1
|
Hulme J. Harnessing Ultrasonic Technologies to Treat Staphylococcus Aureus Skin Infections. Molecules 2025; 30:512. [PMID: 39942617 PMCID: PMC11819699 DOI: 10.3390/molecules30030512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
The rise of antibiotic-resistant Staphylococcus aureus strains, particularly MRSA, complicates the management of skin and soft tissue infections. This review highlights ultrasonic methodologies as adjunctive therapies to combat S. aureus-driven skin infections and prevent progression to biofilm formation and chronic wounds. Low- and high-frequency ultrasound (LFU and HFU) demonstrate potential in disrupting biofilms, enhancing drug delivery, and promoting tissue repair through cavitation and microbubble activity. These approaches integrate ultrasonic frequencies with microbubbles and therapeutics, such as antibiotics and affimers, to minimize resistance and improve healing. Tailoring the bioeffects of ultrasound on skin structures through localized delivery technologies, including microneedle patches and piezoelectric systems, presents promising solutions for early intervention in skin and soft structure infections (SSSIs).
Collapse
Affiliation(s)
- John Hulme
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Sungnam-daero, Sujung-gu, Seongnam-si 461-701, Republic of Korea
| |
Collapse
|
2
|
Harpster SL, Piñeiro AM, Wong JY. Methods for Rapid Characterization of Tunable Microbubble Formulations. Bioengineering (Basel) 2024; 11:1224. [PMID: 39768042 PMCID: PMC11673760 DOI: 10.3390/bioengineering11121224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/15/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
To optimize microbubble formulations for clinical applications, the size distribution, concentration, and acoustic intensity must be rapidly measurable to allow for the successful iteration of microbubble design. In this paper, a comprehensive method was developed to compare microbubble formulations with different lipid shell compositions using optical and acoustic methods of measurement to collect the size distribution, concentration, and mean scattering intensity. An open-source ImageJ macro code was modified for the selective counting and sizing of brightfield microbubble images. A high-throughput agarose phantom was designed to collect multiple scattering reflections of microbubble samples to estimate the echogenicity of each microbubble solution. The information contained in the size distribution and concentration, combined with the instantaneous scattering power, can identify modifications needed for prototyping specific microbubble formulations.
Collapse
Affiliation(s)
- Savannah L. Harpster
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; (S.L.H.)
| | - Alexandra M. Piñeiro
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; (S.L.H.)
| | - Joyce Y. Wong
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; (S.L.H.)
- Division of Materials Science & Engineering, Boston University, Boston, MA 02215, USA
| |
Collapse
|
3
|
Fernandes DA. Comprehensive Review on Bubbles: Synthesis, Modification, Characterization and Biomedical Applications. Bioconjug Chem 2024; 35:1639-1686. [PMID: 39377727 DOI: 10.1021/acs.bioconjchem.4c00137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Accurate detection, treatment, and imaging of diseases are important for effective treatment outcomes in patients. In this regard, bubbles have gained much attention, due to their versatility. Bubbles usually 1 nm to 10 μm in size can be produced and loaded with a variety of lipids, polymers, proteins, and therapeutic and imaging agents. This review details the different production and loading methods for bubbles, for imaging and treatment of diseases/conditions such as cancer, tumor angiogenesis, thrombosis, and inflammation. Bubbles can also be used for perfusion measurements, important for diagnostic and therapeutic decision making in cardiac disease. The different factors important in the stability of bubbles and the different techniques for characterizing their physical and chemical properties are explained, for developing bubbles with advanced therapeutic and imaging features. Hence, the review provides important insights for researchers studying bubbles for biomedical applications.
Collapse
|
4
|
Prudhomme M, Lakhdar C, Fattaccioli J, Addouche M, Chollet F. Functionalization of microbubbles in a microfluidic chip for biosensing application. Biomed Microdevices 2024; 26:39. [PMID: 39287824 DOI: 10.1007/s10544-024-00721-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2024] [Indexed: 09/19/2024]
Abstract
Microbubbles are widely used for biomedical applications, ranging from imagery to therapy. In these applications, microbubbles can be functionalized to allow targeted drug delivery or imaging of the human body. However, functionalization of the microbubbles is quite difficult, due to the unstable nature of the gas/liquid interface. In this paper, we describe a simple protocol for rapid functionalization of microbubbles and show how to use them inside a microfluidic chip to develop a novel type of biosensor. The microbubbles are functionalized with biochemical ligand directly at their generation inside the microfluidic chip using a DSPE-PEG-Biotin phospholipid. The microbubbles are then organized inside a chamber before injecting the fluid with the bioanalyte of interest through the static bubbles network. In this proof-of-concept demonstration, we use streptavidin as the bioanalyte of interest. Both functionalization and capture are assessed using fluorescent microscopy thanks to fluorescent labeled chemicals. The main advantages of the proposed technique compared to classical ligand based biosensor using solid surface is its ability to rapidly regenerate the functionalized surface, with the complete functionalization/capture/measurement cycle taking less than 10 min.
Collapse
Affiliation(s)
- Marc Prudhomme
- Institut FEMTO-ST, Université de Franche-Comté, CNRS, Besançon, F-25000, France
| | - Chaimaa Lakhdar
- Institut FEMTO-ST, Université de Franche-Comté, CNRS, Besançon, F-25000, France
| | - Jacques Fattaccioli
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, PSL Université, Sorbonne Université, CNRS, F-75005, Paris, France
- Institut Pierre-Gilles de Gennes pour la Microfluidique, F-75005, Paris, France
| | - Mahmoud Addouche
- Institut FEMTO-ST, Université de Franche-Comté, CNRS, Besançon, F-25000, France
| | - Franck Chollet
- Institut FEMTO-ST, Université de Franche-Comté, CNRS, Besançon, F-25000, France.
| |
Collapse
|
5
|
Chen J, Wang B, Dasgupta A, Porte C, Eckardt L, Qi J, Weiler M, Lammers T, Rix A, Shi Y, Kiessling F. Aminolysis-mediated single-step surface functionalization of poly (butyl cyanoacrylate) microbubbles for ultrasound molecular imaging. J Nanobiotechnology 2024; 22:528. [PMID: 39218888 PMCID: PMC11367926 DOI: 10.1186/s12951-024-02806-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
Molecular ultrasound imaging with actively targeted microbubbles (MB) proved promising in preclinical studies but its clinical translation is limited. To achieve this, it is essential that the actively targeted MB can be produced with high batch-to-batch reproducibility with a controllable and defined number of binding ligands on the surface. In this regard, poly (n-butyl cyanoacrylate) (PBCA)-based polymeric MB have been used for US molecular imaging, however, ligand coupling was mostly done via hydrolysis and carbodiimide chemistry, which is a multi-step procedure with poor reproducibility and low MB yield. Herein, we developed a single-step coupling procedure resulting in high MB yields with minimal batch-to-batch variation. Actively targeted PBCA-MB were generated using an aminolysis protocol, wherein amine-containing cRGD was added to the MB using lithium methoxide as a catalyst. We confirmed the successful conjugation of cRGD on the MB surface, while preserving their structure and acoustic signal. Compared to the conventional hydrolysis protocol, aminolysis resulted in higher MB yields and better reproducibility of coupling efficiency. Optical imaging revealed that under flow conditions, cRGD- and rhodamine-labelled MB, generated by aminolysis, specifically bind to tumor necrosis factor-alpha (TNF-α) activated endothelial cells in vitro. Furthermore, US molecular imaging demonstrated a markedly higher binding of the cRGD-MB than of control MB in TNF-α activated mouse aortas and 4T1 tumors in mice. Thus, using the aminolysis based conjugation approach, important refinements on the production of cRGD-MB could be achieved that will facilitate the production of clinical-scale formulations with excellent binding and ultrasound imaging performance.
Collapse
Affiliation(s)
- Junlin Chen
- Institute for Experimental Molecular Imaging, RWTH Aachen University, 52074, Aachen, Germany
| | - Bi Wang
- Institute for Experimental Molecular Imaging, RWTH Aachen University, 52074, Aachen, Germany
| | - Anshuman Dasgupta
- Institute for Experimental Molecular Imaging, RWTH Aachen University, 52074, Aachen, Germany
| | - Céline Porte
- Institute for Experimental Molecular Imaging, RWTH Aachen University, 52074, Aachen, Germany
| | - Lisa Eckardt
- Institute for Experimental Molecular Imaging, RWTH Aachen University, 52074, Aachen, Germany
| | - Jinwei Qi
- Institute for Experimental Molecular Imaging, RWTH Aachen University, 52074, Aachen, Germany
| | - Marek Weiler
- Institute for Experimental Molecular Imaging, RWTH Aachen University, 52074, Aachen, Germany
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, RWTH Aachen University, 52074, Aachen, Germany
| | - Anne Rix
- Institute for Experimental Molecular Imaging, RWTH Aachen University, 52074, Aachen, Germany
| | - Yang Shi
- Institute for Experimental Molecular Imaging, RWTH Aachen University, 52074, Aachen, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, RWTH Aachen University, 52074, Aachen, Germany.
| |
Collapse
|
6
|
Liu J, Wang C, Qiu S, Sun W, Yang G, Yuan L. Toward Ultrasound Molecular Imaging of Endothelial Dysfunction in Diabetes: Targets, Strategies, and Challenges. ACS APPLIED BIO MATERIALS 2024; 7:1416-1428. [PMID: 38391247 DOI: 10.1021/acsabm.4c00053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Diabetes vasculopathy is a significant complication of diabetes mellitus (DM), and early identification and timely intervention can effectively slow the progression. Accumulating studies have shown that diabetes causes vascular complications directly or indirectly through a variety of mechanisms. Direct imaging of the endothelial molecular changes not only identifies the early stage of diabetes vasculopathy but also sheds light on the precise treatment. Targeted ultrasound contrast agent (UCA)-based ultrasound molecular imaging (UMI) can noninvasively detect the expression status of molecular biomarkers overexpressed in the vasculature, thereby being a potential strategy for the diagnosis and treatment response evaluation of DM. Amounts of efforts have been focused on identification of the molecular targets expressed in the vasculature, manufacturing strategies of the targeted UCA, and the clinical translation for the diagnosis and evaluation of therapeutic efficacy in both micro- and macrovasculopathy in DM. This review summarizes the latest research progress on endothelium-targeted UCA and discusses their promising future and challenges in diabetes vasculopathy theranostics.
Collapse
Affiliation(s)
- Jiahan Liu
- Department of Ultrasound Medicine, Tangdu Hospital, Fourth Military Medical University, Shaanxi 710038, China
| | - Chen Wang
- Department of Ultrasound Medicine, Tangdu Hospital, Fourth Military Medical University, Shaanxi 710038, China
| | - Shuo Qiu
- Department of Ultrasound Medicine, Tangdu Hospital, Fourth Military Medical University, Shaanxi 710038, China
| | - Wenqi Sun
- Department of Ultrasound Medicine, Tangdu Hospital, Fourth Military Medical University, Shaanxi 710038, China
| | - Guodong Yang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University Xi'an, Shaanxi 710032, China
| | - Lijun Yuan
- Department of Ultrasound Medicine, Tangdu Hospital, Fourth Military Medical University, Shaanxi 710038, China
| |
Collapse
|
7
|
Shakya G, Cattaneo M, Guerriero G, Prasanna A, Fiorini S, Supponen O. Ultrasound-responsive microbubbles and nanodroplets: A pathway to targeted drug delivery. Adv Drug Deliv Rev 2024; 206:115178. [PMID: 38199257 DOI: 10.1016/j.addr.2023.115178] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/21/2023] [Accepted: 12/31/2023] [Indexed: 01/12/2024]
Abstract
Ultrasound-responsive agents have shown great potential as targeted drug delivery agents, effectively augmenting cell permeability and facilitating drug absorption. This review focuses on two specific agents, microbubbles and nanodroplets, and provides a sequential overview of their drug delivery process. Particular emphasis is given to the mechanical response of the agents under ultrasound, and the subsequent physical and biological effects on the cells. Finally, the state-of-the-art in their pre-clinical and clinical implementation are discussed. Throughout the review, major challenges that need to be overcome in order to accelerate their clinical translation are highlighted.
Collapse
Affiliation(s)
- Gazendra Shakya
- Institute of Fluid Dynamics, D-MAVT, Sonneggstrasse 3, ETH Zurich, Zurich, 8092, Switzerland
| | - Marco Cattaneo
- Institute of Fluid Dynamics, D-MAVT, Sonneggstrasse 3, ETH Zurich, Zurich, 8092, Switzerland
| | - Giulia Guerriero
- Institute of Fluid Dynamics, D-MAVT, Sonneggstrasse 3, ETH Zurich, Zurich, 8092, Switzerland
| | - Anunay Prasanna
- Institute of Fluid Dynamics, D-MAVT, Sonneggstrasse 3, ETH Zurich, Zurich, 8092, Switzerland
| | - Samuele Fiorini
- Institute of Fluid Dynamics, D-MAVT, Sonneggstrasse 3, ETH Zurich, Zurich, 8092, Switzerland
| | - Outi Supponen
- Institute of Fluid Dynamics, D-MAVT, Sonneggstrasse 3, ETH Zurich, Zurich, 8092, Switzerland.
| |
Collapse
|
8
|
Bam R, Natarajan A, Tabesh F, Paulmurugan R, Dahl JJ. Synthesis and Evaluation of Clinically Translatable Targeted Microbubbles Using a Microfluidic Device for In Vivo Ultrasound Molecular Imaging. Int J Mol Sci 2023; 24:9048. [PMID: 37240396 PMCID: PMC10219500 DOI: 10.3390/ijms24109048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/14/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
The main aim of this study is to synthesize contrast microbubbles (MB) functionalized with engineered protein ligands using a microfluidic device to target breast cancer specific vascular B7-H3 receptor in vivo for diagnostic ultrasound imaging. We used a high-affinity affibody (ABY) selected against human/mouse B7-H3 receptor for engineering targeted MBs (TMBs). We introduced a C-terminal cysteine residue to this ABY ligand for facilitating site-specific conjugation to DSPE-PEG-2K-maleimide (M. Wt = 2.9416 kDa) phospholipid for MB formulation. We optimized the reaction conditions of bioconjugations and applied it for microfluidic based synthesis of TMBs using DSPE-PEG-ABY and DPPC liposomes (5:95 mole %). The binding affinity of TMBs to B7-H3 (MBB7-H3) was tested in vitro in MS1 endothelial cells expressing human B7-H3 (MS1B7-H3) by flow chamber assay, and by ex vivo in the mammary tumors of a transgenic mouse model (FVB/N-Tg (MMTV-PyMT)634Mul/J), expressing murine B7-H3 in the vascular endothelial cells by immunostaining analyses. We successfully optimized the conditions needed for generating TMBs using a microfluidic system. The synthesized MBs showed higher affinity to MS1 cells engineered to express higher level of hB7-H3, and in the endothelial cells of mouse tumor tissue upon injecting TMBs in a live animal. The average number (mean ± SD) of MBB7-H3 binding to MS1B7-H3 cells was estimated to be 354.4 ± 52.3 per field of view (FOV) compared to wild-type control cells (MS1WT; 36.2 ± 7.5/FOV). The non-targeted MBs did not show any selective binding affinity to both the cells (37.7 ± 7.8/FOV for MS1B7-H3 and 28.3 ± 6.7/FOV for MS1WT cells). The fluorescently labeled MBB7-H3 upon systemic injection in vivo co-localized to tumor vessels, expressing B7-H3 receptor, as validated by ex vivo immunofluorescence analyses. We have successfully synthesized a novel MBB7-H3 via microfluidic device, which allows us to produce on demand TMBs for clinical applications. This clinically translatable MBB7-H3 showed significant binding affinity to vascular endothelial cells expressing B7-H3 both in vitro and in vivo, which shows its potential for clinical translation as a molecular ultrasound contrast agent for human applications.
Collapse
Affiliation(s)
| | | | | | - Ramasamy Paulmurugan
- Canary Center for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Jeremy J. Dahl
- Canary Center for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| |
Collapse
|
9
|
Goncin U, Curiel L, Geyer CR, Machtaler S. Aptamer-Functionalized Microbubbles Targeted to P-selectin for Ultrasound Molecular Imaging of Murine Bowel Inflammation. Mol Imaging Biol 2023; 25:283-293. [PMID: 35851673 DOI: 10.1007/s11307-022-01755-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/01/2022] [Accepted: 07/06/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE Our objectives were to develop a targeted microbubble with an anti-P-selectin aptamer and assess its ability to detect bowel inflammation in two murine models of acute colitis. PROCEDURES Lipid-shelled microbubbles were prepared using mechanical agitation. A rapid copper-free click chemistry approach (azide-DBCO) was used to conjugate the fluorescent anti-P-selectin aptamer (Fluor-P-Ap) to the microbubble surface. Bowel inflammation was chemically induced using 2,4,6-trinitrobenzenesulfonic acid (TNBS) in both Balb/C and interleukin-10-deficient (IL-10 KO) mice. Mouse bowels were imaged using non-linear contrast mode following an i.v. bolus of 1 × 108 microbubbles. Each mouse received a bolus of aptamer-functionalized and non-targeted microbubbles. Mouse phenotypes and the presence of P-selectin were validated using histology and immunostaining, respectively. RESULTS Microbubble labelling of Fluor-P-Ap was complete after 20 min at 37 ̊C. We estimate approximately 300,000 Fluor-P-Ap per microbubble and confirmed fluorescence using confocal microscopy. There was a significant increase in ultrasound molecular imaging signal from both Balb/C (p = 0.003) and IL-10 KO (p = 0.02) mice with inflamed bowels using aptamer-functionalized microbubbles in comparison to non-targeted microbubbles. There was no signal in healthy mice (p = 0.4051) using either microbubble. CONCLUSIONS We constructed an aptamer-functionalized microbubble specific for P-selectin using a clinically relevant azide-DBCO click reaction, which could detect bowel inflammation in vivo. Aptamers have potential as a next generation targeting agent for developing cost-efficient and clinically translatable targeted microbubbles.
Collapse
Affiliation(s)
- Una Goncin
- Department of Medical Imaging, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Laura Curiel
- Department of Electrical and Software Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, T2N 4V8, Canada
| | - C Ronald Geyer
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Steven Machtaler
- Department of Medical Imaging, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada.
| |
Collapse
|
10
|
Microbubbles for human diagnosis and therapy. Biomaterials 2023; 294:122025. [PMID: 36716588 DOI: 10.1016/j.biomaterials.2023.122025] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/17/2023] [Accepted: 01/24/2023] [Indexed: 01/26/2023]
Abstract
Microbubbles (MBs) were observed for the first time in vivo as a curious consequence of quick saline injection during ultrasound (US) imaging of the aortic root, more than 50 years ago. From this serendipitous event, MBs are now widely used as contrast enhancers for US imaging. Their intrinsic properties described in this review, allow a multitude of designs, from shell to gas composition but also from grafting targeting agents to drug payload encapsulation. Indeed, the versatile MBs are deeply studied for their dual potential in imaging and therapy. As presented in this paper, new generations of MBs now opens perspectives for targeted molecular imaging along with the development of new US imaging systems. This review also presents an overview of the different therapeutic strategies with US and MBs for cancer, cardiovascular diseases, and inflammation. The overall aim is to overlap those fields in order to find similarities in the MBs application for treatment enhancement associated with US. To conclude, this review explores the new scales of MBs technologies with nanobubbles development, and along concurrent advances in the US imaging field. This review ends by discussing perspectives for the booming future uses of MBs.
Collapse
|
11
|
Goncin U, Bernhard W, Curiel L, Geyer CR, Machtaler S. Rapid Copper-free Click Conjugation to Lipid-Shelled Microbubbles for Ultrasound Molecular Imaging of Murine Bowel Inflammation. Bioconjug Chem 2022; 33:848-857. [DOI: 10.1021/acs.bioconjchem.2c00104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Una Goncin
- Department of Medical Imaging, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Wendy Bernhard
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Laura Curiel
- Department of Electrical and Software Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta T2N 4V8, Canada
| | - C. Ronald Geyer
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Steven Machtaler
- Department of Medical Imaging, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| |
Collapse
|
12
|
Protein-conjugated microbubbles for the selective targeting of S. aureus biofilms. Biofilm 2022; 4:100074. [PMID: 35340817 PMCID: PMC8942837 DOI: 10.1016/j.bioflm.2022.100074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/01/2022] [Accepted: 03/06/2022] [Indexed: 02/07/2023] Open
Abstract
Staphylococcus aureus (S. aureus) is an important human pathogen and a common cause of bloodstream infection. The ability of S. aureus to form biofilms, particularly on medical devices, makes treatment difficult, as does its tendency to spread within the body and cause secondary foci of infection. Prolonged courses of intravenous antimicrobial treatment are usually required for serious S. aureus infections. This work investigates the in vitro attachment of microbubbles to S. aureus biofilms via a novel Affimer protein, AClfA1, which targets the clumping factor A (ClfA) virulence factor – a cell-wall anchored protein associated with surface attachment. Microbubbles (MBs) are micron-sized gas-filled bubbles encapsulated by a lipid, polymer, or protein monolayer or other surfactant-based material. Affimers are small (∼12 kDa) heat-stable binding proteins developed as replacements for antibodies. The binding kinetics of AClfA1 against S. aureus ClfA showed strong binding affinity (KD = 62 ± 3 nM). AClfA1 was then shown to bind S. aureus biofilms under flow conditions both as a free ligand and when bound to microparticles (polymer beads or microbubbles). Microbubbles functionalized with AClfA1 demonstrated an 8-fold increase in binding compared to microbubbles functionalized with an identical Affimer scaffold but lacking the recognition groups. Bound MBs were able to withstand flow rates of 250 μL/min. Finally, ultrasound was applied to burst the biofilm bound MBs to determine whether this would lead to biofilm biomass loss or cell death. Application of a 2.25 MHz ultrasound profile (with a peak negative pressure of 0.8 MPa and consisting of a 22-cycle sine wave, at a pulse repetition rate of 10 kHz) for 2 s to a biofilm decorated with targeted MBs, led to a 25% increase in biomass loss and a concomitant 8% increase in dead cell count. The results of this work show that Affimers can be developed to target S. aureus biofilms and that such Affimers can be attached to contrast agents such as microbubbles or polymer beads and offer potential, with some optimization, for drug-free biofilm treatment.
Collapse
|
13
|
Nanomaterials as Ultrasound Theragnostic Tools for Heart Disease Treatment/Diagnosis. Int J Mol Sci 2022; 23:ijms23031683. [PMID: 35163604 PMCID: PMC8835969 DOI: 10.3390/ijms23031683] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 01/27/2023] Open
Abstract
A variety of different nanomaterials (NMs) such as microbubbles (MBs), nanobubbles (NBs), nanodroplets (NDs), and silica hollow meso-structures have been tested as ultrasound contrast agents for the detection of heart diseases. The inner part of these NMs is made gaseous to yield an ultrasound contrast, which arises from the difference in acoustic impedance between the interior and exterior of such a structure. Furthermore, to specifically achieve a contrast in the diseased heart region (DHR), NMs can be designed to target this region in essentially three different ways (i.e., passively when NMs are small enough to diffuse through the holes of the vessels supplying the DHR, actively by being associated with a ligand that recognizes a receptor of the DHR, or magnetically by applying a magnetic field orientated in the direction of the DHR on a NM responding to such stimulus). The localization and resolution of ultrasound imaging can be further improved by applying ultrasounds in the DHR, by increasing the ultrasound frequency, or by using harmonic, sub-harmonic, or super-resolution imaging. Local imaging can be achieved with other non-gaseous NMs of metallic composition (i.e., essentially made of Au) by using photoacoustic imaging, thus widening the range of NMs usable for cardiac applications. These contrast agents may also have a therapeutic efficacy by carrying/activating/releasing a heart disease drug, by triggering ultrasound targeted microbubble destruction or enhanced cavitation in the DHR, for example, resulting in thrombolysis or helping to prevent heart transplant rejection.
Collapse
|
14
|
Browning R, Thomas N, Marsh LK, Tear LR, Owen J, Stride E, Farrer NJ. Ultrasound-Triggered Delivery of Iproplatin from Microbubble-Conjugated Liposomes. ChemistryOpen 2021; 10:1170-1176. [PMID: 34708552 PMCID: PMC8634767 DOI: 10.1002/open.202100222] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/06/2021] [Indexed: 12/17/2022] Open
Abstract
The PtIV prodrug iproplatin has been actively loaded into liposomes using a calcium acetate gradient, achieving a 3-fold enhancement in drug concentration compared to passive loading strategies. A strain-promoted cycloaddition reaction (azide- dibenzocyclooctyne) was used to attach iproplatin-loaded liposomes L(Pt) to gas-filled microbubbles (M), forming an ultrasound-responsive drug delivery vehicle [M-L(Pt)]. Ultrasound-triggered release of iproplatin from the microbubble-liposome construct was evaluated in cellulo. Breast cancer (MCF-7) cells treated with both free iproplatin and iproplatin-loaded liposome-microbubbles [M-L(Pt)] demonstrated an increase in platinum concentration when exposed to ultrasound. No appreciable platinum uptake was observed in MCF-7 cells following treatment with L(Pt) only or L(Pt)+ultrasound, suggesting that microbubble-mediated ultrasonic release of platinum-based drugs from liposomal carriers enables greater control over drug delivery.
Collapse
Affiliation(s)
- Richard Browning
- Institute of Biomedical EngineeringUniversity of OxfordOxfordOX3 7DQUK
| | - Nia Thomas
- Chemistry Research LaboratoryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| | - Laura K. Marsh
- Chemistry Research LaboratoryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| | - Louise R. Tear
- Chemistry Research LaboratoryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| | - Joshua Owen
- Institute of Biomedical EngineeringUniversity of OxfordOxfordOX3 7DQUK
| | - Eleanor Stride
- Institute of Biomedical EngineeringUniversity of OxfordOxfordOX3 7DQUK
| | - Nicola J. Farrer
- Chemistry Research LaboratoryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| |
Collapse
|
15
|
Braga M, Leow CH, Gil JH, Teh JH, Carroll L, Long NJ, Tang MX, Aboagye EO. Investigating CXCR4 expression of tumor cells and the vascular compartment: A multimodal approach. PLoS One 2021; 16:e0260186. [PMID: 34793563 PMCID: PMC8601444 DOI: 10.1371/journal.pone.0260186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/03/2021] [Indexed: 11/19/2022] Open
Abstract
The C-X-C chemokine receptor 4 (CXCR4) is G protein-coupled receptor that upon binding to its cognate ligand, can lead to tumor progression. Several CXCR4-targeted therapies are currently under investigation, and with it comes the need for imaging agents capable of accurate depiction of CXCR4 for therapeutic stratification and monitoring. PET agents enjoy the most success, but more cost-effective and radiation-free approaches such as ultrasound (US) imaging could represent an attractive alternative. In this work, we developed a targeted microbubble (MB) for imaging of vascular CXCR4 expression in cancer. A CXCR4-targeted MB was developed through incorporation of the T140 peptide into the MB shell. Binding properties of the T140-MB and control, non-targeted MB (NT-MB) were evaluated in MDA-MB-231 cells where CXCR4 expression was knocked-down (via shRNA) through optical imaging, and in the lymphoma tumor models U2932 and SuDHL8 (high and low CXCR4 expression, respectively) by US imaging. PET imaging of [18F]MCFB, a tumor-penetrating CXCR4-targeted small molecule, was used to provide whole-tumor CXCR4 readouts. CXCR4 expression and microvessel density were performed by immunohistochemistry analysis and western blot. T140-MB were formed with similar properties to NT-MB and accumulated sensitively and specifically in cells according to their CXCR4 expression. In NOD SCID mice, T140-MB persisted longer in tumors than NT-MB, indicative of target interaction, but showed no difference between U2932 and SuDHL8. In contrast, PET imaging with [18F]MCFB showed a marked difference in tumor uptake at 40-60 min post-injection between the two tumor models (p<0.05). Ex vivo analysis revealed that the large differences in CXCR4 expression between the two models are not reflected in the vascular compartment, where the MB are restricted; in fact, microvessel density and CXCR4 expression in the vasculature was comparable between U2932 and SuDHL8 tumors. In conclusion, we successfully developed a T140-MB that can be used for imaging CXCR4 expression in the tumor vasculature.
Collapse
Affiliation(s)
- Marta Braga
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Chee Hau Leow
- Department of Bioengineering, Faculty of Engineering, Imperial College London, London, United Kingdom
| | - Javier Hernandez Gil
- Department of Chemistry, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| | - Jin H. Teh
- Department of Chemistry, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| | - Laurence Carroll
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Nicholas J. Long
- Department of Chemistry, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| | - Meng-Xing Tang
- Department of Bioengineering, Faculty of Engineering, Imperial College London, London, United Kingdom
| | - Eric O. Aboagye
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
16
|
Ho YJ, Huang CC, Fan CH, Liu HL, Yeh CK. Ultrasonic technologies in imaging and drug delivery. Cell Mol Life Sci 2021; 78:6119-6141. [PMID: 34297166 PMCID: PMC11072106 DOI: 10.1007/s00018-021-03904-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/13/2021] [Accepted: 07/19/2021] [Indexed: 12/14/2022]
Abstract
Ultrasonic technologies show great promise for diagnostic imaging and drug delivery in theranostic applications. The development of functional and molecular ultrasound imaging is based on the technical breakthrough of high frame-rate ultrasound. The evolution of shear wave elastography, high-frequency ultrasound imaging, ultrasound contrast imaging, and super-resolution blood flow imaging are described in this review. Recently, the therapeutic potential of the interaction of ultrasound with microbubble cavitation or droplet vaporization has become recognized. Microbubbles and phase-change droplets not only provide effective contrast media, but also show great therapeutic potential. Interaction with ultrasound induces unique and distinguishable biophysical features in microbubbles and droplets that promote drug loading and delivery. In particular, this approach demonstrates potential for central nervous system applications. Here, we systemically review the technological developments of theranostic ultrasound including novel ultrasound imaging techniques, the synergetic use of ultrasound with microbubbles and droplets, and microbubble/droplet drug-loading strategies for anticancer applications and disease modulation. These advancements have transformed ultrasound from a purely diagnostic utility into a promising theranostic tool.
Collapse
Affiliation(s)
- Yi-Ju Ho
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-Chung Huang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan
| | - Ching-Hsiang Fan
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan
| | - Hao-Li Liu
- Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan.
| | - Chih-Kuang Yeh
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
17
|
Krafft MP, Riess JG. Therapeutic oxygen delivery by perfluorocarbon-based colloids. Adv Colloid Interface Sci 2021; 294:102407. [PMID: 34120037 DOI: 10.1016/j.cis.2021.102407] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 03/18/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023]
Abstract
After the protocol-related indecisive clinical trial of Oxygent, a perfluorooctylbromide/phospholipid nanoemulsion, in cardiac surgery, that often unduly assigned the observed untoward effects to the product, the development of perfluorocarbon (PFC)-based O2 nanoemulsions ("blood substitutes") has come to a low. Yet, significant further demonstrations of PFC O2-delivery efficacy have continuously been reported, such as relief of hypoxia after myocardial infarction or stroke; protection of vital organs during surgery; potentiation of O2-dependent cancer therapies, including radio-, photodynamic-, chemo- and immunotherapies; regeneration of damaged nerve, bone or cartilage; preservation of organ grafts destined for transplantation; and control of gas supply in tissue engineering and biotechnological productions. PFC colloids capable of augmenting O2 delivery include primarily injectable PFC nanoemulsions, microbubbles and phase-shift nanoemulsions. Careful selection of PFC and other colloid components is critical. The basics of O2 delivery by PFC nanoemulsions will be briefly reminded. Improved knowledge of O2 delivery mechanisms has been acquired. Advanced, size-adjustable O2-delivering nanoemulsions have been designed that have extended room-temperature shelf-stability. Alternate O2 delivery options are being investigated that rely on injectable PFC-stabilized microbubbles or phase-shift PFC nanoemulsions. The latter combine prolonged circulation in the vasculature, capacity for penetrating tumor tissues, and acute responsiveness to ultrasound and other external stimuli. Progress in microbubble and phase-shift emulsion engineering, control of phase-shift activation (vaporization), understanding and control of bubble/ultrasound/tissue interactions is discussed. Control of the phase-shift event and of microbubble size require utmost attention. Further PFC-based colloidal systems, including polymeric micelles, PFC-loaded organic or inorganic nanoparticles and scaffolds, have been devised that also carry substantial amounts of O2. Local, on-demand O2 delivery can be triggered by external stimuli, including focused ultrasound irradiation or tumor microenvironment. PFC colloid functionalization and targeting can help adjust their properties for specific indications, augment their efficacy, improve safety profiles, and expand the range of their indications. Many new medical and biotechnological applications involving fluorinated colloids are being assessed, including in the clinic. Further uses of PFC-based colloidal nanotherapeutics will be briefly mentioned that concern contrast diagnostic imaging, including molecular imaging and immune cell tracking; controlled delivery of therapeutic energy, as for noninvasive surgical ablation and sonothrombolysis; and delivery of drugs and genes, including across the blood-brain barrier. Even when the fluorinated colloids investigated are designed for other purposes than O2 supply, they will inevitably also carry and deliver a certain amount of O2, and may thus be considered for O2 delivery or co-delivery applications. Conversely, O2-carrying PFC nanoemulsions possess by nature a unique aptitude for 19F MR imaging, and hence, cell tracking, while PFC-stabilized microbubbles are ideal resonators for ultrasound contrast imaging and can undergo precise manipulation and on-demand destruction by ultrasound waves, thereby opening multiple theranostic opportunities.
Collapse
Affiliation(s)
- Marie Pierre Krafft
- University of Strasbourg, Institut Charles Sadron (CNRS), 23 rue du Loess, 67034 Strasbourg, France.
| | - Jean G Riess
- Harangoutte Institute, 68160 Ste Croix-aux-Mines, France
| |
Collapse
|
18
|
Harmon JN, Celingant-Copie CA, Kabinejadian F, Bull JL. Lipid Shell Retention and Selective Binding Capability Following Repeated Transient Acoustic Microdroplet Vaporization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:6626-6634. [PMID: 32420747 PMCID: PMC9704545 DOI: 10.1021/acs.langmuir.0c00320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Targeted therapy and molecular imaging using ultrasound have been widely explored using microbubble contrast agents, and more recently, activatable droplet contrast agents that vaporize when exposed to focused ultrasound have been explored. These droplets are coated with a stabilizing, functionalizable shell, typically comprised of fully saturated phospholipids. While the shedding of the lipid shell under ultrasound exposure is a well-studied phenomenon in microbubbles, it has not been fully explored in droplet-based contrast agents, particularly in those that undergo a reversible phase change and recondense following vaporization. Here, we investigate the retention of the lipid shell following repeated transient vaporization events. Two separate fluorescent markers were used to track individual lipid subpopulations: PEGylated lipids, to which targeting ligands are typically bound, and non-PEGylated lipids, which primarily contribute to droplet stability. Following confirmation of the homogeneous surface distribution of each subpopulation of shell lipids using confocal microscopy, high-speed optical imaging provided visual evidence of the ability to repeatedly induce vaporization and recondensation in micron-scale droplets using 5.208 MHz, 3.17 MPa focused ultrasound pulses transmitted from an imaging transducer. Flow cytometry analysis indicated that while PEGylated lipids were fully retained following repeated transient phase change events, 20% of the bulk lipids were shed. While this likely contributed to an observed significant reduction in the average droplet diameter, the selective binding capabilities of droplets functionalized with an RGD peptide, targeted to the integrin αvβ3, were not affected. These results indicate that repeated droplet activation may promote shifts in the droplet size distribution but will not influence the accuracy of targeting for therapy or molecular imaging.
Collapse
Affiliation(s)
- Jennifer N Harmon
- Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| | - Chloe A Celingant-Copie
- Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| | - Foad Kabinejadian
- Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| | - Joseph L Bull
- Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| |
Collapse
|
19
|
Ilovitsh T, Feng Y, Foiret J, Kheirolomoom A, Zhang H, Ingham ES, Ilovitsh A, Tumbale SK, Fite BZ, Wu B, Raie MN, Zhang N, Kare AJ, Chavez M, Qi LS, Pelled G, Gazit D, Vermesh O, Steinberg I, Gambhir SS, Ferrara KW. Low-frequency ultrasound-mediated cytokine transfection enhances T cell recruitment at local and distant tumor sites. Proc Natl Acad Sci U S A 2020; 117:12674-12685. [PMID: 32430322 PMCID: PMC7293655 DOI: 10.1073/pnas.1914906117] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Robust cytotoxic T cell infiltration has proven to be difficult to achieve in solid tumors. We set out to develop a flexible protocol to efficiently transfect tumor and stromal cells to produce immune-activating cytokines, and thus enhance T cell infiltration while debulking tumor mass. By combining ultrasound with tumor-targeted microbubbles, membrane pores are created and facilitate a controllable and local transfection. Here, we applied a substantially lower transmission frequency (250 kHz) than applied previously. The resulting microbubble oscillation was significantly enhanced, reaching an effective expansion ratio of 35 for a peak negative pressure of 500 kPa in vitro. Combining low-frequency ultrasound with tumor-targeted microbubbles and a DNA plasmid construct, 20% of tumor cells remained viable, and ∼20% of these remaining cells were transfected with a reporter gene both in vitro and in vivo. The majority of cells transfected in vivo were mucin 1+/CD45- tumor cells. Tumor and stromal cells were then transfected with plasmid DNA encoding IFN-β, producing 150 pg/106 cells in vitro, a 150-fold increase compared to no-ultrasound or no-plasmid controls and a 50-fold increase compared to treatment with targeted microbubbles and ultrasound (without IFN-β). This enhancement in secretion exceeds previously reported fourfold to fivefold increases with other in vitro treatments. Combined with intraperitoneal administration of checkpoint inhibition, a single application of IFN-β plasmid transfection reduced tumor growth in vivo and recruited efficacious immune cells at both the local and distant tumor sites.
Collapse
Affiliation(s)
- Tali Ilovitsh
- Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305
- Department of Radiology, Stanford University, Stanford, CA 94305
- Department of Biomedical Engineering, University of California, Davis, CA 95616
| | - Yi Feng
- Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305
- Department of Radiology, Stanford University, Stanford, CA 94305
- Department of Biomedical Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Josquin Foiret
- Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305
- Department of Radiology, Stanford University, Stanford, CA 94305
| | - Azadeh Kheirolomoom
- Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305
- Department of Radiology, Stanford University, Stanford, CA 94305
- Department of Biomedical Engineering, University of California, Davis, CA 95616
| | - Hua Zhang
- Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305
- Department of Radiology, Stanford University, Stanford, CA 94305
- Department of Biomedical Engineering, University of California, Davis, CA 95616
| | - Elizabeth S Ingham
- Department of Biomedical Engineering, University of California, Davis, CA 95616
| | - Asaf Ilovitsh
- Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305
- Department of Radiology, Stanford University, Stanford, CA 94305
- Department of Biomedical Engineering, University of California, Davis, CA 95616
| | - Spencer K Tumbale
- Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305
- Department of Radiology, Stanford University, Stanford, CA 94305
| | - Brett Z Fite
- Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305
- Department of Radiology, Stanford University, Stanford, CA 94305
| | - Bo Wu
- Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305
- Department of Radiology, Stanford University, Stanford, CA 94305
| | - Marina N Raie
- Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305
- Department of Radiology, Stanford University, Stanford, CA 94305
| | - Nisi Zhang
- Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305
- Department of Radiology, Stanford University, Stanford, CA 94305
| | - Aris J Kare
- Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305
- Department of Radiology, Stanford University, Stanford, CA 94305
- Department of Bioengineering, Stanford University, Stanford, CA 94305
| | - Michael Chavez
- Department of Bioengineering, Stanford University, Stanford, CA 94305
| | - Lei S Qi
- Department of Bioengineering, Stanford University, Stanford, CA 94305
| | - Gadi Pelled
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Dan Gazit
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Ophir Vermesh
- Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305
- Department of Radiology, Stanford University, Stanford, CA 94305
| | - Idan Steinberg
- Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305
- Department of Radiology, Stanford University, Stanford, CA 94305
| | - Sanjiv S Gambhir
- Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305
- Department of Radiology, Stanford University, Stanford, CA 94305
| | - Katherine W Ferrara
- Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305;
- Department of Radiology, Stanford University, Stanford, CA 94305
| |
Collapse
|
20
|
Siemer S, Wünsch D, Khamis A, Lu Q, Scherberich A, Filippi M, Krafft MP, Hagemann J, Weiss C, Ding GB, Stauber RH, Gribko A. Nano Meets Micro-Translational Nanotechnology in Medicine: Nano-Based Applications for Early Tumor Detection and Therapy. NANOMATERIALS 2020; 10:nano10020383. [PMID: 32098406 PMCID: PMC7075286 DOI: 10.3390/nano10020383] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/03/2020] [Accepted: 02/15/2020] [Indexed: 02/07/2023]
Abstract
Nanomaterials have great potential for the prevention and treatment of cancer. Circulating tumor cells (CTCs) are cancer cells of solid tumor origin entering the peripheral blood after detachment from a primary tumor. The occurrence and circulation of CTCs are accepted as a prerequisite for the formation of metastases, which is the major cause of cancer-associated deaths. Due to their clinical significance CTCs are intensively discussed to be used as liquid biopsy for early diagnosis and prognosis of cancer. However, there are substantial challenges for the clinical use of CTCs based on their extreme rarity and heterogeneous biology. Therefore, methods for effective isolation and detection of CTCs are urgently needed. With the rapid development of nanotechnology and its wide applications in the biomedical field, researchers have designed various nano-sized systems with the capability of CTCs detection, isolation, and CTCs-targeted cancer therapy. In the present review, we summarize the underlying mechanisms of CTC-associated tumor metastasis, and give detailed information about the unique properties of CTCs that can be harnessed for their effective analytical detection and enrichment. Furthermore, we want to give an overview of representative nano-systems for CTC isolation, and highlight recent achievements in microfluidics and lab-on-a-chip technologies. We also emphasize the recent advances in nano-based CTCs-targeted cancer therapy. We conclude by critically discussing recent CTC-based nano-systems with high therapeutic and diagnostic potential as well as their biocompatibility as a practical example of applied nanotechnology.
Collapse
Affiliation(s)
- Svenja Siemer
- Nanobiomedicine Department, University Medical Center Mainz/ENT, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Désirée Wünsch
- Nanobiomedicine Department, University Medical Center Mainz/ENT, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Aya Khamis
- Nanobiomedicine Department, University Medical Center Mainz/ENT, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Qiang Lu
- Nanobiomedicine Department, University Medical Center Mainz/ENT, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Arnaud Scherberich
- Laboratory of Tissue Engineering, Universitätspital Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland (M.F.)
| | - Miriam Filippi
- Laboratory of Tissue Engineering, Universitätspital Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland (M.F.)
| | - Marie Pierre Krafft
- Institut Charles Sadron (CNRS), University of Strasbourg, 23 rue du Loess, 67034 Strasbourg Cedex, France
| | - Jan Hagemann
- Nanobiomedicine Department, University Medical Center Mainz/ENT, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Carsten Weiss
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Postfach 3640, 76021 Karlsruhe, Germany
| | - Guo-Bin Ding
- Institute for Biotechnology, Shanxi University, No. 92 Wucheng Road, 030006 Taiyuan, China
| | - Roland H. Stauber
- Nanobiomedicine Department, University Medical Center Mainz/ENT, Langenbeckstrasse 1, 55131 Mainz, Germany
- Institute for Biotechnology, Shanxi University, No. 92 Wucheng Road, 030006 Taiyuan, China
- Correspondence: (R.H.S.); (A.G.); Tel.: +49-6131-176030 (A.G.)
| | - Alena Gribko
- Nanobiomedicine Department, University Medical Center Mainz/ENT, Langenbeckstrasse 1, 55131 Mainz, Germany
- Correspondence: (R.H.S.); (A.G.); Tel.: +49-6131-176030 (A.G.)
| |
Collapse
|
21
|
Klibanov AL. Ultrasound Molecular Imaging of Cancer: Design and Formulation Strategies of Targeted Contrast Agents. Recent Results Cancer Res 2020; 216:319-336. [PMID: 32594391 DOI: 10.1007/978-3-030-42618-7_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Gas-filled particles (microbubbles) can be prepared and stabilized for intravascular use as contrast agents in ultrasound imaging. Microbubbles are used in clinics as blood pool contrast materials for the past two decades. Shell of these bubbles is made of biocompatible and biodegradable lipids, proteins, and/or polymers. Gas core is air, or, lately, a perfluorinated gas, poorly soluble in water and blood. Making them useful for molecular targeting and molecular imaging in oncology is accomplished by decorating the shell of these particles with targeting ligands, that will selectively bind to the specific markers of tumor vasculature. In this review we discuss the formulation strategy for microbubble preparation, the logic of bubble shell selection, coupling tools that are used for the attachment of targeting ligands, and examples of the application of gas-filled bubbles for molecular imaging in oncology.
Collapse
Affiliation(s)
- Alexander L Klibanov
- Cardiovascular Division (Department of Medicine), Robert M Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, 22908, USA.
| |
Collapse
|
22
|
Development of Antibody-Modified Nanobubbles Using Fc-Region-Binding Polypeptides for Ultrasound Imaging. Pharmaceutics 2019; 11:pharmaceutics11060283. [PMID: 31208098 PMCID: PMC6631014 DOI: 10.3390/pharmaceutics11060283] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 06/10/2019] [Accepted: 06/12/2019] [Indexed: 02/01/2023] Open
Abstract
Ultrasound (US) imaging is a widely used imaging technique. The use of US contrast agents such as microbubbles, which consist of phospholipids and are filled with perfluorocarbon gases, has become an indispensable component of clinical US imaging, while molecular US imaging has recently attracted significant attention in combination with efficient diagnostics. The avidin–biotin interaction method is frequently used to tether antibodies to microbubbles, leading to the development of a molecular targeting US imaging agent. However, avidin still has limitations such as immunogenicity. We previously reported that lipid-based nanobubbles (NBs) containing perfluorocarbon gas are suitable for US imaging and gene delivery. In this paper, we report on the development of a novel antibody modification method for NBs using Fc-region-binding polypeptides derived from protein A/G. First, we prepared anti-CD146 antibody-modified NBs using this polypeptide, resulting in high levels of attachment to human umbilical vein endothelial cells expressing CD146. To examine their targeting ability and US imaging capability, the NBs were administered to tumor-bearing mice. The contrast imaging of antibody-modified NBs was shown to be prolonged compared with that of non-labeled NBs. Thus, this antibody modification method using an Fc-binding polypeptide may be a feasible tool for developing a next-generation antibody-modified US imaging agent.
Collapse
|
23
|
Liu X, Gong P, Song P, Xie F, Miller AL, Chen S, Lu L. Rapid conjugation of nanoparticles, proteins and siRNAs to microbubbles by strain-promoted click chemistry for ultrasound imaging and drug delivery. Polym Chem 2019; 10:705-717. [PMID: 36187167 PMCID: PMC9523532 DOI: 10.1039/c8py01721b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
A new strategy using catalyst-free strain-promoted alkyne-azide cycloaddition (SPAAC) "click" chemistry for the ligation of anti-cancer drug-loaded nanoparticles, functionalized proteins, and siRNA conjugated micelles to microbubbles (MB) was established. The results showed fast ligation within 5 min without sacrificing microbubble size and density. The ultrasound test showed good imaging abilities of the microbubbles after functionalization. This microbubble-therapeutic SPAAC "click" conjugation developed in the current study involves no toxic catalyst or initiator, has ultra-fast reaction speed, and is versatile for the ligation of various anti-cancer or therapeutic agents to microbubbles. These advantages render the SPAAC click strategy promising for broad applications in ultrasound-guided imaging and therapeutic delivery.
Collapse
Affiliation(s)
- Xifeng Liu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Ping Gong
- Department of Radiology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Pengfei Song
- Department of Radiology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Feng Xie
- Division of Cardiovascular Medicine, Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - A Lee Miller
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Shigao Chen
- Department of Radiology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Lichun Lu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55905, USA
| |
Collapse
|
24
|
Pulsipher KW, Hammer DA, Lee D, Sehgal CM. Engineering Theranostic Microbubbles Using Microfluidics for Ultrasound Imaging and Therapy: A Review. ULTRASOUND IN MEDICINE & BIOLOGY 2018; 44:2441-2460. [PMID: 30241729 PMCID: PMC6643280 DOI: 10.1016/j.ultrasmedbio.2018.07.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/05/2018] [Accepted: 07/27/2018] [Indexed: 05/05/2023]
Abstract
Microbubbles interact with ultrasound in various ways to enable their applications in ultrasound imaging and diagnosis. To generate high contrast and maximize therapeutic efficacy, microbubbles of high uniformity are required. Microfluidic technology, which enables precise control of small volumes of fluid at the sub-millimeter scale, has provided a versatile platform on which to produce highly uniform microbubbles for potential applications in ultrasound imaging and diagnosis. Here, we describe fundamental microfluidic principles and the most common types of microfluidic devices used to produce sub-10 μm microbubbles, appropriate for biomedical ultrasound. Bubbles can be engineered for specific applications by tailoring the bubble size, inner gas and shell composition and by functionalizing for additional imaging modalities, therapeutics or targeting ligands. To translate the laboratory-scale discoveries to widespread clinical use of these microfluidic-based microbubbles, increased bubble production is needed. We present various strategies recently developed to improve scale-up. We conclude this review by describing some outstanding problems in the field and presenting areas for future use of microfluidics in ultrasound.
Collapse
Affiliation(s)
- Katherine W Pulsipher
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Daniel A Hammer
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Daeyeon Lee
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Chandra M Sehgal
- Department of Radiology, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
25
|
Slagle CJ, Thamm DH, Randall EK, Borden MA. Click Conjugation of Cloaked Peptide Ligands to Microbubbles. Bioconjug Chem 2018; 29:1534-1543. [DOI: 10.1021/acs.bioconjchem.8b00084] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Connor J. Slagle
- Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | | | | | - Mark A. Borden
- Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
26
|
Liu X, Gong P, Song P, Xie F, Miller Ii AL, Chen S, Lu L. Fast functionalization of ultrasound microbubbles using strain promoted click chemistry. Biomater Sci 2018; 6:623-632. [PMID: 29411006 PMCID: PMC5829049 DOI: 10.1039/c8bm00004b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Functionalization of microbubbles (MBs) is a difficult issue due to their unstable nature. Here we report a fast and versatile method using a strain promoted alkyne-azide cycloaddition (SPAAC) click reaction for microbubble functionalization. An azadibenzocyclooctyne (DBCO) group was first introduced onto the MB surface and then an azide group into the desired ligand. Without any initiators or catalysts, essential click ligation occurred within 1 min and a majority of the reaction completed in 5 min at 37 °C. This fast ligation shortens the microbubble reaction time and preserves essential amounts of microbubbles for further in situ imaging and delivery of therapeutics.
Collapse
Affiliation(s)
- Xifeng Liu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
Process System Engineering Methodologies Applied to Tissue Development and Regenerative Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1078:445-463. [PMID: 30357637 DOI: 10.1007/978-981-13-0950-2_23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Tissue engineering and the manufacturing of regenerative medicine products demand strict control over the production process and product quality monitoring. In this chapter, the application of process systems engineering (PSE) approaches in the production of cell-based products has been discussed. Mechanistic, empirical, continuum and discrete models are compared and their use in describing cellular phenomena is reviewed. In addition, model-based optimization strategies employed in the field of tissue engineering and regenerative medicine are discussed. An introduction to process control theory is given and the main applications of classical and advanced methods in cellular production processes are described. Finally, new nondestructive and noninvasive monitoring techniques have been reviewed, focusing on large-scale manufacturing systems for cell-based constructs and therapeutic products. The application of the PSE methodologies presented here offers a promising alternative to overcome the main challenges in manufacturing engineered tissue and regeneration products.
Collapse
|
28
|
Qiu C, Yin T, Zhang Y, Lian Y, You Y, Wang K, Zheng R, Shuai X. Ultrasound Imaging Based on Molecular Targeting for Quantitative Evaluation of Hepatic Ischemia-Reperfusion Injury. Am J Transplant 2017; 17:3087-3097. [PMID: 28489274 DOI: 10.1111/ajt.14345] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 04/26/2017] [Accepted: 04/27/2017] [Indexed: 01/25/2023]
Abstract
The aim of the present study was to quantitatively diagnose and monitor the therapy response of hepatic ischemia-reperfusion injury (IRI) with the use of targeted ultrasound (US) imaging. Targeted microbubbles (MBs) were fabricated, and the binding of intracellular adhesion molecule 1 (ICAM-1) antibodies to MBs was observed. To establish a quantitative method based on targeted US imaging, contrast-enhanced US was applied for IRI rats. After andrographolide treatment, the IRI rats were subjected to the quantitative targeted US imaging for a therapeutic effect. Effective binding of ICAM-1 antibodies to MBs was observed. According to the quantitative targeted US imaging, the ICAM-1 normalized intensity difference (NID) in the IRI rats (38.74 ± 15.08%) was significantly higher than that in the control rats (10.08 ± 2.52%, p = 0.048). Further, different degrees of IRI (mild IRI, moderate to severe IRI) were distinguished by the use of the NID (37.14 ± 2.14%, 22.34 ± 1.08%, p = 0.002). Analysis of mRNA expression demonstrated the accuracy of analyzing the NID by using quantitative targeted US imaging (R2 = 0.7434, p < 0.001). Andrographolide treatment resulted in an obviously weakened NID of ICAM-1 (17.7 ± 4.8% vs 34.2 ± 6.6%, p < 0.001). The study showed the potential of the quantitative targeted US imaging method for the diagnosis and therapeutic monitoring of IRI.
Collapse
Affiliation(s)
- C Qiu
- Department of Medical Ultrasound, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - T Yin
- Department of Medical Ultrasound, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Y Zhang
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Liver Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Y Lian
- Department of Medical Ultrasound, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Y You
- Department of Medical Ultrasound, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - K Wang
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Science, Beijing, China
| | - R Zheng
- Department of Medical Ultrasound, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - X Shuai
- PCFM Lab of Ministry of Education, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, China.,Center for Biomedical Engineering, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
29
|
Assessment of Molecular Acoustic Angiography for Combined Microvascular and Molecular Imaging in Preclinical Tumor Models. Mol Imaging Biol 2017; 19:194-202. [PMID: 27519522 DOI: 10.1007/s11307-016-0991-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE The purposes of the present study is to evaluate a new ultrasound molecular imaging approach in its ability to image a preclinical tumor model and to investigate the capacity to visualize and quantify co-registered microvascular and molecular imaging volumes. PROCEDURES Molecular imaging using the new technique was compared with a conventional ultrasound molecular imaging technique (multi-pulse imaging) by varying the injected microbubble dose and scanning each animal using both techniques. Each of the 14 animals was randomly assigned one of three doses; bolus dose was varied, and the animals were imaged for three consecutive days so that each animal received every dose. A microvascular scan was also acquired for each animal by administering an infusion of nontargeted microbubbles. These scans were paired with co-registered molecular images (VEGFR2-targeted microbubbles), the vessels were segmented, and the spatial relationships between vessels and VEGFR2 targeting locations were analyzed. In five animals, an additional scan was performed in which the animal received a bolus of microbubbles targeted to E- and P-selectins. Vessel tortuosity as a function of distance from VEGF and selectin targeting was analyzed in these animals. RESULTS Although resulting differences in image intensity due to varying microbubble dose were not significant between the two lowest doses, superharmonic imaging had significantly higher contrast-to-tissue ratio (CTR) than multi-pulse imaging (mean across all doses 13.98 dB for molecular acoustic angiography vs. 0.53 dB for multi-pulse imaging; p = 4.9 × 10-10). Analysis of registered microvascular and molecular imaging volumes indicated that vessel tortuosity decreases with increasing distance from both VEGFR2- and selectin-targeting sites. CONCLUSIONS Molecular acoustic angiography (superharmonic molecular imaging) exhibited a significant increase in CTR at all doses tested due to superior rejection of tissue artifact signals. Due to the high resolution of acoustic angiography molecular imaging, it is possible to analyze spatial relationships in aligned microvascular and molecular superharmonic imaging volumes. Future studies are required to separate the effects of biomarker expression and blood flow kinetics in comparing local tortuosity differences between different endothelial markers such as VEGFR2, E-selectin, and P-selectin.
Collapse
|
30
|
Hull TD, Agarwal A, Hoyt K. New Ultrasound Techniques Promise Further Advances in AKI and CKD. J Am Soc Nephrol 2017; 28:3452-3460. [PMID: 28923914 DOI: 10.1681/asn.2017060647] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
AKI and CKD are important clinical problems because they affect many patients and the associated diagnostic and treatment paradigms are imperfect. Ultrasound is a cost-effective, noninvasive, and simple imaging modality that offers a multitude of means to improve the diagnosis, monitoring, and treatment of both AKI and CKD, especially considering recent advances in this technique. Ultrasound alone can attenuate AKI and prevent CKD by stimulating the splenic cholinergic anti-inflammatory pathway. Additionally, microbubble contrast agents are improving the sensitivity and specificity of ultrasound for diagnosing kidney disease, especially when these agents are conjugated to ligand-specific mAbs or peptides, which make the dynamic assessment of disease progression and response to treatment possible. More recently, drug-loaded microbubbles have been developed and the load release by ultrasound exposure has been shown to be a highly specific treatment modality, making the potential applications of ultrasound even more promising. This review focuses on the multiple strategies for using ultrasound with and without microbubble technology for enhancing our understanding of the pathophysiology of AKI and CKD.
Collapse
Affiliation(s)
- Travis D Hull
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Anupam Agarwal
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama.,Birmingham Veterans Affairs Medical Center, Birmingham, Alabama
| | - Kenneth Hoyt
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas; and .,Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
31
|
Mulvana H, Browning RJ, Luan Y, de Jong N, Tang MX, Eckersley RJ, Stride E. Characterization of Contrast Agent Microbubbles for Ultrasound Imaging and Therapy Research. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2017; 64:232-251. [PMID: 27810805 DOI: 10.1109/tuffc.2016.2613991] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The high efficiency with which gas microbubbles can scatter ultrasound compared with the surrounding blood pool or tissues has led to their widespread employment as contrast agents in ultrasound imaging. In recent years, their applications have been extended to include super-resolution imaging and the stimulation of localized bio-effects for therapy. The growing exploitation of contrast agents in ultrasound and in particular these recent developments have amplified the need to characterize and fully understand microbubble behavior. The aim in doing so is to more fully exploit their utility for both diagnostic imaging and potential future therapeutic applications. This paper presents the key characteristics of microbubbles that determine their efficacy in diagnostic and therapeutic applications and the corresponding techniques for their measurement. In each case, we have presented information regarding the methods available and their respective strengths and limitations, with the aim of presenting information relevant to the selection of appropriate characterization methods. First, we examine methods for determining the physical properties of microbubble suspensions and then techniques for acoustic characterization of both suspensions and single microbubbles. The next section covers characterization of microbubbles as therapeutic agents, including as drug carriers for which detailed understanding of their surface characteristics and drug loading capacity is required. Finally, we discuss the attempts that have been made to allow comparison across the methods employed by various groups to characterize and describe their microbubble suspensions and promote wider discussion and comparison of microbubble behavior.
Collapse
|
32
|
Sennoga CA, Kanbar E, Auboire L, Dujardin PA, Fouan D, Escoffre JM, Bouakaz A. Microbubble-mediated ultrasound drug-delivery and therapeutic monitoring. Expert Opin Drug Deliv 2016; 14:1031-1043. [DOI: 10.1080/17425247.2017.1266328] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Charles A. Sennoga
- UMR Imagerie et Cerveau, Inserm U930, Université François Rabelais, Tours, France
| | - Emma Kanbar
- UMR Imagerie et Cerveau, Inserm U930, Université François Rabelais, Tours, France
| | - Laurent Auboire
- UMR Imagerie et Cerveau, Inserm U930, Université François Rabelais, Tours, France
| | | | - Damien Fouan
- UMR Imagerie et Cerveau, Inserm U930, Université François Rabelais, Tours, France
| | - Jean-Michel Escoffre
- UMR Imagerie et Cerveau, Inserm U930, Université François Rabelais, Tours, France
| | - Ayache Bouakaz
- UMR Imagerie et Cerveau, Inserm U930, Université François Rabelais, Tours, France
| |
Collapse
|
33
|
Helfield B, Chen X, Qin B, Villanueva FS. Individual lipid encapsulated microbubble radial oscillations: Effects of fluid viscosity. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2016; 139:204-14. [PMID: 26827018 PMCID: PMC4714991 DOI: 10.1121/1.4939123] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Ultrasound-stimulated microbubble dynamics have been shown to be dependent on intrinsic bubble properties, including size and shell characteristics. The effect of the surrounding environment on microbubble response, however, has been less investigated. In particular, microbubble optimization studies are generally conducted in water/saline, characterized by a 1 cP viscosity, for application in the vasculature (i.e., 4 cP). In this study, ultra-high speed microscopy was employed to investigate fluid viscosity effects on phospholipid encapsulated microbubble oscillations at 1 MHz, using a single, eight-cycle pulse at peak negative pressures of 100 and 250 kPa. Microbubble oscillations were shown to be affected by fluid viscosity in a size- and pressure-dependent manner. In general, the oscillation amplitudes exhibited by microbubbles between 3 and 6 μm in 1 cP fluid were larger than in 4 cP fluid, reaching a maximum of 1.7-fold at 100 kPa for microbubbles 3.8 μm in diameter and 1.35-fold at 250 kPa for microbubbles 4.8 μm in diameter. Simulation results were in broad agreement at 250 kPa, however generally underestimated the effect of fluid viscosity at 100 kPa. This is the first experimental demonstration documenting the effects of surrounding fluid viscosity on microbubble oscillations, resulting in behavior not entirely predicted by current microbubble models.
Collapse
Affiliation(s)
- Brandon Helfield
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15213, USA
| | - Xucai Chen
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15213, USA
| | - Bin Qin
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15213, USA
| | - Flordeliza S Villanueva
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15213, USA
| |
Collapse
|