1
|
Zuo Q, Xu DQ, Yue SJ, Fu RJ, Tang YP. Chemical Composition, Pharmacological Effects and Clinical Applications of Cinobufacini. Chin J Integr Med 2024; 30:366-378. [PMID: 38212503 DOI: 10.1007/s11655-024-3708-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2023] [Indexed: 01/13/2024]
Abstract
Chinese medicine cinobufacini is an extract from the dried skin of Bufo bufo gargarizans Cantor, with active ingredients of bufadienolides and indole alkaloids. With further research and clinical applications, it is found that cinobufacini alone or in combination with other therapeutic methods can play an anti-tumor role by controlling proliferation of tumor cells, promoting apoptosis, inhibiting formation of tumor neovascularization, reversing multidrug resistance, and regulating immune response; it also has the functions of relieving cancer pain and regulating immune function. In this paper, the chemical composition, pharmacological effects, clinical applications, and adverse reactions of cinobufacini are summarized. However, the extraction of monomer components of cinobufacini, the relationship between different mechanisms, and the causes of adverse reactions need to be further studied. Also, high-quality clinical studies should be conducted.
Collapse
Affiliation(s)
- Qian Zuo
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Ding-Qiao Xu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Shi-Jun Yue
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Rui-Jia Fu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi'an, 712046, China.
| |
Collapse
|
2
|
Zhang H, Jian B. Resibufogenin: An Emerging Therapeutic Compound with Multifaceted Pharmacological Effects - A Comprehensive Review. Med Sci Monit 2024; 30:e942783. [PMID: 38369741 PMCID: PMC10885638 DOI: 10.12659/msm.942783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024] Open
Abstract
Resibufogenin (RBG), a significant bufadienolide compound found in the traditional Chinese medicine Chansu, has garnered increasing attention in recent years for its wide range of pharmacological effects. This compound has shown promising potential in various therapeutic areas, including oncology, cardiology, and respiratory medicine. Among its notable properties, the anticancer effects of RBG are particularly striking, positioning it as a potential candidate for innovative cancer treatments. The mechanism of action of RBG is diverse, impacting various cellular processes. Its anticancer efficacy has been observed in different types of cancer cells, where it induces apoptosis and inhibits cell proliferation. Beyond its oncological applications, RBG also demonstrates substantial anti-inflammatory and antiviral activities. These properties suggest its utility in managing chronic inflammatory disorders and viral infections, respectively. The compound's cardiotonic effects are also noteworthy, providing potential benefits in cardiovascular health, particularly in heart failure management. Additionally, RBG has shown effectiveness in blood pressure regulation and respiratory function improvement, making it a versatile agent in the treatment of hypertension and respiratory disorders. However, despite these promising aspects, systematic reviews focusing specifically on RBG are limited. This article aims to address this gap by comprehensively reviewing RBG's origin, physiological, and pharmacological effects. The review will serve as a crucial reference for clinicians and researchers interested in the therapeutic applications of RBG, highlighting its potential in various medical domains. By synthesizing current research findings, this review will facilitate a deeper understanding of RBG's role in medicine and encourage further investigation into its clinical uses.
Collapse
Affiliation(s)
- Hao Zhang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, Heilongjiang, China (mainland)
| | - Baiyu Jian
- Institute of Polygenic Disease, Qiqihar Medical University, Qiqihar, Heilongjiang, China (mainland)
| |
Collapse
|
3
|
Ren JX, Chen L, Guo W, Feng KY, Cai YD, Huang T. Patterns of Gene Expression Profiles Associated with Colorectal Cancer in Colorectal Mucosa by Using Machine Learning Methods. Comb Chem High Throughput Screen 2024; 27:2921-2934. [PMID: 37957897 DOI: 10.2174/0113862073266300231026103844] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/11/2023] [Accepted: 09/30/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) has a very high incidence and lethality rate and is one of the most dangerous cancer types. Timely diagnosis can effectively reduce the incidence of colorectal cancer. Changes in para-cancerous tissues may serve as an early signal for tumorigenesis. Comparison of the differences in gene expression between para-cancerous and normal mucosa can help in the diagnosis of CRC and understanding the mechanisms of development. OBJECTIVES This study aimed to identify specific genes at the level of gene expression, which are expressed in normal mucosa and may be predictive of CRC risk. METHODS A machine learning approach was used to analyze transcriptomic data in 459 samples of normal colonic mucosal tissue from 322 CRC cases and 137 non-CRC, in which each sample contained 28,706 gene expression levels. The genes were ranked using four ranking methods based on importance estimation (LASSO, LightGBM, MCFS, and mRMR) and four classification algorithms (decision tree [DT], K-nearest neighbor [KNN], random forest [RF], and support vector machine [SVM]) were combined with incremental feature selection [IFS] methods to construct a prediction model with excellent performance. RESULT The top-ranked genes, namely, HOXD12, CDH1, and S100A12, were associated with tumorigenesis based on previous studies. CONCLUSION This study summarized four sets of quantitative classification rules based on the DT algorithm, providing clues for understanding the microenvironmental changes caused by CRC. According to the rules, the effect of CRC on normal mucosa can be determined.
Collapse
Affiliation(s)
- Jing Xin Ren
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai, 201306, China
| | - Wei Guo
- Key Laboratory of Stem Cell Biology, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, 200030, China
| | - Kai Yan Feng
- Department of Computer Science, Guangdong AIB Polytechnic College, Guangzhou, 510507, China
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| |
Collapse
|
4
|
He Z, Wang Y, Han L, Hu Y, Cong X. The mechanism and application of traditional Chinese medicine extracts in the treatment of lung cancer and other lung-related diseases. Front Pharmacol 2023; 14:1330518. [PMID: 38125887 PMCID: PMC10731464 DOI: 10.3389/fphar.2023.1330518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
Lung cancer stands as one of the most prevalent malignancies worldwide, bearing the highest morbidity and mortality rates among all malignant tumors. The treatment of lung cancer primarily encompasses surgical procedures, radiotherapy, and chemotherapy, which are fraught with significant side effects, unfavorable prognoses, and a heightened risk of metastasis and relapse. Although targeted therapy and immunotherapy have gradually gained prominence in lung cancer treatment, diversifying the array of available methods, the overall recovery and survival rates for lung cancer patients remain suboptimal. Presently, with a holistic approach and a focus on syndrome differentiation and treatment, Traditional Chinese Medicine (TCM) has emerged as a pivotal player in the prognosis of cancer patients. TCM possesses characteristics such as targeting multiple aspects, addressing a wide range of concerns, and minimizing toxic side effects. Research demonstrates that Traditional Chinese Medicine can significantly contribute to the treatment or serve as an adjunct to chemotherapy for lung cancer and other lung-related diseases. This is achieved through mechanisms like inhibiting tumor cell proliferation, inducing tumor cell apoptosis, suppressing tumor angiogenesis, influencing the cellular microenvironment, regulating immune system function, impacting signal transduction pathways, and reversing multidrug resistance in tumor cells. In this article, we offer an overview of the advancements in research concerning Traditional Chinese Medicine extracts for the treatment or adjunctive chemotherapy of lung cancer and other lung-related conditions. Furthermore, we delve into the challenges that Traditional Chinese Medicine extracts face in lung cancer treatment, laying the foundation for the development of diagnostic, prognostic, and therapeutic targets.
Collapse
Affiliation(s)
- Zhenglin He
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, China
| | - Yihan Wang
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, China
| | - Liang Han
- Department of Pathology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yue Hu
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, China
- Department of Biobank, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xianling Cong
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, China
- Department of Biobank, China-Japan Union Hospital of Jilin University, Changchun, China
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
5
|
Takaya K, Asou T, Kishi K. Identification of resibufogenin, a component of toad venom, as a novel senolytic compound in vitro and for potential skin rejuvenation in male mice. Biogerontology 2023; 24:889-900. [PMID: 37395866 DOI: 10.1007/s10522-023-10043-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 05/29/2023] [Indexed: 07/04/2023]
Abstract
Senescent cells that accumulate with age have been shown to contribute to age-related diseases and organ dysfunction and have attracted attention as a target for anti-aging therapy. In particular, the use of senescent cell-depleting agents, or senolytics, has been shown to improve the aging phenotype in animal models. Since senescence has been implicated in the skin, particularly in fibroblasts, this study used aged human skin fibroblasts to investigate the effects of resibufogenin. A component of the traditional Chinese medicine toad venom, resibufogenin was investigated for senolytic and/or senomorphic activity. We found that the compound selectively caused senescent cell death without affecting proliferating cells, with a marked effect on the suppression of the senescence-associated secretory phenotype. We also found that resibufogenin causes senescent cell death by inducing a caspase-3-mediated apoptotic program. Administration of resibufogenin to aging mice resulted in an increase in dermal collagen density and subcutaneous fat, improving the phenotype of aging skin. In other words, resibufogenin ameliorates skin aging through selective induction of senescent cell apoptosis without affecting non-aged cells. This traditional compound may have potential therapeutic benefits in skin aging characterized by senescent cell accumulation.
Collapse
Affiliation(s)
- Kento Takaya
- Department of Plastic and Reconstructive Surgery, Keio University School of Medicine, Tokyo, Japan.
- Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Toru Asou
- Department of Plastic and Reconstructive Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Kazuo Kishi
- Department of Plastic and Reconstructive Surgery, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
6
|
Masuda M, Horinaka M, Yasuda S, Morita M, Nishimoto E, Ishikawa H, Mutoh M, Sakai T. Discovery of cancer-preventive juices reactivating RB functions. Environ Health Prev Med 2023; 28:54. [PMID: 37743524 PMCID: PMC10519803 DOI: 10.1265/ehpm.23-00160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/20/2023] [Indexed: 09/26/2023] Open
Abstract
BACKGROUND Recent advances have been achieved in the genetic diagnosis and therapies against malignancies due to a better understanding of the molecular mechanisms underlying carcinogenesis. Since active preventive methods are currently insufficient, the further development of appropriate preventive strategies is desired. METHODS We searched for drinks that reactivate the functions of tumor-suppressor retinoblastoma gene (RB) products and exert anti-inflammatory and antioxidant effects. We also examined whether lactic acid bacteria increased the production of the cancer-specific anti-tumor cytokine, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), in human, and examined whether the RB-reactivating drinks with lactic acid bacteria decreased azoxymethane-induced rat colon aberrant crypt foci (ACF) and aberrant crypts (ACs) in vivo. RESULTS Kakadu plum juice and pomegranate juice reactivated RB functions, which inhibited the growth of human colon cancer LIM1215 cells by G1 phase arrest. These juices also exerted anti-inflammatory and antioxidant effects. Lactiplantibacillus (L.) pentosus S-PT84 was administered to human volunteers and increased the production of TRAIL. In an in vivo study, Kakadu plum juice with or without pomegranate juice and S-PT84 significantly decreased azoxymethane-induced rat colon ACF and ACs. CONCLUSIONS RB is one of the most important molecules suppressing carcinogenesis, and to the best of our knowledge, this is the first study to demonstrate that natural drinks reactivated the functions of RB. As expected, Kakadu plum juice and pomegranate juice suppressed the growth of LIM1215 cells by reactivating the functions of RB, and Kakadu plum juice with or without pomegranate juice and S-PT84 inhibited rat colon ACF and ACs. Therefore, this mixed juice has potential as a novel candidate for cancer prevention.
Collapse
Affiliation(s)
- Mitsuharu Masuda
- Department of Molecular-Targeting Prevention, Kyoto Prefectural University of Medicine
| | - Mano Horinaka
- Department of Drug Discovery Medicine, Kyoto Prefectural University of Medicine
| | - Shusuke Yasuda
- Department of Drug Discovery Medicine, Kyoto Prefectural University of Medicine
| | - Mie Morita
- Department of Drug Discovery Medicine, Kyoto Prefectural University of Medicine
| | - Emi Nishimoto
- Department of Drug Discovery Medicine, Kyoto Prefectural University of Medicine
| | - Hideki Ishikawa
- Department of Molecular-Targeting Prevention, Kyoto Prefectural University of Medicine
| | - Michihiro Mutoh
- Department of Molecular-Targeting Prevention, Kyoto Prefectural University of Medicine
| | - Toshiyuki Sakai
- Department of Drug Discovery Medicine, Kyoto Prefectural University of Medicine
| |
Collapse
|
7
|
“RB-reactivator screening” as a novel cell-based assay for discoveries of molecular targeting agents including the first-in-class MEK inhibitor trametinib (trade name: Mekinist). Pharmacol Ther 2022; 236:108234. [DOI: 10.1016/j.pharmthera.2022.108234] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/12/2022] [Accepted: 06/16/2022] [Indexed: 01/10/2023]
|
8
|
Takakura H, Horinaka M, Imai A, Aono Y, Nakao T, Miyamoto S, Iizumi Y, Watanabe M, Narita T, Ishikawa H, Mutoh M, Sakai T. Sodium salicylate and 5-aminosalicylic acid synergistically inhibit the growth of human colon cancer cells and mouse intestinal polyp-derived cells. J Clin Biochem Nutr 2022; 70:93-102. [PMID: 35400827 PMCID: PMC8921728 DOI: 10.3164/jcbn.21-74] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 10/20/2021] [Indexed: 12/24/2022] Open
Abstract
As colon cancer is one of the most common cancers in the world, practical prevention strategies for colon cancer are needed. Recently, treatment with aspirin and/or 5-aminosalicylic acid-related agents was reported to reduce the number of intestinal polyps in patients with familial adenomatous polyposis. To evaluate the mechanism of aspirin and 5-aminosalicylic acid for suppressing the colon polyp growth, single and combined effects of 5-aminosalicylic acid and sodium salicylate (metabolite of aspirin) were tested in the two human colon cancer cells with different cyclooxygenase-2 expression levels and intestinal polyp-derived cells from familial adenomatous polyposis model mouse. The combination induced cell-cycle arrest at the G1 phase along with inhibition of cell growth and colony-forming ability in these cells. The combination reduced cyclin D1 via proteasomal degradation and activated retinoblastoma protein. The combination inhibited the colony-forming ability of mouse colonic mucosa cells by about 50% and the colony-forming ability of mouse intestinal polyp-derived cells by about 90%. The expression level of cyclin D1 in colon mucosa cells was lower than that in intestinal polyp-derived cells. These results suggest that this combination may be more effective in inhibiting cell growth of intestinal polyps through cyclin D1 down-regulation.
Collapse
Affiliation(s)
- Hideki Takakura
- Department of Molecular-Targeting Prevention, Kyoto Prefectural University of Medicine
| | - Mano Horinaka
- Department of Molecular-Targeting Prevention, Kyoto Prefectural University of Medicine
| | - Ayaka Imai
- Department of Molecular-Targeting Prevention, Kyoto Prefectural University of Medicine
| | - Yuichi Aono
- Department of Molecular-Targeting Prevention, Kyoto Prefectural University of Medicine
| | - Toshimasa Nakao
- Department of Molecular-Targeting Prevention, Kyoto Prefectural University of Medicine
| | - Shingo Miyamoto
- Epidemiology and Prevention Division, Center for Public Health Sciences, National Cancer Center
| | - Yosuke Iizumi
- Department of Molecular-Targeting Prevention, Kyoto Prefectural University of Medicine
| | - Motoki Watanabe
- Department of Molecular-Targeting Prevention, Kyoto Prefectural University of Medicine
| | - Takumi Narita
- Department of Molecular-Targeting Prevention, Kyoto Prefectural University of Medicine
| | - Hideki Ishikawa
- Department of Molecular-Targeting Prevention, Kyoto Prefectural University of Medicine
| | - Michihiro Mutoh
- Epidemiology and Prevention Division, Center for Public Health Sciences, National Cancer Center
| | - Toshiyuki Sakai
- Department of Molecular-Targeting Prevention, Kyoto Prefectural University of Medicine
| |
Collapse
|
9
|
Meta-Analysis of Therapy of Cinobufacini Capsule Adjunct with First-Line Platinum-Based Chemotherapy for the Treatment of Advanced NSCLC. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5596415. [PMID: 34471417 PMCID: PMC8405304 DOI: 10.1155/2021/5596415] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/11/2021] [Accepted: 08/11/2021] [Indexed: 01/22/2023]
Abstract
Background Cinobufacini capsule, an anticancer traditional Chinese patent medicine, has been widely used as adjunctive treatment to platinum-based chemotherapy in patients with advanced NSCLC. Purpose To evaluate the efficacy and safety of cinobufacini capsule combined with first-line platinum-based chemotherapy for advanced NSCLC. Study Design. A systematic review and meta-analysis of eight outcome measures selected for this study were performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Methods A comprehensive literature search was conducted in 7 electronic databases to identify all the relevant randomised controlled trials. Cochrane handbook 5.1.0 was applied to evaluate the quality of included trials, and the RevMan 5.3 and Stata 15.1 software were used to combine the trials for data analysis and assess the publication bias. Results From the 19 studies reviewed, a total of 1,564 patients were included. Compared with first-line platinum-based chemotherapy alone, cinobufacini capsule combined with chemotherapy showed significant effects in improving ORR (RR = 1.49, 95% CI (1.33, 1.66)), 1-year survival rate (RR = 1.44, 95% CI (1.28, 1.63)), and 2-year survival rate (RR = 1.78, 95% CI (1.42, 2.22)), raising the percentages of CD3+ cells (SMD = 1.25, 95% CI (1.05, 1.45)), CD4+ cells (SMD = 1.52, 95% CI (1.33, 1.71)), and ratio of CD4+/CD8+ (SMD = 1.36, 95% CI (1.17, 1.54)), and reducing chemotherapy toxicity including leukopenia (RR = 0.61, 95% CI (0.51, 0.72)), thrombocytopenia (RR = 0.52, 95% CI (0.41, 0.67)), and vomiting (RR = 0.79, 95% CI (0.70, 0.88)). Conclusion Cinobufacini capsule may increase the therapeutic effectiveness, improve cellular immune function, and reduce the toxicity of first-line platinum-based chemotherapy in patients with NSCLC. These results require confirmation by further rigorously designed randomised controlled trials (RCTs).
Collapse
|
10
|
RETRACTED ARTICLE: Resibufogenin suppresses tumor growth and inhibits glycolysis in ovarian cancer by modulating PIM1. Naunyn Schmiedebergs Arch Pharmacol 2020; 392:1477-1489. [DOI: 10.1007/s00210-019-01687-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 06/28/2019] [Indexed: 12/21/2022]
|
11
|
Wu JH, Cao YT, Pan HY, Wang LH. Identification of Antitumor Constituents in Toad Venom by Spectrum-Effect Relationship Analysis and Investigation on Its Pharmacologic Mechanism. Molecules 2020; 25:molecules25184269. [PMID: 32961837 PMCID: PMC7571126 DOI: 10.3390/molecules25184269] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 01/02/2023] Open
Abstract
(1) Background: Toad venom (Bufonis Venenum, known as ‘Chansu’ in Chinese), the secretion of the ear-side gland and skin gland of Bufo gargarizans cantor or Duttaphrynus melanostictus Schneider, has been utilized to treat several diseases in China for thousands of years. However, due to the chemical variability of the components, systematic chemical composition and the key pharmacophores in toad venom have not yet fully understood. Besides, it contains a variety of effective compounds with different physiological activity and chemotypes, mainly including alkaloids, bufogenins, bufotoxins, and so on. The recent pharmacological researches have demonstrated that several bufogenins have remarkable pharmacological effects, such as anti-inflammatory, analgesic effects, and anti-tumor effects. Aim of the study: To identify the bioactive compounds and pharmacophores originating from toad venom based on analyzing spectrum-effect relationship by chemometrics and to explore the anti-cancer mechanism primarily. (2) Materials and methods: Fingerprint of the 21 batches of samples was established using HPLC (High Performance Liquid Chromatography). The anti-tumor activity of extracts were determined by in-vitro assays. Chemometric analysis was used to establish the spectrum-effect model and screen for active ingredients. Pharmacodynamic tests for the screened active compound monomers were conducted with in-vitro assays. Further anti-tumor mechanisms were investigated using western blot and flow cytometry. (3) Results: The established spectrum-effect model has satisfactory fitting effect and predicting accuracy. The inhibitory effect of major screened compounds on lung carcinoma cells A549 were validated in vitro, demonstrating that arenobufagin, telocinobufogenin, and cinobufotalin had significant anti-tumor effects. Through further investigation of the mechanism by western blotting and flow cytometry, we elucidated that arenobufagin induces apoptosis in A549 cells with the enhanced expression of cleaved PARP (poly (ADP-ribose) polymerase). These results may provide valuable information for further structural modification of bufadienolides to treat lung cancer and a method for discovery of anti-tumor active compounds. Conclusions: Our research offers a more scientific method for screening the principal ingredients dominating the pharmacodynamic function. These screened compounds (arenobufagin, etc.) were proven to induce apoptosis by overactivation of the PARP-pathway, which may be utilized to make BRCA (breast cancer susceptibility gene) mutant cancer cells more vulnerable to DNA damaging agents and kill them.
Collapse
|
12
|
Deng LJ, Li Y, Qi M, Liu JS, Wang S, Hu LJ, Lei YH, Jiang RW, Chen WM, Qi Q, Tian HY, Han WL, Wu BJ, Chen JX, Ye WC, Zhang DM. Molecular mechanisms of bufadienolides and their novel strategies for cancer treatment. Eur J Pharmacol 2020; 887:173379. [PMID: 32758567 DOI: 10.1016/j.ejphar.2020.173379] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 07/05/2020] [Accepted: 07/13/2020] [Indexed: 12/16/2022]
Abstract
Bufadienolides are cardioactive C24 steroids with an α-pyrone ring at position C17. In the last ten years, accumulating studies have revealed the anticancer activities of bufadienolides and their underlying mechanisms, such as induction of autophagy and apoptosis, cell cycle disruption, inhibition of angiogenesis, epithelial-mesenchymal transition (EMT) and stemness, and multidrug resistance reversal. As Na+/K+-ATPase inhibitors, bufadienolides have inevitable cardiotoxicity. Short half-lives, poor stability, low plasma concentration and oral bioavailability in vivo are obstacles for their applications as drugs. To improve the drug potency of bufadienolides and reduce their side effects, prodrug strategies and drug delivery systems such as liposomes and nanoparticles have been applied. Therefore, systematic and recapitulated information about the antitumor activity of bufadienolides, with special emphasis on the molecular or cellular mechanisms, prodrug strategies and drug delivery systems, is of high interest. Here, we systematically review the anticancer effects of bufadienolides and the molecular or cellular mechanisms of action. Research advancements regarding bufadienolide prodrugs and their tumor-targeting delivery strategies are critically summarized. This work highlights recent scientific advances regarding bufadienolides as effective anticancer agents from 2011 to 2019, which will help researchers to understand the molecular pathways involving bufadienolides, resulting in a selective and safe new lead compound or therapeutic strategy with improved therapeutic applications of bufadienolides for cancer therapy.
Collapse
Affiliation(s)
- Li-Juan Deng
- College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, 510632, China; School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Yong Li
- College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, 510632, China
| | - Ming Qi
- College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, 510632, China
| | - Jun-Shan Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Sheng Wang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Li-Jun Hu
- College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, 510632, China
| | - Yu-He Lei
- Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, 518034, China
| | - Ren-Wang Jiang
- College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, 510632, China
| | - Wei-Min Chen
- College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Qi Qi
- Clinical Translational Center for Targeted Drug, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, PR China
| | - Hai-Yan Tian
- College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, 510632, China
| | - Wei-Li Han
- School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Bao-Jian Wu
- College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Jia-Xu Chen
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Wen-Cai Ye
- College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, 510632, China.
| | - Dong-Mei Zhang
- College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
13
|
Yin H, Liu YG, Li F, Wang LQ, Zha JH, Xia YC, Yu BT, Wen DH. Resibufogenin suppresses growth and metastasis through inducing caspase-1-dependent pyroptosis via ROS-mediated NF-κB suppression in non-small cell lung cancer. Anat Rec (Hoboken) 2020; 304:302-312. [PMID: 32396707 DOI: 10.1002/ar.24415] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/08/2020] [Accepted: 02/20/2020] [Indexed: 12/13/2022]
Abstract
The purpose of this study is to explore the antitumor properties of resibufogenin (RB) in non-small cell lung cancer (NSCLC) and elucidate its underlying mechanism. A549 and H520 cells were treated with various concentrations of RB with or without NLRP3 inhibitor (MCC950), caspase-1 inhibitor (VX765), or N-acetyl-l-cysteine (an ROS scavenger). Cell counting kit-8 and colony formation assays were conducted to determine cell viability. Cell invasion was detected by using the transwell assay. The release of lactate dehydrogenase (LDH) was determined by the LDH detection assay. The protein expression levels of related genes were measured by western blotting and immunohistochemistry. The reactive oxygen species (ROS) level was detected by using a 2,7-dichlorodihydrofluorescein diacetate ROS Assay Kit. The in vivo effects of RB were evaluated in a xenograft mouse model. RB treatment reduced cell viability and invasion in a dose-dependent manner. Furthermore, RB also enhanced pyroptosis levels in A549 and H520 cells, as indicated by the increased release of LDH and pyroptosis-related proteins. Interestingly, we also found that the antiproliferative and antimetastatic effects of RB were alleviated by the blockade of pyroptosis using NLRP3 inhibitor MCC950. Further study demonstrated that RB induced pyroptosis in a caspase-1-dependent manner, as evidenced by the finding that VX765 effectively reversed the effects of RB on A549 and H520 cells. We also found that RB could trigger caspase-1-dependent pyroptosis through ROS-mediated NF-κB suppression. In summary, our findings provide a potential antitumor agent and a novel insight into the mechanism of RB treatment of NSCLC.
Collapse
Affiliation(s)
- Hui Yin
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yan-Ge Liu
- School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Fei Li
- Department of Thoracic Surgery, Qingdao Municipal Hospital, Qingdao, China
| | - Lun-Qing Wang
- Department of Thoracic Surgery, Qingdao Municipal Hospital, Qingdao, China
| | - Jian-Hua Zha
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ying-Chen Xia
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ben-Tong Yu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Di-Hao Wen
- Department of Thoracic Surgery, Dongkou People's Hospital, Shaoyang, China
| |
Collapse
|
14
|
Guo Y, Liang F, Zhao F, Zhao J. Resibufogenin suppresses tumor growth and Warburg effect through regulating miR-143-3p/HK2 axis in breast cancer. Mol Cell Biochem 2020; 466:103-115. [PMID: 32006291 DOI: 10.1007/s11010-020-03692-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 01/21/2020] [Indexed: 12/17/2022]
Abstract
Increasing evidence confirmed that the Warburg effect plays an important role involved in the progression of malignant tumors. Resibufogenin (RES) has been proved to have a therapeutic effect in multiple malignant tumors. However, the mechanism of whether RES exerted an antitumor effect on breast cancer through regulating the Warburg effect is largely unknown. The effect of RES on glycolysis was determined by glucose consumption, lactate production, ATP generation, extracellular acidification rate and oxygen consumption rate in breast cancer cells. The total RNA and protein levels were respectively measured by RT-qPCR and western blot. Cell proliferation and apoptosis were examined using the CCK-8 assay, colony formation assay, and flow cytometry, respectively. The interaction between miR-143-3p and HK2 was verified by dual-luciferase reporter gene assay. We also evaluated the influence of RES on the tumor growth and Warburg effect in vivo. RES treatment significantly decreased glycolysis, cell proliferation and induced apoptosis of both MDA-MB-453 and MCF-7 cells. Simultaneously, the expression of HK2 was decreased in breast cancer cells treated with RES, which was positively associated with tumor size and glycolysis. Moreover, HK2 was a direct target gene of miR-143-3p. Mechanistically, upregulation of miR-143-3p by RES treatment inhibited tumor growth by downregulating HK2-mediated Warburg effect in breast cancer. Our findings suggested that RES exerted anti-tumorigenesis and anti-glycolysis activities in breast cancer through upregulating the inhibitory effect of miR-143-3p on HK2 expression, which provided a new potential strategy for breast cancer clinical treatment.
Collapse
Affiliation(s)
- Ying Guo
- Department of Breast and Thyroid Surgery, Provincial Hospital Affiliated To Shandong University, Jingwu Road 324, Huaiyin District, Jinan, 250021, Shandong, China
| | - Fei Liang
- Department of Breast and Thyroid Surgery, Provincial Hospital Affiliated To Shandong University, Jingwu Road 324, Huaiyin District, Jinan, 250021, Shandong, China
| | - Fuli Zhao
- Department of Breast and Thyroid Surgery, Provincial Hospital Affiliated To Shandong University, Jingwu Road 324, Huaiyin District, Jinan, 250021, Shandong, China
| | - Jian Zhao
- Department of Breast and Thyroid Surgery, Provincial Hospital Affiliated To Shandong University, Jingwu Road 324, Huaiyin District, Jinan, 250021, Shandong, China.
| |
Collapse
|
15
|
Zhan X, Wu H, Wu H, Wang R, Luo C, Gao B, Chen Z, Li Q. Metabolites from Bufo gargarizans (Cantor, 1842): A review of traditional uses, pharmacological activity, toxicity and quality control. JOURNAL OF ETHNOPHARMACOLOGY 2020; 246:112178. [PMID: 31445132 DOI: 10.1016/j.jep.2019.112178] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 08/17/2019] [Accepted: 08/21/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bufo gargarizans (Cantor, 1842) (BGC), a traditional medicinal animal distributed in many provinces of China, is well known for the pharmaceutical value of Chansu and Chanpi. As traditional Chinese medicines (TCMs), Chansu and Chanpi, with their broad-spectrum of therapeutic applications, have long been applied to detoxification, anti-inflammation, analgesia, etc. OVERARCHING OBJECTIVE: We critically analyzed the current evidence for the traditional uses, chemical profiles, pharmacological activity, toxicity and quality control of BGC (Bufonidae family) to provide a scientific basis for future in-depth studies and perspectives for the discovery of potential drug candidates. METHODOLOGY All of the available information on active constituents and TCMs derived from BGC was obtained using the keywords "Bufo gargarizans", "Chansu", "Chanpi", "Huachansu", or "Cinobufacini" through different electronic databases, including PubMed, Web of Science, Chinese National Knowledge Infrastructure (CNKI), the Wanfang Database, and Pharmacopoeia of China. In addition, Chinese medicine books from different times were used to elucidate the traditional uses of BGC. Electronic databases, including the "IUCN Red List of Threatened Species", "American Museum of Natural History" and "AmphibiaWeb Species Lists", were used to validate the scientific name of BGC. RESULTS To date, about 118 bufadienolide monomers and 11 indole alkaloids have been identified from BGC in total. The extracts and isolated compounds exhibit a wide range of in vitro and in vivo pharmacological effects. The literature search demonstrated that the ethnomedicinal uses of BGC, such as detoxification, anti-inflammation and the ability to reduce swelling and pain associated with infections, are correlated with its modern pharmacological activities, including antitumor, immunomodulation and attenuation of cancer-derived pain. Bufadienolides and indole alkaloids have been regarded as the main active substances in BGC, among which bufadienolides have significant antitumor activity. Furthermore, the cardiotoxicity of bufadienolides was discussed, and the main molecular mechanism involves in the inhibition of Na+/K+-ATPase. Besides, with the development of modern analytical techniques, the quality control methods of BGC-derived TCMs are being improved constantly. CONCLUSIONS An increasing number of reports suggest that BGC can be regarded as an excellent source for exploring the potential antitumor constituents. However, the future antitumor research of BGC needs to follow the standard pharmacology guidelines, so as to provide comprehensive pharmacological information and aid the reproducibility of the data. Besides, to ensure the efficacy and safety of BGC-derived TCMs, it is vital to construct a comprehensive quality evaluation model on the basis of clarifying pharmacodynamic-related and toxicity-related compositions.
Collapse
Affiliation(s)
- Xiang Zhan
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230038, China; Scientific Research & Experiment Center, Anhui University of Chinese Medicine, Hefei, 230038, China
| | - Huan Wu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230038, China; Scientific Research & Experiment Center, Anhui University of Chinese Medicine, Hefei, 230038, China; Anhui China Resources Jin Chan Pharmaceutical Co., Ltd., Huaibei, 235000, China.
| | - Hong Wu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230038, China
| | - Rong Wang
- Anhui China Resources Jin Chan Pharmaceutical Co., Ltd., Huaibei, 235000, China
| | - Chuan Luo
- Anhui China Resources Jin Chan Pharmaceutical Co., Ltd., Huaibei, 235000, China
| | - Bo Gao
- Anhui China Resources Jin Chan Pharmaceutical Co., Ltd., Huaibei, 235000, China
| | - Zhiwu Chen
- Basic Medical College, Anhui Medical University, Hefei, 230032, China
| | - Qinglin Li
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230038, China; Scientific Research & Experiment Center, Anhui University of Chinese Medicine, Hefei, 230038, China; Anhui China Resources Jin Chan Pharmaceutical Co., Ltd., Huaibei, 235000, China.
| |
Collapse
|
16
|
Zhou G, Zhu Z, Li L, Ding J. Resibufogenin inhibits ovarian clear cell carcinoma (OCCC) growth in vivo, and migration of OCCC cells in vitro, by down-regulating the PI3K/AKT and actin cytoskeleton signaling pathways. Am J Transl Res 2019; 11:6290-6303. [PMID: 31737183 PMCID: PMC6834496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 05/31/2019] [Indexed: 06/10/2023]
Abstract
Patients diagnosed with ovarian clear cell carcinoma (OCCC), a rare histologic subtype of ovarian cancer, often experience poor prognosis owing to the chemoresistance of their disease. Thus, there is an urgent need to identify new therapeutic options for these patients. A drug screen of 172 traditional Chinese herbs identified resibufogenin as a compound that inhibited the growth of cultured OCCC cells. Resibufogenin, a bioactive compound originally isolated from toad venom, is used in traditional Chinese medicine to treat several malignancies. The current study examined the impact of resibufogenin treatment on proliferation, migration, and invasion of ES-2 and TOV-21G OCCC cells in vitro. Flow cytometric analyses were employed to determine if resibufogenin affects apoptosis in OCCC cells. Additionally, the ability of resibufogenin to inhibit tumor growth in vivo was evaluated in murine xenograft models. RNA sequencing, quantitative polymerase chain reactions (qPCR), immunohistochemical assays, and western blotting were used to identify and verify cellular pathways potentially targeted by resibufogenin. Resibufogenin inhibited proliferation, migration, and invasion of OCCC cells, and induced apoptosis in them. Resibufogenin also suppressed the growth of xenograft tumors, which consequently showed lower Ki-67 and higher terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) expression. We observed down-regulation of (a) PI3K and AKT in the PI3K/AKT signaling pathway, and (b) MDM2 and myosin in the actin cytoskeleton pathway upon resibufogenin treatment. Thus, resibufogenin inhibits growth and migration of OCCC cells in vitro and suppresses OCCC growth in vivo through the PI3K/AKT and actin cytoskeleton signaling pathways.
Collapse
Affiliation(s)
- Guannan Zhou
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan UniversityShanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related DiseasesShanghai 200011, China
| | - Zhongyi Zhu
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan UniversityShanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related DiseasesShanghai 200011, China
| | - Lihua Li
- Department of Cell Biology, Taizhou University1139 Shifu Road Jiaojiang District, Taizhou, China
| | - Jingxin Ding
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan UniversityShanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related DiseasesShanghai 200011, China
| |
Collapse
|
17
|
Drug-Loaded Microbubbles Combined with Ultrasound for Thrombolysis and Malignant Tumor Therapy. BIOMED RESEARCH INTERNATIONAL 2019; 2019:6792465. [PMID: 31662987 PMCID: PMC6791276 DOI: 10.1155/2019/6792465] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/22/2019] [Accepted: 09/14/2019] [Indexed: 12/14/2022]
Abstract
Cardiac-cerebral thrombosis and malignant tumor endanger the safety of human life seriously. Traditional chemotherapy drugs have side effects which restrict their applications. Drug-loaded microbubbles can be destroyed by ultrasound irradiation at the focus position and be used for thrombolysis and tumor therapy. Compared with traditional drug treatment, the drug-loaded microbubbles can be excited by ultrasound and release drugs to lesion sites, increasing the local drug concentration and the exposure dose to nonfocal regions, thus reducing the cytotoxicity and side effects of drugs. This article reviews the applications of drug-loaded microbubbles combined with ultrasound for thrombolysis and tumor therapy. We focus on highlighting the advantages of using this new technique for disease treatment and concluding with recommendations for future efforts on the applications of this technology.
Collapse
|
18
|
Guo Y, Chen Y, Liu H, Yan W. Alpinetin Inhibits Oral Squamous Cell Carcinoma Proliferation via miR-211-5p Upregulation and Notch Pathway Deactivation. Nutr Cancer 2019; 72:757-767. [PMID: 31403340 DOI: 10.1080/01635581.2019.1651878] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Background: The effect of alpinetin (ALP) on miR-211-5p level and function in oral squamous cell carcinoma (OSCC) remains unclear.Materials and methods: Human OSCC cell lines (CAL-27 and TCA-8113) and a mouse xenograft model with subcutaneously injected TCA-8113 cells were used. Effect of ALP treatment on cell viability, cell cycle distributions, and p-p53, p21, c-PARP, cyclin D1, NICD, HES1, and miR-211-5p expression levels was analyzed. Influence of ALP on tumor volume and weight was determined.Results: ALP treatment (at doses 400 and 500 µM) significantly decreased the viability of CAL-27 and TCA-8113 cells (P < 0.05). It upregulated the number of cells in G1 phase and miR-211-5p expression, increased p-p53, p21, and c-PARP levels, and decreased cyclin D1 levels. Furthermore, miR-211-5p mimic treatment increased the number of cells in G1 phase, and p53, p21, and c-PARP levels, and decreased cyclin D1 levels. Contrasting effects were observed under anti-miR-211-5p treatment. ALP downregulated NICD and HES1, whereas anti-miR-211-5p increased NICD and HES1 expression. ALP effects were alleviated in both cell lines under Jagged-1 overexpression plasmid treatment. Finally, ALP inhibited tumor growth and increased miR-211-5p expression in vivo.Conclusion: ALP-induced miR-211-5p upregulation and Notch pathway deactivation may be involved in its anti-proliferative effects in OSCC.
Collapse
Affiliation(s)
- Yanjun Guo
- Department of Oral and Maxillofacial Surgery, Cangzhou Central Hospital, Cangzhou, China
| | - Yong Chen
- Department of Oral and Maxillofacial Surgery, Cangzhou Central Hospital, Cangzhou, China
| | - Hongli Liu
- Department of Stomatology, Cangzhou Medical College, Cangzhou, China
| | - Wei Yan
- Department of Oral and Maxillofacial Surgery, Cangzhou Central Hospital, Cangzhou, China
| |
Collapse
|
19
|
Wei Y, Huang C, Wu H, Huang J. Estrogen Receptor Beta (ERβ) Mediated-CyclinD1 Degradation via Autophagy Plays an Anti-Proliferation Role in Colon Cells. Int J Biol Sci 2019; 15:942-952. [PMID: 31182915 PMCID: PMC6535788 DOI: 10.7150/ijbs.30930] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 02/10/2019] [Indexed: 12/19/2022] Open
Abstract
Dysfunction of autophagic degradation machinery causes tumorigenesis, including colorectal cancer (CRC). Overexpression of CyclinD1 in CRC has been reported. Recent evidence also suggests that ERβ deficiency is related to the pathogenesis of CRC. Very little is known, however, about the detailed molecular mechanisms underlying the relationship among ERβ, autophagy, and CyclinD1 in CRC. Here, results showed that ERβ played an anti-proliferation role in HCT116 through impairing cell cycle but not apoptosis. Additionally, CyclinD1 accumulation was increased in response to chloroquine (CQ) or in MEF Atg7 knockout cells. Further, ERβ could inhibit the mammalian target of rapamycin (mTOR) or activate Bcl-2/adenovirus E1B 19-kDa-interacting protein 3 (BNIP3) to promote autophagy in HCT116. In summary, these results indicate that ERβ-mediated CyclinD1 degradation can inhibit colon cancer cell growth via autophagy.
Collapse
Affiliation(s)
- Yong Wei
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, P.R China
| | - Can Huang
- Wuhan Agricultural Inspection Center, Hubei, P.R China
| | - Haoyu Wu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, P.R China
| | - Jian Huang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, P.R China
| |
Collapse
|
20
|
Berges R, Denicolai E, Tchoghandjian A, Baeza-Kallee N, Honore S, Figarella-Branger D, Braguer D. Proscillaridin A exerts anti-tumor effects through GSK3β activation and alteration of microtubule dynamics in glioblastoma. Cell Death Dis 2018; 9:984. [PMID: 30250248 PMCID: PMC6155148 DOI: 10.1038/s41419-018-1018-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/26/2018] [Accepted: 08/02/2018] [Indexed: 12/13/2022]
Abstract
Glioblastoma (GBM) is characterized by highly aggressive growth and invasive behavior. Due to the highly lethal nature of GBM, new therapies are urgently needed and repositioning of existing drugs is a promising approach. We have previously shown the activity of Proscillaridin A (ProA), a cardiac glycoside inhibitor of the Na(+)/K(+) ATPase (NKA) pump, against proliferation and migration of GBM cell lines. ProA inhibited tumor growth in vivo and increased mice survival after orthotopic grafting of GBM cells. This study aims to decipher the mechanism of action of ProA in GBM tumor and stem-like cells. ProA displayed cytotoxic activity on tumor and stem-like cells grown in 2D and 3D culture, but not on healthy cells as astrocytes or oligodendrocytes. Even at sub-cytotoxic concentration, ProA impaired cell migration and disturbed EB1 accumulation at microtubule (MT) plus-ends and MT dynamics instability. ProA activates GSK3β downstream of NKA inhibition, leading to EB1 phosphorylation on S155 and T166, EB1 comet length shortening and MT dynamics alteration, and finally inhibition of cell migration and cytotoxicity. Similar results were observed with digoxin. Therefore, we disclosed here a novel pathway by which ProA and digoxin modulate MT-governed functions in GBM tumor and stem-like cells. Altogether, our results support ProA and digoxin as potent candidates for drug repositioning in GBM.
Collapse
Affiliation(s)
- Raphael Berges
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - Emilie Denicolai
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | | | | | - Stephane Honore
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | | | - Diane Braguer
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France.
| |
Collapse
|
21
|
Liu L, Liu Y, Liu X, Zhang N, Mao G, Zeng Q, Yin M, Song D, Deng H. Resibufogenin suppresses transforming growth factor-β-activated kinase 1-mediated nuclear factor-κB activity through protein kinase C-dependent inhibition of glycogen synthase kinase 3. Cancer Sci 2018; 109:3611-3622. [PMID: 30168902 PMCID: PMC6215888 DOI: 10.1111/cas.13788] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/26/2018] [Accepted: 08/28/2018] [Indexed: 12/17/2022] Open
Abstract
Resibufogenin (RB), one of the major active compounds of the traditional Chinese medicine Chansu, has received considerable attention for its potency in cancer therapy. However, the anticancer effects and the underlying mechanisms of RB on pancreatic cancer remain elusive. Here, we found that RB inhibited the viability and induces caspase‐dependent apoptosis in human pancreatic cancer cells Panc‐1 and Aspc. Resibufogenin‐induced apoptosis was through inhibition of constitutive nuclear factor‐κB (NF‐κB) activity and its target genes’ expression, which was caused by downregulation of transforming growth factor‐β‐activated kinase 1 (TAK1) levels and suppression of IκB kinase activity in Panc‐1 and Aspc cells. This induction of TAK1‐mediated NF‐κB inactivation by RB was associated with increased glycogen synthase kinase‐3 (GSK‐3) phosphorylation and subsequent suppression of its activity. Moreover, RB‐induced GSK‐3 phosphorylation/inactivation acted through activation of protein kinase C but not Akt. Finally, RB suppressed human pancreatic tumor xenograft growth in athymic nude mice. Thus, our findings reveal a novel mechanism by which RB suppresses TAK1‐mediated NF‐κB activity through protein kinase C‐dependent inhibition of GSK‐3. Our findings provide a rationale for the potential application of RB in pancreatic cancer therapy.
Collapse
Affiliation(s)
- Lu Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Qingdao Women and Children's Hospital, Qingdao University, Qingdao, China
| | - Yang Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaojia Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Na Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Genxiang Mao
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou, China
| | - Qingxuan Zeng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Mingxiao Yin
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Danqing Song
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hongbin Deng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
22
|
Telocinobufagin and Marinobufagin Produce Different Effects in LLC-PK1 Cells: A Case of Functional Selectivity of Bufadienolides. Int J Mol Sci 2018; 19:ijms19092769. [PMID: 30223494 PMCID: PMC6163863 DOI: 10.3390/ijms19092769] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/09/2018] [Accepted: 09/13/2018] [Indexed: 12/24/2022] Open
Abstract
Bufadienolides are cardiotonic steroids (CTS) identified in mammals. Besides Na+/K+-ATPase inhibition, they activate signal transduction via protein–protein interactions. Diversity of endogenous bufadienolides and mechanisms of action may indicate the presence of functional selectivity and unique cellular outcomes. We evaluated whether the bufadienolides telocinobufagin and marinobufagin induce changes in proliferation or viability of pig kidney (LLC-PK1) cells and the mechanisms involved in these changes. In some experiments, ouabain was used as a positive control. CTS exhibited an inhibitory IC50 of 0.20 (telocinobufagin), 0.14 (ouabain), and 3.40 μM (marinobufagin) for pig kidney Na+/K+-ATPase activity and concentrations that barely inhibited it were tested in LLC-PK1 cells. CTS induced rapid ERK1/2 phosphorylation, but corresponding proliferative response was observed for marinobufagin and ouabain instead of telocinobufagin. Telocinobufagin increased Bax:Bcl-2 expression ratio, sub-G0 cell cycle phase and pyknotic nuclei, indicating apoptosis. Src and MEK1/2 inhibitors blunted marinobufagin but not telocinobufagin effect, which was also not mediated by p38, JNK1/2, and PI3K. However, BIO, a GSK-3β inhibitor, reduced proliferation and, as telocinobufagin, phosphorylated GSK-3β at inhibitory Ser9. Combination of both drugs resulted in synergistic antiproliferative effect. Wnt reporter activity assay showed that telocinobufagin impaired Wnt/β-catenin pathway by acting upstream to β-catenin stabilization. Our findings support that mammalian endogenous bufadienolides may exhibit functional selectivity.
Collapse
|
23
|
Lu Z, Xu A, Yuan X, Chen K, Wang L, Guo T. Anticancer effect of resibufogenin on gastric carcinoma cells through the phosphoinositide 3-kinase/protein kinase B/glycogen synthase kinase 3β signaling pathway. Oncol Lett 2018; 16:3297-3302. [PMID: 30127928 DOI: 10.3892/ol.2018.8979] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 10/24/2017] [Indexed: 01/20/2023] Open
Abstract
The aim of the present study was to investigate the anticancer effect of resibufogenin in gastric carcinoma cells through the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/glycogen synthase kinase 3β (GSK3β) signaling pathway. MGC-803 cells were treated with 0, 1, 2, 4 and 8 µM resibufogenin for 12, 24 and 48 h. Cell viability and apoptosis were measured using an MTT assay and annexin V staining. Caspase-3 and caspase-8 activity were identified using caspase-3 and caspase-8 activity kits and a variety of protein expression [B cell lymphoma (Bcl)-2, Bcl-2-associated X protein (Bax), cyclin D1, cyclin E, PI3K, phosphorylated AKT, phosphorylated GSK3β and β-catenin] were quantified using western blot analysis. It was revealed that resibufogenin effectively inhibited cell proliferation, and induced apoptosis and caspase-3 and caspase-8 activity in MGC-803 cells. Furthermore, treatment with resibufogenin effectively increased Bax/Bcl-2 expression, and suppressed cyclin D1, cyclin E, PI3K, phosphorylated AKT, phosphorylated GSK3β and β-catenin protein expression in MGC-803 cells. These results suggest that the anticancer effect of resibufogenin induces gastric carcinoma cell death through the PI3K/AKT/GSK3β signaling pathway, offering a novel view of the mechanism by which resibufogenin functions as an agent to treat gastric carcinoma.
Collapse
Affiliation(s)
- Zhen Lu
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Aman Xu
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Xiao Yuan
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Kaiwei Chen
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Likun Wang
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Tao Guo
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| |
Collapse
|
24
|
Bufadienolides from Venenum Bufonis Inhibit mTOR-Mediated Cyclin D1 and Retinoblastoma Protein Leading to Arrest of Cell Cycle in Cancer Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:3247402. [PMID: 30108651 PMCID: PMC6077658 DOI: 10.1155/2018/3247402] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/15/2018] [Accepted: 06/13/2018] [Indexed: 02/08/2023]
Abstract
Objective Bufadienolides, the main components in Venenum Bufonis secreted from toads, have been proved to be with significant anticancer activity aside from the positive inotropic action as cardenolides. Here an underlying anticancer mechanism was further elucidated for an injection made from Venenum Bufonis containing nine bufadienolides. Methods One solution reagent and cell cycle analyses were for determining effect of bufadienolides on cancer cells. Western blotting was used for protein expression. Results Bufadienolides inhibit cell proliferation and arrest cells in G1 phase. Bufadienolides also inhibit the mammalian target of rapamycin (mTOR) signaling pathway, which is evidenced by the data that bufadienolides inhibit type I insulin-like growth factor- (IGF-1-) activated phosphorylation of mTOR by a concentration- and time-dependent way, as well as phosphorylation of p70 S6 kinase 1 (S6K1) and eukaryotic initiation factor 4E (eIF4E) binding protein 1 (4E-BP1). Subsequent results indicated that cyclin D1 expression and phosphorylation of retinoblastoma protein (Rb)—two characterized regulators in cell cycle of G1—are also inhibited and the process is dependent on mTOR pathway. Conclusion Bufadienolides inhibit proliferation partially due to arresting cell cycle in G1 phase, which is mediated by inhibiting mTOR-cyclin D1/Rb signal pathway.
Collapse
|
25
|
Safe S, Nair V, Karki K. Metformin-induced anticancer activities: recent insights. Biol Chem 2018; 399:321-335. [PMID: 29272251 DOI: 10.1515/hsz-2017-0271] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/11/2017] [Indexed: 12/12/2022]
Abstract
Metformin is a widely used antidiabetic drug, and there is evidence among diabetic patients that metformin is a chemopreventive agent against multiple cancers. There is also evidence in human studies that metformin is a cancer chemotherapeutic agent, and several clinical trials that use metformin alone or in combination with other drugs are ongoing. In vivo and in vitro cancer cell culture studies demonstrate that metformin induces both AMPK-dependent and AMPK-independent genes/pathways that result in inhibition of cancer cell growth and migration and induction of apoptosis. The effects of metformin in cancer cells resemble the patterns observed after treatment with drugs that downregulate specificity protein 1 (Sp1), Sp3 and Sp4 or by knockdown of Sp1, Sp3 and Sp4 by RNA interference. Studies in pancreatic cancer cells clearly demonstrate that metformin decreases expression of Sp1, Sp3, Sp4 and pro-oncogenic Sp-regulated genes, demonstrating that one of the underlying mechanisms of action of metformin as an anticancer agent involves targeting of Sp transcription factors. These observations are consistent with metformin-mediated effects on genes/pathways in many other tumor types.
Collapse
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX 77843-4466, USA
| | - Vijayalekshmi Nair
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX 77843-4466, USA
| | - Keshav Karki
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX 77843-4466, USA
| |
Collapse
|
26
|
Zhai XF, Liu XL, Shen F, Fan J, Ling CQ. Traditional herbal medicine prevents postoperative recurrence of small hepatocellular carcinoma: A randomized controlled study. Cancer 2018; 124:2161-2168. [PMID: 29499082 DOI: 10.1002/cncr.30915] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 06/21/2017] [Accepted: 06/26/2017] [Indexed: 01/27/2023]
Abstract
BACKGROUND To explore the clinical efficacy of traditional herbal medicine (THM) in the prevention of disease recurrence of small hepatocellular carcinoma after surgery, a prospective randomized controlled study was conducted between October 2006 and May 2010. The results indicated that THM prevented the recurrence of SHCC with an efficacy that was superior to that of transarterial chemoembolization (TACE) during a median follow-up of 26.61 months. METHODS The patients were followed up every 6 months, and the clinical data before October 20, 2015 were analyzed. The primary outcome measure was recurrence-free survival (RFS), and the secondary outcome measure was overall survival (OS). RESULTS The 364 patients included 180 in the THM group and 184 in the TACE group. At the time of the data cutoff of October 20, 2015, a total of 205 patients demonstrated disease recurrence, including 85 patients in the THM group and 120 patients in the TACE group. The median RFS of the THM and TACE groups demonstrated a statistically significant difference (P<.001). Until October 20, 2105, there were 91 deaths, including 34 in the THM group and 57 in the TACE group. The median OS demonstrated a significant difference between the 2 groups (P = .008). Multivariate analysis indicated that THM was an independent factor influencing RFS and OS. CONCLUSIONS The efficacy of THM was found to be superior to that of TACE in preventing disease recurrence in patients with small hepatocellular carcinoma and prolonging OS. Cancer 2018;124:2161-8. © 2018 American Cancer Society.
Collapse
Affiliation(s)
- Xiao-Feng Zhai
- Department of Traditional Chinese Medicine, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Xiao-Lin Liu
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Feng Shen
- Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Jia Fan
- Department of Liver Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chang-Quan Ling
- Department of Traditional Chinese Medicine, Changhai Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
27
|
Ono H, Iizumi Y, Goi W, Sowa Y, Taguchi T, Sakai T. Ribosomal protein S3 regulates XIAP expression independently of the NF-κB pathway in breast cancer cells. Oncol Rep 2017; 38:3205-3210. [DOI: 10.3892/or.2017.6008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 09/15/2017] [Indexed: 11/06/2022] Open
|
28
|
Shi D, Liang L, Zheng H, Cai G, Li X, Xu Y, Cai S. Silencing of long non-coding RNA SBDSP1 suppresses tumor growth and invasion in colorectal cancer. Biomed Pharmacother 2016; 85:355-361. [PMID: 27890432 DOI: 10.1016/j.biopha.2016.11.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 11/08/2016] [Indexed: 01/06/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) play critical roles in tumor development and progression. This study was undertaken to examine the expression and biological functions of a novel lncRNA SBDSP1 in colorectal cancer (CRC). Quantitative real-time PCR analysis was used to measure the expression of SBDSP1 in CRC tissues and cell lines. Knockdown of SBDSP1 via short hairpin RNA technology was performed to determine the roles of SBDSP1 in CRC cell growth, colony formation, cell cycle progression, migration, and invasion. The effect of SBDSP1 knockdown on tumorigenesis of CRC cells was investigated in a subcutaneous tumor mouse model. Western blot analysis was done to examine the involvement of signaling pathways in the action of SBDSP1. Notably, SBDSP1 was overexpressed in CRC tissues and cells relative to corresponding normal controls. Moreover, SBDSP1 expression was significantly greater in CRCs with nodal metastasis than in primary tumors (P=0.0259). Downregulation of SBDSP1 significantly inhibited cell proliferation, colony formation, migration, and invasion in SW480 and HCT116 cells, which was accompanied by suppression of Akt, ERK1/2, and STAT3 phosphorylation. SBDSP1-depleted cells showed a G0/G1 cell cycle arrest and deregulation of p21 and cyclin D1. In vivo studies confirmed that SBDSP1 downregulation retarded the growth of HCT116 xenogaft tumors. Altogether, SBDSP1 plays an essential role in CRC cell growth, invasion, and tumorigenesis, largely through inactivation of multiple signaling pathways. Therefore, targeting SBDSP1 may have therapeutic benefits in the treatment of CRC.
Collapse
Affiliation(s)
- Debing Shi
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lei Liang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hongtu Zheng
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Guoxiang Cai
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xinxiang Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ye Xu
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Sanjun Cai
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
29
|
Repair Injured Heart by Regulating Cardiac Regenerative Signals. Stem Cells Int 2016; 2016:6193419. [PMID: 27799944 PMCID: PMC5075315 DOI: 10.1155/2016/6193419] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 06/27/2016] [Accepted: 06/29/2016] [Indexed: 01/10/2023] Open
Abstract
Cardiac regeneration is a homeostatic cardiogenic process by which the sections of malfunctioning adult cardiovascular tissues are repaired and renewed employing a combination of both cardiomyogenesis and angiogenesis. Unfortunately, while high-quality regeneration can be performed in amphibians and zebrafish hearts, mammalian hearts do not respond in kind. Indeed, a long-term loss of proliferative capacity in mammalian adult cardiomyocytes in combination with dysregulated induction of tissue fibrosis impairs mammalian endogenous heart regenerative capacity, leading to deleterious cardiac remodeling at the end stage of heart failure. Interestingly, several studies have demonstrated that cardiomyocyte proliferation capacity is retained in mammals very soon after birth, and cardiac regeneration potential is correspondingly preserved in some preadolescent vertebrates after myocardial infarction. There is therefore great interest in uncovering the molecular mechanisms that may allow heart regeneration during adult stages. This review will summarize recent findings on cardiac regenerative regulatory mechanisms, especially with respect to extracellular signals and intracellular pathways that may provide novel therapeutics for heart diseases. Particularly, both in vitro and in vivo experimental evidences will be presented to highlight the functional role of these signaling cascades in regulating cardiomyocyte proliferation, cardiomyocyte growth, and maturation, with special emphasis on their responses to heart tissue injury.
Collapse
|
30
|
Xu T, Zong Y, Peng L, Kong S, Zhou M, Zou J, Liu J, Miao R, Sun X, Li L. Overexpression of eIF4E in colorectal cancer patients is associated with liver metastasis. Onco Targets Ther 2016; 9:815-22. [PMID: 26929650 PMCID: PMC4767060 DOI: 10.2147/ott.s98330] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Purpose Liver metastasis is one of the leading causes of death in colorectal cancer (CRC) patients. The present study aimed to evaluate the value of eIF4E as a prognostic marker of colorectal liver metastasis (CLM) and identify the functional role of eIF4E in CRC metastasis. Patients and methods The expression level of eIF4E in CRC tissues was analyzed by immunohistochemical staining and Western blot. Expression of eIF4E in CRC cell lines was evaluated by reverse transcription quantitative polymerase chain reaction (RT-qPCR) and Western blot. Cell Counting Kit-8 (CCK-8) and Transwell assays were performed to assess the effects of eIF4E on cell proliferation, migration, and invasion. Western blot was further used to investigate the mechanism of eIF4E in tumor metastasis. Results The upregulation frequency of eIF4E in the CLM group (82.5%) was higher than that in the non-CLM group (65.0%). Of the 80 patients recruited for the follow-up study, 23 were in the low eIF4E group (ratio of tumor to nontumor tissue <twofold), and 57 were in the high eIF4E group (ratio of tumor to nontumor tissue ≥twofold). In addition, the group exhibiting high eIF4E expression had a higher rate of liver metastasis (47.4%) than the group exhibiting low eIF4E expression (13.0%). In CRC cell lines, the expression of eIF4E was higher than in the normal cells. In vitro functional studies indicated that eIF4E knockdown inhibited the proliferation, migration, and invasion of Lovo and SW480 cells, and suppressed the expression of cyclin D1, VEGF, MMP-2, and MMP-9. Conclusion The results of the present study indicated that high eIF4E levels in CRC patients predicted a high risk of liver metastasis. Knockdown of eIF4E inhibited CRC cell metastasis in part through regulating the expression of cyclin D1, VEGF, MMP-2, and MMP-9.
Collapse
Affiliation(s)
- Tao Xu
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, People's Republic of China
| | - Yuanyuan Zong
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, People's Republic of China
| | - Lipan Peng
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, People's Republic of China
| | - Shuai Kong
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, People's Republic of China
| | - Mingliang Zhou
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, People's Republic of China
| | - Jianqiang Zou
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, People's Republic of China
| | - Jinglei Liu
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, People's Republic of China
| | - Ruizheng Miao
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, People's Republic of China
| | - Xichao Sun
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, People's Republic of China
| | - Leping Li
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, People's Republic of China
| |
Collapse
|