Kersten MJ, Pals ST, Vermaat JSP. MYD88 in the driver's seat of B-cell lymphomagenesis: from molecular mechanisms to clinical implications. Haematologica 2019; 104:2337-2348. [PMID: 31699794 PMCID: PMC6959184 DOI: 10.3324/haematol.2019.227272] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/19/2019] [Indexed: 12/11/2022] Open
Abstract
More than 50 subtypes of B-cell non-Hodgkin lymphoma (B-NHL) are recognized in the most recent World Health Organization classification of 2016. The current treatment paradigm, however, is largely based on 'one-size-fits-all' immune-chemotherapy. Unfortunately, this therapeutic strategy is inadequate for a significant number of patients. As such, there is an indisputable need for novel, preferably targeted, therapies based on a biologically driven classification and risk stratification. Sequencing studies identified mutations in the MYD88 gene as an important oncogenic driver in B-cell lymphomas. MYD88 mutations constitutively activate NF-κB and its associated signaling pathways, thereby promoting B-cell proliferation and survival. High frequencies of the hotspot MYD88(L265P) mutation are observed in extranodal diffuse large B-cell lymphoma and Waldenström macroglobulinemia, thereby demonstrating this mutation's potential as a disease marker. In addition, the presence of mutant MYD88 predicts survival outcome in B-NHL subtypes and it provides a therapeutic target. Early clinical trials targeting MYD88 have shown encouraging results in relapsed/refractory B-NHL. Patients with these disorders can benefit from analysis for the MYD88 hotspot mutation in liquid biopsies, as a minimally invasive method to demonstrate treatment response or resistance. Given these clear clinical implications and the crucial role of MYD88 in lymphomagenesis, we expect that analysis of this gene will increasingly be used in routine clinical practice, not only as a diagnostic classifier, but also as a prognostic and therapeutic biomarker directing precision medicine. This review focuses on the pivotal mechanistic role of mutated MYD88 and its clinical implications in B-NHL.
Collapse
Affiliation(s)
| | | | - Marie José Kersten
- Department of Hematology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam.,Lymphoma and Myeloma Center Amsterdam-LYMMCARE, Amsterdam.,Cancer Center Amsterdam, Amsterdam
| | - Steven T Pals
- Department of Hematology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam.,Cancer Center Amsterdam, Amsterdam.,Department of Pathology, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | | |
Collapse
|
11
|
Crassini K, Stevenson WS, Mulligan SP, Best OG. Molecular pathogenesis of chronic lymphocytic leukaemia. Br J Haematol 2019; 186:668-684. [DOI: 10.1111/bjh.16102] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Kyle Crassini
- Northern Blood Research Centre Kolling Institute of Medical Research SydneyNSWAustralia
| | - William S. Stevenson
- Northern Blood Research Centre Kolling Institute of Medical Research SydneyNSWAustralia
| | - Stephen P. Mulligan
- Northern Blood Research Centre Kolling Institute of Medical Research SydneyNSWAustralia
- School of Life and Environmental Science University of Sydney Sydney NSW Australia
| | - O. Giles Best
- Northern Blood Research Centre Kolling Institute of Medical Research SydneyNSWAustralia
- School of Life and Environmental Science University of Sydney Sydney NSW Australia
| |
Collapse
|
12
|
Amer W, Toth C, Vassella E, Meinrath J, Koitzsch U, Arens A, Huang J, Eischeid H, Adam A, Buettner R, Scheel A, Schaefer SC, Odenthal M. Evolution analysis of heterogeneous non-small cell lung carcinoma by ultra-deep sequencing of the mitochondrial genome. Sci Rep 2017; 7:11069. [PMID: 28894165 PMCID: PMC5593826 DOI: 10.1038/s41598-017-11345-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 08/23/2017] [Indexed: 12/20/2022] Open
Abstract
Accurate assessment of tumour heterogeneity is an important issue that influences prognosis and therapeutic decision in molecular pathology. Due to the shortage of protective histones and a limited DNA repair capacity, the mitochondrial (mt)-genome undergoes high variability during tumour development. Therefore, screening of mt-genome represents a useful molecular tool for assessing precise cell lineages and tracking tumour history. Here, we describe a highly specific and robust multiplex PCR-based ultra-deep sequencing technology for analysis of the whole mt-genome (wmt-seq) on low quality-DNA from formalin-fixed paraffin-embedded tissues. As a proof of concept, we applied the wmt-seq technology to characterize the clonal relationship of non-small cell lung cancer (NSCLC) specimens with multiple lesions (N = 43) that show either different histological subtypes (group I) or pulmonary adenosquamous carcinoma as striking examples of a mixed-histology tumour (group II). The application of wmt-seq demonstrated that most samples bear common mt-mutations in each lesion of an individual patient, indicating a single cell progeny and clonal relationship. Hereby we show the monoclonal origin of histologically heterogeneous NSCLC and demonstrate the evolutionary relation of NSCLC cases carrying heteroplasmic mt-variants.
Collapse
Affiliation(s)
- Wafa Amer
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | - Csaba Toth
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | - Erik Vassella
- Institute of Pathology, University Hospital of Bern, Bern, Switzerland
| | - Jeannine Meinrath
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | - Ulrike Koitzsch
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | | | - Jia Huang
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | - Hannah Eischeid
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | - Alexander Adam
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | - Reinhard Buettner
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany.,Center of Integrative Oncology, University Clinic of Cologne and Bonn, Cologne, Germany.,Lung Cancer Group Cologne, University Hospital of Cologne, Cologne, Germany.,Center of Molecular Medicine of Cologne, University of Cologne, Cologne, Germany
| | - Andreas Scheel
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany.,Center of Integrative Oncology, University Clinic of Cologne and Bonn, Cologne, Germany.,Lung Cancer Group Cologne, University Hospital of Cologne, Cologne, Germany
| | - Stephan C Schaefer
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany.,Center of Integrative Oncology, University Clinic of Cologne and Bonn, Cologne, Germany.,Lung Cancer Group Cologne, University Hospital of Cologne, Cologne, Germany
| | - Margarete Odenthal
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany. .,Center of Integrative Oncology, University Clinic of Cologne and Bonn, Cologne, Germany. .,Center of Molecular Medicine of Cologne, University of Cologne, Cologne, Germany.
| |
Collapse
|
13
|
Vavrova E, Kantorova B, Vonkova B, Kabathova J, Skuhrova-Francova H, Diviskova E, Letocha O, Kotaskova J, Brychtova Y, Doubek M, Mayer J, Pospisilova S. Fragment analysis represents a suitable approach for the detection of hotspot c.7541_7542delCT NOTCH1 mutation in chronic lymphocytic leukemia. Leuk Res 2017; 60:145-150. [PMID: 28837890 DOI: 10.1016/j.leukres.2017.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 08/01/2017] [Accepted: 08/03/2017] [Indexed: 11/16/2022]
Abstract
The hotspot c.7541_7542delCT NOTCH1 mutation has been proven to have a negative clinical impact in chronic lymphocytic leukemia (CLL). However, an optimal method for its detection has not yet been specified. The aim of our study was to examine the presence of the NOTCH1 mutation in CLL using three commonly used molecular methods. Sanger sequencing, fragment analysis and allele-specific PCR were compared in the detection of the c.7541_7542delCT NOTCH1 mutation in 201 CLL patients. In 7 patients with inconclusive mutational analysis results, the presence of the NOTCH1 mutation was also confirmed using ultra-deep next generation sequencing. The NOTCH1 mutation was detected in 15% (30/201) of examined patients. Only fragment analysis was able to identify all 30 NOTCH1-mutated patients. Sanger sequencing and allele-specific PCR showed a lower detection efficiency, determining 93% (28/30) and 80% (24/30) of the present NOTCH1 mutations, respectively. Considering these three most commonly used methodologies for c.7541_7542delCT NOTCH1 mutation screening in CLL, we defined fragment analysis as the most suitable approach for detecting the hotspot NOTCH1 mutation.
Collapse
Affiliation(s)
- Eva Vavrova
- Central European Institute of Technology (CEITEC) and Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Barbara Kantorova
- Central European Institute of Technology (CEITEC) and Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Internal Medicine - Hematology and Oncology, University Hospital Brno, Cernopolni 9, CZ-613 00 Brno, Czech Republic
| | - Barbara Vonkova
- Central European Institute of Technology (CEITEC) and Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Jitka Kabathova
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno, Cernopolni 9, CZ-613 00 Brno, Czech Republic
| | - Hana Skuhrova-Francova
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno, Cernopolni 9, CZ-613 00 Brno, Czech Republic
| | - Eva Diviskova
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno, Cernopolni 9, CZ-613 00 Brno, Czech Republic
| | - Ondrej Letocha
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno, Cernopolni 9, CZ-613 00 Brno, Czech Republic
| | - Jana Kotaskova
- Central European Institute of Technology (CEITEC) and Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Internal Medicine - Hematology and Oncology, University Hospital Brno, Cernopolni 9, CZ-613 00 Brno, Czech Republic
| | - Yvona Brychtova
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno, Cernopolni 9, CZ-613 00 Brno, Czech Republic
| | - Michael Doubek
- Central European Institute of Technology (CEITEC) and Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Internal Medicine - Hematology and Oncology, University Hospital Brno, Cernopolni 9, CZ-613 00 Brno, Czech Republic
| | - Jiri Mayer
- Central European Institute of Technology (CEITEC) and Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Internal Medicine - Hematology and Oncology, University Hospital Brno, Cernopolni 9, CZ-613 00 Brno, Czech Republic
| | - Sarka Pospisilova
- Central European Institute of Technology (CEITEC) and Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Internal Medicine - Hematology and Oncology, University Hospital Brno, Cernopolni 9, CZ-613 00 Brno, Czech Republic.
| |
Collapse
|
14
|
Rodríguez-Vicente AE, Bikos V, Hernández-Sánchez M, Malcikova J, Hernández-Rivas JM, Pospisilova S. Next-generation sequencing in chronic lymphocytic leukemia: recent findings and new horizons. Oncotarget 2017; 8:71234-71248. [PMID: 29050359 PMCID: PMC5642634 DOI: 10.18632/oncotarget.19525] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/12/2017] [Indexed: 11/25/2022] Open
Abstract
The rapid progress in next-generation sequencing technologies has significantly contributed to our knowledge of the genetic events associated with the development, progression and treatment resistance of chronic lymphocytic leukemia patients. Together with the discovery of new driver mutations, next-generation sequencing has revealed an immense degree of both intra- and inter-tumor heterogeneity and enabled us to describe marked clonal evolution. Advances in immunogenetics may be implemented to detect minimal residual disease more sensitively and to track clonal B cell populations, their dynamics and molecular characteristics. The interpretation of these aspects is indispensable to thoroughly examine the genetic background of chronic lymphocytic leukemia. We review and discuss the recent results provided by the different next-generation sequencing techniques used in studying the chronic lymphocytic leukemia genome, as well as future perspectives in the methodologies and applications.
Collapse
Affiliation(s)
- Ana E Rodríguez-Vicente
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom.,IBSAL, IBMCC, Centro de Investigación del Cáncer, Universidad de Salamanca, CSIC, Hospital Universitario de Salamanca, Salamanca, Spain
| | - Vasilis Bikos
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - María Hernández-Sánchez
- IBSAL, IBMCC, Centro de Investigación del Cáncer, Universidad de Salamanca, CSIC, Hospital Universitario de Salamanca, Salamanca, Spain
| | - Jitka Malcikova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,Department of Internal Medicine - Hematology and Oncology, Medical Faculty MU and University Hospital, Brno, Czech Republic
| | - Jesús-María Hernández-Rivas
- IBSAL, IBMCC, Centro de Investigación del Cáncer, Universidad de Salamanca, CSIC, Hospital Universitario de Salamanca, Salamanca, Spain.,Hematology Department, Hospital Universitario, Salamanca, Spain.,Department of Medicine, Universidad de Salamanca, Salamanca, Spain
| | - Sarka Pospisilova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,Department of Internal Medicine - Hematology and Oncology, Medical Faculty MU and University Hospital, Brno, Czech Republic
| |
Collapse
|
15
|
Du Y, Chen B. Detection approaches for multidrug resistance genes of leukemia. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:1255-1261. [PMID: 28458519 PMCID: PMC5402920 DOI: 10.2147/dddt.s134529] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Leukemia is a clonal malignant hematopoietic stem cell disease. It is the sixth most lethal cancer and accounts for 4% of all cancers. The main form of treatment for leukemia is chemotherapy. While some cancer types with a higher incidence than leukemia, such as lung and gastric cancer, have shown a sharp decline in mortality rates in recent years, leukemia has not followed this trend. Drug resistance is often regarded as the main clinical obstacle to effective chemotherapy in patients diagnosed with leukemia. Many resistance mechanisms have now been identified, and multidrug resistance (MDR) is considered the most important and prevalent mechanism involved in the failure of chemotherapy in leukemia. In order to reverse MDR and improve leukemia prognosis, effective detection methods are needed to identify drug resistance genes at initial diagnosis. This article provides a comprehensive overview of published approaches for the detection of MDR in leukemia. Identification of relevant MDR genes and methods for early detection of these genes will be needed in order to treat leukemia more effectively.
Collapse
Affiliation(s)
- Ying Du
- Department of Hematology and Oncology (Key Department of Jiangsu Medicine), School of Medicine, Zhongda Hospital, Southeast University, Nanjing, Jiangsu Province, People's Republic of China
| | - Baoan Chen
- Department of Hematology and Oncology (Key Department of Jiangsu Medicine), School of Medicine, Zhongda Hospital, Southeast University, Nanjing, Jiangsu Province, People's Republic of China
| |
Collapse
|
16
|
Koitzsch U, Heydt C, Attig H, Immerschitt I, Merkelbach-Bruse S, Fammartino A, Büttner RH, Kong Y, Odenthal M. Use of the GeneReader NGS System in a clinical pathology laboratory: a comparative study. J Clin Pathol 2017; 70:725-728. [PMID: 28400467 PMCID: PMC5537555 DOI: 10.1136/jclinpath-2017-204342] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 02/27/2017] [Accepted: 02/28/2017] [Indexed: 12/20/2022]
Abstract
Despite its successful use in academic research, next-generation sequencing (NGS) still represents many challenges for routine clinical adoption due to its inherent complexity and specialised expertise typically required to set-up, test and operate a complete workflow.This study aims to evaluate QIAGEN's newly launched GeneReader NGS System solution in a pathology laboratory setting by assessing the system's ease of use, sequencing accuracy and data reproducibility. Our laboratory was able to implement the system and validate its performance using clinical samples in direct comparison to an approved Sanger sequencing platform and to an alternative in-house NGS technology. The QIAGEN workflow focuses on clinically actionable hotspots maximising testing efficiency. Combined with automated upstream sample processing and integrated downstream bioinformatics, it offers a realistic solution for pathology laboratories with limited prior experience in NGS technology.
Collapse
Affiliation(s)
- Ulrike Koitzsch
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | - Carina Heydt
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | | | | | | | | | - Reinhard H Büttner
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany.,Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Yi Kong
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | - Margarete Odenthal
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany.,Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| |
Collapse
|
17
|
Tessoulin B, Eveillard M, Lok A, Chiron D, Moreau P, Amiot M, Moreau-Aubry A, Le Gouill S, Pellat-Deceunynck C. p53 dysregulation in B-cell malignancies: More than a single gene in the pathway to hell. Blood Rev 2017; 31:251-259. [PMID: 28284458 DOI: 10.1016/j.blre.2017.03.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 03/02/2017] [Indexed: 12/31/2022]
Abstract
TP53 deletion or mutation is frequent in B-cell malignancies and is associated with a low response rate. We describe here the p53 landscape in B-cell malignancies, from B-Acute Lymphoblastic Leukemia to Plasma Cell Leukemia, by analyzing incidence of gain or loss of function of actors both upstream and within the p53 pathway, namely MYC, RAS, ARF, MDM2, ATM and TP53. Abnormalities are not equally distributed and their incidence is highly variable among malignancies. Deletion and mutation, usually associated, of ATM or TP53 are frequent in Diffuse Large B-Cell Lymphoma and Mantle Cell Lymphoma. MYC gain, absent in post-GC malignancies, is frequent in B-Prolymphocytic-Leukemia, Multiple Myeloma and Plasma Cell Leukemias. RAS mutations are rare except in MM and PCL. Multiple Factorial Analysis notes that MYC deregulation is closely related to TP53 status. Moreover, MYC gain, TP53 deletion and RAS mutations are inversely correlated with survival. Based on this landscape, we further propose targeted therapeutic approaches for the different B-cell malignancies.
Collapse
Affiliation(s)
- B Tessoulin
- CRCINA, INSERM, CNRS, Université de Nantes, Université d'Angers, Nantes, France; Department of Hematology, Nantes University Hospital, Nantes, France.
| | - M Eveillard
- CRCINA, INSERM, CNRS, Université de Nantes, Université d'Angers, Nantes, France; Hematology Biology Department, Nantes University Hospital, Nantes, France
| | - A Lok
- CRCINA, INSERM, CNRS, Université de Nantes, Université d'Angers, Nantes, France; Department of Hematology, Nantes University Hospital, Nantes, France
| | - D Chiron
- CRCINA, INSERM, CNRS, Université de Nantes, Université d'Angers, Nantes, France
| | - P Moreau
- CRCINA, INSERM, CNRS, Université de Nantes, Université d'Angers, Nantes, France; Department of Hematology, Nantes University Hospital, Nantes, France
| | - M Amiot
- CRCINA, INSERM, CNRS, Université de Nantes, Université d'Angers, Nantes, France
| | - A Moreau-Aubry
- CRCINA, INSERM, CNRS, Université de Nantes, Université d'Angers, Nantes, France
| | - S Le Gouill
- CRCINA, INSERM, CNRS, Université de Nantes, Université d'Angers, Nantes, France; Department of Hematology, Nantes University Hospital, Nantes, France
| | - C Pellat-Deceunynck
- CRCINA, INSERM, CNRS, Université de Nantes, Université d'Angers, Nantes, France.
| |
Collapse
|
18
|
Bishop AC. A missense methionine mutation augments catalytic activity but reduces thermal stability in two protein tyrosine phosphatases. Biochem Biophys Res Commun 2016; 481:153-158. [PMID: 27816449 PMCID: PMC5118098 DOI: 10.1016/j.bbrc.2016.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 11/01/2016] [Indexed: 11/23/2022]
Abstract
Recent data sets that catalog the missense mutations in thousands of human genomes have revealed a vast and largely unexplored world of non-canonical protein sequences that are expressed in humans. The functional consequences of most human missense mutations, however, are unknown, and the accuracy with which their effects can be predicted by computational algorithms remains unclear. Among humans of European descent, the most common missense mutation in the catalytic domain of SH2-containing protein tyrosine phosphatase 1 (SHP-1) converts the enzyme's canonical valine 451 to methionine (V451M). The V451M mutation lies in a conserved motif adjacent to the protein tyrosine phosphatase (PTP) consensus sequence and is predicted to compromise catalytic function. In this study it is shown that, counter to prediction, V451M SHP-1 possesses increased catalytic activity as compared to the wild-type enzyme. Additionally, a PTP-wide search of missense-mutation data revealed a variant of one other PTP, Fas-associated PTP (FAP-1), that contains a methionine mutation at the position corresponding to 451 of SHP-1 (T2406M FAP-1). It is shown here that the T2406M mutation increases FAP-1's PTP activity, to a degree that is comparable to the activation deriving from the V451M mutation in SHP-1. Although the two non-canonical methionine residues confer increased activity at moderate temperatures, both V451M SHP-1 and T2406M FAP-1 are less thermally stable than their canonical counterparts, as demonstrated by the mutants' strongly reduced activities at high temperatures. These results highlight the challenges in predicting the functional consequences of missense mutations, which can differ under varying conditions, and suggest that, with regard to position 451/2406, canonical PTP domains have "chosen" stability over optimized activity during the course of evolution.
Collapse
Affiliation(s)
- Anthony C Bishop
- Amherst College, Department of Chemistry, Amherst, MA 01002, USA.
| |
Collapse
|
19
|
Srivastava S, Tsongalis GJ, Kaur P. Role of microRNAs in regulation of the TNF/TNFR gene superfamily in chronic lymphocytic leukemia. Clin Biochem 2016; 49:1307-1310. [DOI: 10.1016/j.clinbiochem.2016.08.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 08/08/2016] [Accepted: 08/12/2016] [Indexed: 12/26/2022]
|
20
|
Genetic evolution in chronic lymphocytic leukaemia. Best Pract Res Clin Haematol 2016; 29:67-78. [PMID: 27742073 DOI: 10.1016/j.beha.2016.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 06/30/2016] [Accepted: 08/04/2016] [Indexed: 11/21/2022]
Abstract
Next-generation sequencing provides a comprehensive understanding of the genomic, epigenomic and transcriptomic underpinnings of chronic lymphocytic leukaemia. Recent studies have uncovered new drivers, including mutations in non-coding regions, and signalling pathways whose role in cancer was previously unknown or poorly understood. Moreover, massive scale epigenomics and transcriptomics have supplied the foundations for the cellular origin of the disease. Some drivers could be targeted pharmacologically, and the ability to detect mutations present in minority subclones might even allow treatment before clonal selection occurs, thus preventing disease refractoriness. As our understanding broadens and ongoing technological innovation propels new achievements, we will certainly learn how to apply it in our daily practice.
Collapse
|
21
|
Extensive next-generation sequencing analysis in chronic lymphocytic leukemia at diagnosis: clinical and biological correlations. J Hematol Oncol 2016; 9:88. [PMID: 27633522 PMCID: PMC5025606 DOI: 10.1186/s13045-016-0320-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 09/06/2016] [Indexed: 11/10/2022] Open
Abstract
Background In chronic lymphocytic leukemia (CLL), next-generation sequencing (NGS) analysis represents a sensitive, reproducible, and resource-efficient technique for routine screening of gene mutations. Methods We performed an extensive biologic characterization of newly diagnosed CLL, including NGS analysis of 20 genes frequently mutated in CLL and karyotype analysis to assess whether NGS and karyotype results could be of clinical relevance in the refinement of prognosis and assessment of risk of progression. The genomic DNA from peripheral blood samples of 200 consecutive CLL patients was analyzed using Ion Torrent Personal Genome Machine, a NGS platform that uses semiconductor sequencing technology. Karyotype analysis was performed using efficient mitogens. Results Mutations were detected in 42.0 % of cases with 42.8 % of mutated patients presenting 2 or more mutations. The presence of mutations by NGS was associated with unmutated IGHV gene (p = 0.009), CD38 positivity (p = 0.010), risk stratification by fluorescence in situ hybridization (FISH) (p < 0.001), and the complex karyotype (p = 0.003). A high risk as assessed by FISH analysis was associated with mutations affecting TP53 (p = 0.012), BIRC3 (p = 0.003), and FBXW7 (p = 0.003) while the complex karyotype was significantly associated with TP53, ATM, and MYD88 mutations (p = 0.003, 0.018, and 0.001, respectively). By multivariate analysis, the multi-hit profile (≥2 mutations by NGS) was independently associated with a shorter time to first treatment (p = 0.004) along with TP53 disruption (p = 0.040), IGHV unmutated status (p < 0.001), and advanced stage (p < 0.001). Advanced stage (p = 0.010), TP53 disruption (p < 0.001), IGHV unmutated status (p = 0.020), and the complex karyotype (p = 0.007) were independently associated with a shorter overall survival. Conclusions At diagnosis, an extensive biologic characterization including NGS and karyotype analyses using novel mitogens may offer new perspectives for a better refinement of risk stratification that could be of help in the clinical management of CLL patients. Electronic supplementary material The online version of this article (doi:10.1186/s13045-016-0320-z) contains supplementary material, which is available to authorized users.
Collapse
|