1
|
Clifford B, Gu Y, Liu Y, Kim K, Huang S, Li Y, Lam F, Liang ZP, Yu X. High-Resolution Dynamic 31P-MR Spectroscopic Imaging for Mapping Mitochondrial Function. IEEE Trans Biomed Eng 2020; 67:2745-2753. [PMID: 32011244 PMCID: PMC7384926 DOI: 10.1109/tbme.2020.2969892] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE To enable non-invasive dynamic metabolic mapping in rodent model studies of mitochondrial function using 31P-MR spectroscopic imaging (MRSI). METHODS We developed a novel method for high-resolution dynamic 31P-MRSI. The method synergistically integrates physics-based models of spectral structures, biochemical modeling of molecular dynamics, and subspace learning to capture spatiospectral variations. Fast data acquisition was achieved using rapid spiral trajectories and sparse sampling of (k, t, T)-space; image reconstruction was accomplished using a low-rank tensor-based framework. RESULTS The proposed method provided high-resolution dynamic metabolic mapping in rat hindlimb at spatial and temporal resolutions of 4[Formula: see text]2 mm3 and 1.28 s, respectively. This allowed for in vivo mapping of the time-constant of phosphocreatine resynthesis, a well established index of mitochondrial oxidative capacity. Multiple rounds of in vivo experiments were performed to demonstrate reproducibility, and in vitro experiments were used to validate the accuracy of the estimated metabolite maps. CONCLUSIONS A new model-based method is proposed to achieve high-resolution dynamic 31P-MRSI. The proposed method's ability to delineate metabolic heterogeneity was demonstrated in rat hindlimb. SIGNIFICANCE Abnormal mitochondrial metabolism is a key cellular dysfunction in many prevalent diseases such as diabetes and heart disease; however, current understanding of mitochondrial function is mostly gained from studies on isolated mitochondria under nonphysiological conditions. The proposed method has the potential to open new avenues of research by allowing in vivo and longitudinal studies of mitochondrial dysfunction in disease development and progression.
Collapse
Affiliation(s)
- Bryan Clifford
- Department of Electrical and Computer Engineering and the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign
| | - Yuning Gu
- Department of Biomedical Engineering and the Case Center for Imaging Research, Case Western Reserve University
| | - Yuchi Liu
- Department of Biomedical Engineering and the Case Center for Imaging Research, Case Western Reserve University
| | - Kihwan Kim
- Department of Biomedical Engineering and the Case Center for Imaging Research, Case Western Reserve University
| | - Sherry Huang
- Department of Biomedical Engineering and the Case Center for Imaging Research, Case Western Reserve University
| | - Yudu Li
- Department of Electrical and Computer Engineering and the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign
| | - Fan Lam
- Department of Bioengineering and the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign
| | - Zhi-Pei Liang
- Department of Electrical and Computer Engineering and the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Xin Yu
- Departments of Biomedical Engineering, Radiology, and Physiology and Biophysics, as well as the Case Center for Imaging Research, Case Western Reserve University, Cleveland, OH 44106-7207 USA
| |
Collapse
|
2
|
Lai N, Fealy CE, Kummitha CM, Cabras S, Kirwan JP, Hoppel CL. Mitochondrial Utilization of Competing Fuels Is Altered in Insulin Resistant Skeletal Muscle of Non-obese Rats (Goto-Kakizaki). Front Physiol 2020; 11:677. [PMID: 32612543 PMCID: PMC7308651 DOI: 10.3389/fphys.2020.00677] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/26/2020] [Indexed: 12/25/2022] Open
Abstract
Aim Insulin-resistant skeletal muscle is characterized by metabolic inflexibility with associated alterations in substrate selection, mediated by peroxisome-proliferator activated receptor δ (PPARδ). Although it is established that PPARδ contributes to the alteration of energy metabolism, it is not clear whether it plays a role in mitochondrial fuel competition. While nutrient overload may impair metabolic flexibility by fuel congestion within mitochondria, in absence of obesity defects at a mitochondrial level have not yet been excluded. We sought to determine whether reduced PPARδ content in insulin-resistant rat skeletal muscle of a non-obese rat model of T2DM (Goto-Kakizaki, GK) ameliorate the inhibitory effect of fatty acid (i.e., palmitoylcarnitine) on mitochondrial carbohydrate oxidization (i.e., pyruvate) in muscle fibers. Methods Bioenergetic function was characterized in oxidative soleus (S) and glycolytic white gastrocnemius (WG) muscles with measurement of respiration rates in permeabilized fibers in the presence of complex I, II, IV, and fatty acid substrates. Mitochondrial content was measured by citrate synthase (CS) and succinate dehydrogenase activity (SDH). Western blot was used to determine protein expression of PPARδ, PDK isoform 2 and 4. Results CS and SDH activity, key markers of mitochondrial content, were reduced by ∼10-30% in diabetic vs. control, and the effect was evident in both oxidative and glycolytic muscles. PPARδ (p < 0.01), PDK2 (p < 0.01), and PDK4 (p = 0.06) protein content was reduced in GK animals compared to Wistar rats (N = 6 per group). Ex vivo respiration rates in permeabilized muscle fibers determined in the presence of complex I, II, IV, and fatty acid substrates, suggested unaltered mitochondrial bioenergetic function in T2DM muscle. Respiration in the presence of pyruvate was higher compared to palmitoylcarnitine in both animal groups and fiber types. Moreover, respiration rates in the presence of both palmitoylcarnitine and pyruvate were reduced by 25 ± 6% (S), 37 ± 6% (WG) and 63 ± 6% (S), 57 ± 8% (WG) compared to pyruvate for both controls and GK, respectively. The inhibitory effect of palmitoylcarnitine on respiration was significantly greater in GK than controls (p < 10-3). Conclusion With competing fuels, the presence of fatty acids diminishes mitochondria ability to utilize carbohydrate derived substrates in insulin-resistant muscle despite reduced PPARδ content.
Collapse
Affiliation(s)
- Nicola Lai
- Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA, United States.,Biomedical Engineering Institute, Old Dominion University, Norfolk, VA, United States.,Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Cagliari, Italy.,Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States.,Center for Mitochondrial Disease, Case Western Reserve University, Cleveland, OH, United States
| | - Ciarán E Fealy
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Chinna M Kummitha
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Silvia Cabras
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - John P Kirwan
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States.,Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, United States.,Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Charles L Hoppel
- Center for Mitochondrial Disease, Case Western Reserve University, Cleveland, OH, United States.,Department of Pharmacology, Case Western Reserve University, Cleveland, OH, United States.,Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
3
|
Lewis MT, Kasper JD, Bazil JN, Frisbee JC, Wiseman RW. Quantification of Mitochondrial Oxidative Phosphorylation in Metabolic Disease: Application to Type 2 Diabetes. Int J Mol Sci 2019; 20:E5271. [PMID: 31652915 PMCID: PMC6862501 DOI: 10.3390/ijms20215271] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/17/2019] [Accepted: 10/22/2019] [Indexed: 12/17/2022] Open
Abstract
Type 2 diabetes (T2D) is a growing health concern with nearly 400 million affected worldwide as of 2014. T2D presents with hyperglycemia and insulin resistance resulting in increased risk for blindness, renal failure, nerve damage, and premature death. Skeletal muscle is a major site for insulin resistance and is responsible for up to 80% of glucose uptake during euglycemic hyperglycemic clamps. Glucose uptake in skeletal muscle is driven by mitochondrial oxidative phosphorylation and for this reason mitochondrial dysfunction has been implicated in T2D. In this review we integrate mitochondrial function with physiologic function to present a broader understanding of mitochondrial functional status in T2D utilizing studies from both human and rodent models. Quantification of mitochondrial function is explained both in vitro and in vivo highlighting the use of proper controls and the complications imposed by obesity and sedentary lifestyle. This review suggests that skeletal muscle mitochondria are not necessarily dysfunctional but limited oxygen supply to working muscle creates this misperception. Finally, we propose changes in experimental design to address this question unequivocally. If mitochondrial function is not impaired it suggests that therapeutic interventions and drug development must move away from the organelle and toward the cardiovascular system.
Collapse
Affiliation(s)
- Matthew T Lewis
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA.
| | - Jonathan D Kasper
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA.
- Present address: Molecular Physiology Institute, Duke University, Durham, NC 27701, USA.
| | - Jason N Bazil
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA.
| | - Jefferson C Frisbee
- Department of Medical Biophysics, University of Western Ontario, London, ON N6A 3K7, Canada.
| | - Robert W Wiseman
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA.
- Department of Radiology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
4
|
Lewis MT, Kasper JD, Bazil JN, Frisbee JC, Wiseman RW. Skeletal muscle energetics are compromised only during high-intensity contractions in the Goto-Kakizaki rat model of type 2 diabetes. Am J Physiol Regul Integr Comp Physiol 2019; 317:R356-R368. [PMID: 31188651 PMCID: PMC6732426 DOI: 10.1152/ajpregu.00127.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/07/2019] [Accepted: 06/07/2019] [Indexed: 12/24/2022]
Abstract
Type 2 diabetes (T2D) presents with hyperglycemia and insulin resistance, affecting over 30 million people in the United States alone. Previous work has hypothesized that mitochondria are dysfunctional in T2D and results in both reduced ATP production and glucose disposal. However, a direct link between mitochondrial function and T2D has not been determined. In the current study, the Goto-Kakizaki (GK) rat model of T2D was used to quantify mitochondrial function in vitro and in vivo over a broad range of contraction-induced metabolic workloads. During high-frequency sciatic nerve stimulation, hindlimb muscle contractions at 2- and 4-Hz intensities, the GK rat failed to maintain similar bioenergetic steady states to Wistar control (WC) rats measured by phosphorus magnetic resonance spectroscopy, despite similar force production. Differences were not due to changes in mitochondrial content in red (RG) or white gastrocnemius (WG) muscles (cytochrome c oxidase, RG: 22.2 ± 1.6 vs. 23.3 ± 1.7 U/g wet wt; WG: 10.8 ± 1.1 vs. 12.1 ± 0.9 U/g wet wt; GK vs. WC, respectively). Mitochondria isolated from muscles of GK and WC rats also showed no difference in mitochondrial ATP production capacity in vitro, measured by high-resolution respirometry. At lower intensities (0.25-1 Hz) there were no detectable differences between GK and WC rats in sustained energy balance. There were similar phosphocreatine concentrations during steady-state contraction and postcontractile recovery (τ = 72 ± 6 s GK versus 71 ± 2 s WC). Taken together, these results suggest that deficiencies in skeletal muscle energetics seen at higher intensities are not due to mitochondrial dysfunction in the GK rat.
Collapse
Affiliation(s)
- Matthew T Lewis
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Jonathan D Kasper
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Jason N Bazil
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Jefferson C Frisbee
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| | - Robert W Wiseman
- Department of Physiology, Michigan State University, East Lansing, Michigan
- Department of Radiology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
5
|
Transcriptome Changes of Skeletal Muscle RNA-Seq Speculates the Mechanism of Postprandial Hyperglycemia in Diabetic Goto-Kakizaki Rats During the Early Stage of T2D. Genes (Basel) 2019; 10:genes10060406. [PMID: 31141985 PMCID: PMC6627578 DOI: 10.3390/genes10060406] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/20/2019] [Accepted: 05/23/2019] [Indexed: 12/14/2022] Open
Abstract
To address how skeletal muscle contributes to postprandial hyperglycemia, we performed skeletal muscle transcriptome analysis of diabetic Goto-Kakizaki (GK) and control Wistar rats by RNA sequencing (RNA-Seq). We obtained 600 and 1785 differentially expressed genes in GK rats compared to those Wistar rats at three and four weeks of age, respectively. Specifically, Tbc1d4, involved in glucose uptake, was significantly downregulated in the skeletal muscle of GK aged both three and four weeks compared to those of age-matched Wistar rats. Pdk4, related to glucose uptake and oxidation, was significantly upregulated in the skeletal muscle of GK aged both three and four weeks compared to that of age-matched Wistar rats. Genes (Acadl, Acsl1 and Fabp4) implicated in fatty acid oxidation were significantly upregulated in the skeletal muscle of GK aged four weeks compared to those of age-matched Wistar rats. The overexpression or knockout of Tbc1d4, Pdk4, Acadl, Acsl1 and Fabp4 has been reported to change glucose uptake and fatty acid oxidation directly in rodents. By taking the results of previous studies into consideration, we speculated that dysregulation of key dysregulated genes (Tbc1d4, Pdk4, Acadl, Acsl1 and Fabp4) may lead to a decrease in glucose uptake and oxidation, and an increase in fatty acid oxidation in GK skeletal muscle at three and four weeks, which may, in turn, contribute to postprandial hyperglycemia. Our research revealed transcriptome changes in GK skeletal muscle at three and four weeks. Tbc1d4, Acadl, Acsl1 and Fabp4 were found to be associated with early diabetes in GK rats for the first time, which may provide a new scope for pathogenesis of postprandial hyperglycemia.
Collapse
|
6
|
Frisbee JC, Lewis MT, Wiseman RW. Skeletal muscle performance in metabolic disease: Microvascular or mitochondrial limitation or both? Microcirculation 2018; 26:e12517. [PMID: 30471168 DOI: 10.1111/micc.12517] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 11/14/2018] [Indexed: 12/20/2022]
Abstract
One of the clearly established health outcomes associated with chronic metabolic diseases (eg, type II diabetes mellitus) is that the ability of skeletal muscle to maintain contractile performance during periods of elevated metabolic demand is compromised as compared to the fatigue-resistance of muscle under normal, healthy conditions. While there has been extensive effort dedicated to determining the major factors that contribute to the compromised performance of skeletal muscle with chronic metabolic disease, the extent to which this poor outcome reflects a dysfunctional state of the microcirculation, where the delivery and distribution of metabolic substrates can be impaired, versus derangements to normal metabolic processes and mitochondrial function, versus a combination of the two, represents an area of considerable unknown. The purpose of this manuscript is to present some of the current concepts for dysfunction to both the microcirculation of skeletal muscle as well as to mitochondrial metabolism under these conditions, such that these diverse issues can be merged into an integrated framework for future investigation. Based on an interpretation of the current literature, it may be hypothesized that the primary site of dysfunction with earlier stages of metabolic disease may lie at the level of the vasculature, rather than at the level of the mitochondria.
Collapse
Affiliation(s)
- Jefferson C Frisbee
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| | - Matthew T Lewis
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Robert W Wiseman
- Department of Physiology, Michigan State University, East Lansing, Michigan.,Department of Radiology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
7
|
Frisbee JC, Lewis MT, Kasper JD, Chantler PD, Wiseman RW. Type 2 diabetes mellitus in the Goto-Kakizaki rat impairs microvascular function and contributes to premature skeletal muscle fatigue. J Appl Physiol (1985) 2018; 126:626-637. [PMID: 30571284 DOI: 10.1152/japplphysiol.00751.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Despite extensive investigation into the impact of metabolic disease on vascular function and, by extension, tissue perfusion and organ function, interpreting results for specific risk factors can be complicated by the additional risks present in most models. To specifically determine the impact of type 2 diabetes without obesity on skeletal muscle microvascular structure/function and on active hyperemia with elevated metabolic demand, we used 17-wk-old Goto-Kakizaki (GK) rats to study microvascular function at multiple levels of resolution. Gracilis muscle arterioles demonstrated blunted dilation to acetylcholine (both ex vivo proximal and in situ distal arterioles) and elevated shear (distal arterioles only). All other alterations to reactivity appeared to reflect compromised endothelial function associated with increased thromboxane (Tx)A2 production and oxidant stress/inflammation rather than alterations to vascular smooth muscle function. Structural changes to the microcirculation of GK rats were confined to reduced microvessel density of ~12%, with no evidence for altered vascular wall mechanics. Active hyperemia with either field stimulation of in situ cremaster muscle or electrical stimulation via the sciatic nerve for in situ gastrocnemius muscle was blunted in GK rats, primarily because of blunted functional dilation of skeletal muscle arterioles. The blunted active hyperemia was associated with impaired oxygen uptake (V̇o2) across the muscle and accelerated muscle fatigue. Acute interventions to reduce oxidant stress (TEMPOL) and TxA2 action (SQ-29548) or production (dazmegrel) improved muscle perfusion, V̇o2, and muscle performance. These results suggest that type 2 diabetes mellitus in GK rats impairs skeletal muscle arteriolar function apparently early in the progression of the disease and potentially via an increased reactive oxygen species/inflammation-induced TxA2 production/action on network function as a major contributing mechanism. NEW & NOTEWORTHY The impact of type 2 diabetes mellitus on vascular structure/function remains an area lacking clarity. Using diabetic Goto-Kakizaki rats before the development of other risk factors, we determined alterations to vascular structure/function and skeletal muscle active hyperemia. Type 2 diabetes mellitus reduced arteriolar endothelium-dependent dilation associated with increased thromboxane A2 generation. Although modest microvascular rarefaction was evident, there were no other alterations to vascular structure/function. Skeletal muscle active hyperemia was blunted, although it improved after antioxidant or anti-thromboxane A2 treatment.
Collapse
Affiliation(s)
- Jefferson C Frisbee
- Department of Medical Biophysics, Western University , London, Ontario , Canada
| | - Matthew T Lewis
- Department of Physiology, Michigan State University , East Lansing, Michigan
| | - Jonathan D Kasper
- Department of Physiology, Michigan State University , East Lansing, Michigan
| | - Paul D Chantler
- Division of Exercise Physiology, West Virginia University , Morgantown, West Virginia
| | - Robert W Wiseman
- Department of Physiology, Michigan State University , East Lansing, Michigan.,Department of Radiology, Michigan State University , East Lansing, Michigan
| |
Collapse
|
8
|
Liu Y, Gu Y, Yu X. Assessing tissue metabolism by phosphorous-31 magnetic resonance spectroscopy and imaging: a methodology review. Quant Imaging Med Surg 2017; 7:707-726. [PMID: 29312876 PMCID: PMC5756783 DOI: 10.21037/qims.2017.11.03] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/11/2017] [Indexed: 01/11/2023]
Abstract
Many human diseases are caused by an imbalance between energy production and demand. Magnetic resonance spectroscopy (MRS) and magnetic resonance imaging (MRI) provide the unique opportunity for in vivo assessment of several fundamental events in tissue metabolism without the use of ionizing radiation. Of particular interest, phosphate metabolites that are involved in ATP generation and utilization can be quantified noninvasively by phosphorous-31 (31P) MRS/MRI. Furthermore, 31P magnetization transfer (MT) techniques allow in vivo measurement of metabolic fluxes via creatine kinase (CK) and ATP synthase. However, a major impediment for the clinical applications of 31P-MRS/MRI is the prohibitively long acquisition time and/or the low spatial resolution that are necessary to achieve adequate signal-to-noise ratio. In this review, current 31P-MRS/MRI techniques used in basic science and clinical research are presented. Recent advances in the development of fast 31P-MRS/MRI methods are also discussed.
Collapse
Affiliation(s)
- Yuchi Liu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Yuning Gu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Xin Yu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, USA
- Case Center for Imaging Research, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
9
|
Lai N, Kummitha C, Hoppel C. Defects in skeletal muscle subsarcolemmal mitochondria in a non-obese model of type 2 diabetes mellitus. PLoS One 2017; 12:e0183978. [PMID: 28850625 PMCID: PMC5574550 DOI: 10.1371/journal.pone.0183978] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/15/2017] [Indexed: 11/18/2022] Open
Abstract
Skeletal muscle resistance to insulin is related to accumulation of lipid-derived products, but it is not clear whether this accumulation is caused by skeletal muscle mitochondrial dysfunction. Diabetes and obesity are reported to have a selective effect on the function of subsarcolemmal and interfibrillar mitochondria in insulin-resistant skeletal muscle. The current study investigated the role of the subpopulations of mitochondria in the pathogenesis of insulin resistance in the absence of obesity. A non-obese spontaneous rat model of type 2 diabetes mellitus, (Goto-Kakizaki), was used to evaluate function and biochemical properties in both populations of skeletal muscle mitochondria. In subsarcolemmal mitochondria, minor defects are observed whereas in interfibrillar mitochondria function is preserved. Subsarcolemmal mitochondria defects characterized by a mild decline of oxidative phosphorylation efficiency are related to ATP synthase and structural alterations of inner mitochondria membrane but are considered unimportant because of the absence of defects upstream as shown with polarographic and spectrophometric assays. Fatty acid transport and oxidation is preserved in both population of mitochondria, whereas palmitoyl-CoA increased 25% in interfibrillar mitochondria of diabetic rats. Contrary to popular belief, these data provide compelling evidence that mitochondrial function is unaffected in insulin-resistant skeletal muscle from T2DM non-obese rats.
Collapse
Affiliation(s)
- Nicola Lai
- Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, Virginia, United States of America
- Biomedical Engineering Institute, Old Dominion University, Norfolk, Virginia, United States of America
- Department of Biomedical Engineering, School of Engineering, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - China Kummitha
- Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, Virginia, United States of America
- Biomedical Engineering Institute, Old Dominion University, Norfolk, Virginia, United States of America
- Department of Biomedical Engineering, School of Engineering, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Charles Hoppel
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- Center for Mitochondrial Disease, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| |
Collapse
|
10
|
Liu Y, Mei X, Li J, Lai N, Yu X. Mitochondrial function assessed by 31P MRS and BOLD MRI in non-obese type 2 diabetic rats. Physiol Rep 2017; 4:4/15/e12890. [PMID: 27511984 PMCID: PMC4985553 DOI: 10.14814/phy2.12890] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/19/2016] [Indexed: 12/23/2022] Open
Abstract
The study aims to characterize age‐associated changes in skeletal muscle bioenergetics by evaluating the response to ischemia‐reperfusion in the skeletal muscle of the Goto‐Kakizaki (GK) rats, a rat model of non‐obese type 2 diabetes (T2D). 31P magnetic resonance spectroscopy (MRS) and blood oxygen level‐dependent (BOLD) MRI was performed on the hindlimb of young (12 weeks) and adult (20 weeks) GK and Wistar (control) rats. 31P‐MRS and BOLD‐MRI data were acquired continuously during an ischemia and reperfusion protocol to quantify changes in phosphate metabolites and muscle oxygenation. The time constant of phosphocreatine recovery, an index of mitochondrial oxidative capacity, was not statistically different between GK rats (60.8 ± 13.9 sec in young group, 83.7 ± 13.0 sec in adult group) and their age‐matched controls (62.4 ± 11.6 sec in young group, 77.5 ± 7.1 sec in adult group). During ischemia, baseline‐normalized BOLD‐MRI signal was significantly lower in GK rats than in their age‐matched controls. These results suggest that insulin resistance leads to alterations in tissue metabolism without impaired mitochondrial oxidative capacity in GK rats.
Collapse
Affiliation(s)
- Yuchi Liu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio Case Center for Imaging Research, Case Western Reserve University, Cleveland, Ohio
| | - Xunbai Mei
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio Case Center for Imaging Research, Case Western Reserve University, Cleveland, Ohio
| | - Jielei Li
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Nicola Lai
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio Department of Electrical and Computer Engineering and Biomedical Engineering Institute, Old Dominion University, Norfolk, Virginia
| | - Xin Yu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio Case Center for Imaging Research, Case Western Reserve University, Cleveland, Ohio Department of Radiology, Case Western Reserve University, Cleveland, Ohio Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
11
|
Béchir N, Pecchi E, Vilmen C, Le Fur Y, Amthor H, Bernard M, Bendahan D, Giannesini B. ActRIIB blockade increases force-generating capacity and preserves energy supply in exercising mdx mouse muscle in vivo. FASEB J 2016; 30:3551-3562. [PMID: 27416839 DOI: 10.1096/fj.201600271rr] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 06/28/2016] [Indexed: 11/11/2022]
Abstract
Postnatal blockade of the activin type IIB receptor (ActRIIB) represents a promising therapeutic strategy for counteracting dystrophic muscle wasting. However, its impact on muscle function and bioenergetics remains poorly documented in physiologic conditions. We have investigated totally noninvasively the effect of 8-wk administration of either soluble ActRIIB signaling inhibitor (sActRIIB-Fc) or vehicle PBS (control) on gastrocnemius muscle force-generating capacity, energy metabolism, and anatomy in dystrophic mdx mice using magnetic resonance (MR) imaging and dynamic [31P]-MR spectroscopy ([31P]-MRS) in vivo ActRIIB inhibition increased muscle volume (+33%) without changing fiber-type distribution, and increased basal animal oxygen consumption (+22%) and energy expenditure (+23%). During an in vivo standardized fatiguing exercise, maximum and total absolute contractile forces were larger (+40 and 24%, respectively) in sActRIIB-Fc treated animals, whereas specific force-generating capacity and fatigue resistance remained unaffected. Furthermore, sActRIIB-Fc administration did not alter metabolic fluxes, ATP homeostasis, or contractile efficiency during the fatiguing bout of exercise, although it dramatically reduced the intrinsic mitochondrial capacity for producing ATP. Overall, sActRIIB-Fc treatment increased muscle mass and strength without altering the fundamental weakness characteristic of dystrophic mdx muscle. These data support the clinical interest of ActRIIB blockade for reversing dystrophic muscle wasting.-Béchir, N., Pecchi, E., Vilmen, C., Le Fur, Y., Amthor, H., Bernard, M., Bendahan, D., Giannesini, B. ActRIIB blockade increases force-generating capacity and preserves energy supply in exercising mdx mouse muscle in vivo.
Collapse
Affiliation(s)
- Nelly Béchir
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Centre de Résonance Magnétique Biologique et Médicale, Unité Mixte de Recherche 7339, Marseille, France
| | - Emilie Pecchi
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Centre de Résonance Magnétique Biologique et Médicale, Unité Mixte de Recherche 7339, Marseille, France
| | - Christophe Vilmen
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Centre de Résonance Magnétique Biologique et Médicale, Unité Mixte de Recherche 7339, Marseille, France
| | - Yann Le Fur
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Centre de Résonance Magnétique Biologique et Médicale, Unité Mixte de Recherche 7339, Marseille, France
| | - Helge Amthor
- Université de Versailles Saint-Quentin-en-Yvelines, Unités de Formation et de Recherche des Sciences de la Santé, INSERM U1179, Laboratoire International Associé, Biologie Appliquée Handicap Neuromusculaire, Cellules Souches Mésenchymateuses, Saint Quentin en Yvelines Therapeutics, Montigny-le-Bretonneux, France; and Service Génétique Médicale, Centre Hospitalier Universitaire Necker-Enfants Malades, Université Paris Descartes, Paris, France
| | - Monique Bernard
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Centre de Résonance Magnétique Biologique et Médicale, Unité Mixte de Recherche 7339, Marseille, France
| | - David Bendahan
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Centre de Résonance Magnétique Biologique et Médicale, Unité Mixte de Recherche 7339, Marseille, France
| | - Benoît Giannesini
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Centre de Résonance Magnétique Biologique et Médicale, Unité Mixte de Recherche 7339, Marseille, France;
| |
Collapse
|