1
|
Duan Y, Chen Q, Chen Q, Zheng K, Cai Y, Long Y, Zhao J, Guo Y, Sun F, Qu Y. Analysis of transcriptome data and quantitative trait loci enables the identification of candidate genes responsible for fiber strength in Gossypium barbadense. G3 GENES|GENOMES|GENETICS 2022; 12:6650278. [PMID: 35881688 PMCID: PMC9434320 DOI: 10.1093/g3journal/jkac167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022]
Abstract
Gossypium barbadense possesses a superior fiber quality because of its fiber length and strength. An in-depth analysis of the underlying genetic mechanism could aid in filling the gap in research regarding fiber strength and could provide helpful information for Gossypium barbadense breeding. Three quantitative trait loci related to fiber strength were identified from a Gossypium barbadense recombinant inbred line (PimaS-7 × 5917) for further analysis. RNA sequencing was performed in the fiber tissues of PimaS-7 × 5917 0–35 days postanthesis. Four specific modules closely related to the secondary wall-thickening stage were obtained using the weighted gene coexpression network analysis. In total, 55 genes were identified as differentially expressed from 4 specific modules. Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes were used for enrichment analysis, and Gbar_D11G032910, Gbar_D08G020540, Gbar_D08G013370, Gbar_D11G033670, and Gbar_D11G029020 were found to regulate fiber strength by playing a role in the composition of structural constituents of cytoskeleton and microtubules during fiber development. Quantitative real-time PCR results confirmed the accuracy of the transcriptome data. This study provides a quick strategy for exploring candidate genes and provides new insights for improving fiber strength in cotton.
Collapse
Affiliation(s)
- Yajie Duan
- College of Agronomy, Xinjiang Agricultural University , Urumqi, Xinjiang 830052, China
| | - Qin Chen
- College of Agronomy, Xinjiang Agricultural University , Urumqi, Xinjiang 830052, China
| | - Quanjia Chen
- College of Agronomy, Xinjiang Agricultural University , Urumqi, Xinjiang 830052, China
| | - Kai Zheng
- College of Agronomy, Xinjiang Agricultural University , Urumqi, Xinjiang 830052, China
| | - Yongsheng Cai
- College of Agronomy, Xinjiang Agricultural University , Urumqi, Xinjiang 830052, China
| | - Yilei Long
- College of Agronomy, Xinjiang Agricultural University , Urumqi, Xinjiang 830052, China
| | - Jieyin Zhao
- College of Agronomy, Xinjiang Agricultural University , Urumqi, Xinjiang 830052, China
| | - Yaping Guo
- College of Agronomy, Xinjiang Agricultural University , Urumqi, Xinjiang 830052, China
| | - Fenglei Sun
- College of Agronomy, Xinjiang Agricultural University , Urumqi, Xinjiang 830052, China
| | - Yanying Qu
- College of Agronomy, Xinjiang Agricultural University , Urumqi, Xinjiang 830052, China
| |
Collapse
|
2
|
Razzaq A, Zafar MM, Ali A, Hafeez A, Sharif F, Guan X, Deng X, Pengtao L, Shi Y, Haroon M, Gong W, Ren M, Yuan Y. The Pivotal Role of Major Chromosomes of Sub-Genomes A and D in Fiber Quality Traits of Cotton. Front Genet 2022; 12:642595. [PMID: 35401652 PMCID: PMC8988190 DOI: 10.3389/fgene.2021.642595] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 10/25/2021] [Indexed: 02/02/2023] Open
Abstract
Lack of precise information about the candidate genes involved in a complex quantitative trait is a major obstacle in the cotton fiber quality improvement, and thus, overall genetic gain in conventional phenotypic selection is low. Recent molecular interventions and advancements in genome sequencing have led to the development of high-throughput molecular markers, quantitative trait locus (QTL) fine mapping, and single nucleotide polymorphisms (SNPs). These advanced tools have resolved the existing bottlenecks in trait-specific breeding. This review demonstrates the significance of chromosomes 3, 7, 9, 11, and 12 of sub-genomes A and D carrying candidate genes for fiber quality. However, chromosome 7 carrying SNPs for stable and potent QTLs related to fiber quality provides great insights for fiber quality-targeted research. This information can be validated by marker-assisted selection (MAS) and transgene in Arabidopsis and subsequently in cotton.
Collapse
Affiliation(s)
- Abdul Razzaq
- State Key Laboratory of Cotton Biology, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
- Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
- *Correspondence: Abdul Razzaq, ; Youlu Yuan , ; Maozhi Ren,
| | - Muhammad Mubashar Zafar
- State Key Laboratory of Cotton Biology, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
- Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| | - Arfan Ali
- FB Genetics Four Brothers Group, Lahore, Pakistan
| | - Abdul Hafeez
- State Key Laboratory of Cotton Biology, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
- Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| | - Faiza Sharif
- University Institute of Physical Therapy, The University of Lahore, Lahore, Pakistan
| | | | - Xiaoying Deng
- State Key Laboratory of Cotton Biology, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
- Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| | - Li Pengtao
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Yuzhen Shi
- State Key Laboratory of Cotton Biology, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
- Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| | - Muhammad Haroon
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Wankui Gong
- State Key Laboratory of Cotton Biology, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
- Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| | - Maozhi Ren
- State Key Laboratory of Cotton Biology, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
- Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- *Correspondence: Abdul Razzaq, ; Youlu Yuan , ; Maozhi Ren,
| | - Youlu Yuan
- Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- *Correspondence: Abdul Razzaq, ; Youlu Yuan , ; Maozhi Ren,
| |
Collapse
|
3
|
Li B, Zhang L, Xi J, Hou L, Fu X, Pei Y, Zhang M. An Unexpected Regulatory Sequence from Rho-Related GTPase6 Confers Fiber-Specific Expression in Upland Cotton. Int J Mol Sci 2022; 23:ijms23031087. [PMID: 35163011 PMCID: PMC8834676 DOI: 10.3390/ijms23031087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/01/2023] Open
Abstract
Cotton fibers, single seed trichomes derived from ovule epidermal cells, are the major source of global textile fibers. Fiber-specific promoters are desirable to study gene function and to modify fiber properties during fiber development. Here, we revealed that Rho-related GTPase6 (GhROP6) was expressed preferentially in developing fibers. A 1240 bp regulatory region of GhROP6, which contains a short upstream regulatory sequence, the first exon, and the partial first intron, was unexpectedly isolated and introduced into transgenic cotton for analyzing promoter activity. The promoter of GhROP6 (proChROP6) conferred a specific expression in ovule surface, but not in the other floral organs and vegetative tissues. Reverse transcription PCR analysis indicated that proGhROP6 directed full-length transcription of the fused ß-glucuronidase (GUS) gene. Further investigation of GUS staining showed that proChROP6 regulated gene expression in fibers and ovule epidermis from fiber initiation to cell elongation stages. The preferential activity was enriched in fiber cells after anthesis and reached to peak on flowering days. By comparison, proGhROP6 was a mild promoter with approximately one-twenty-fifth of the strength of the constitutive promoter CaMV35S. The promoter responded to high-dosage treatments of auxin, gibberellin and salicylic acid and slightly reduced GUS activity under the in vitro treatment. Collectively, our data suggest that the GhROP6 promoter has excellent activity in initiating fibers and has potential for bioengineering of cotton fibers.
Collapse
Affiliation(s)
- Baoxia Li
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (B.L.); (L.Z.); (J.X.); (L.H.); (X.F.); (Y.P.)
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Liuqin Zhang
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (B.L.); (L.Z.); (J.X.); (L.H.); (X.F.); (Y.P.)
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Jing Xi
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (B.L.); (L.Z.); (J.X.); (L.H.); (X.F.); (Y.P.)
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Lei Hou
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (B.L.); (L.Z.); (J.X.); (L.H.); (X.F.); (Y.P.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Xingxian Fu
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (B.L.); (L.Z.); (J.X.); (L.H.); (X.F.); (Y.P.)
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Yan Pei
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (B.L.); (L.Z.); (J.X.); (L.H.); (X.F.); (Y.P.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Mi Zhang
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (B.L.); (L.Z.); (J.X.); (L.H.); (X.F.); (Y.P.)
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Correspondence: ; Tel.: +86-023-68251883; Fax: +86-023-68251883
| |
Collapse
|
4
|
Cheng G, Zhang L, Wei H, Wang H, Lu J, Yu S. Transcriptome Analysis Reveals a Gene Expression Pattern Associated with Fuzz Fiber Initiation Induced by High Temperature in Gossypium barbadense. Genes (Basel) 2020; 11:genes11091066. [PMID: 32927688 PMCID: PMC7565297 DOI: 10.3390/genes11091066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 11/27/2022] Open
Abstract
Gossypium barbadense is an important source of natural textile fibers, as is Gossypium hirsutum. Cotton fiber development is often affected by various environmental factors, such as abnormal temperature. However, little is known about the underlying mechanisms of temperature regulating the fuzz fiber initiation. In this study, we reveal that high temperatures (HT) accelerate fiber development, improve fiber quality, and induced fuzz initiation of a thermo-sensitive G. barbadense variety L7009. It was proved that fuzz initiation was inhibited by low temperature (LT), and 4 dpa was the stage most susceptible to temperature stress during the fuzz initiation period. A total of 43,826 differentially expressed genes (DEGs) were identified through comparative transcriptome analysis. Of these, 9667 were involved in fiber development and temperature response with 901 transcription factor genes and 189 genes related to plant hormone signal transduction. Further analysis of gene expression patterns revealed that 240 genes were potentially involved in fuzz initiation induced by high temperature. Functional annotation revealed that the candidate genes related to fuzz initiation were significantly involved in the asparagine biosynthetic process, cell wall biosynthesis, and stress response. The expression trends of sixteen genes randomly selected from the RNA-seq data were almost consistent with the results of qRT-PCR. Our study revealed several potential candidate genes and pathways related to fuzz initiation induced by high temperature. This provides a new view of temperature-induced tissue and organ development in Gossypium barbadense.
Collapse
Affiliation(s)
- Gongmin Cheng
- College of Agronomy, Northwest Agriculture and Forestry University, Yangling 712100, China;
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (L.Z.); (H.W.); (H.W.); (J.L.)
| | - Longyan Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (L.Z.); (H.W.); (H.W.); (J.L.)
- College of Agronomy, Hebei Agricultural University, Baoding 071001, China
| | - Hengling Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (L.Z.); (H.W.); (H.W.); (J.L.)
| | - Hantao Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (L.Z.); (H.W.); (H.W.); (J.L.)
| | - Jianhua Lu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (L.Z.); (H.W.); (H.W.); (J.L.)
| | - Shuxun Yu
- College of Agronomy, Northwest Agriculture and Forestry University, Yangling 712100, China;
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (L.Z.); (H.W.); (H.W.); (J.L.)
- Correspondence: ; Tel.: +86-188-0372-9718
| |
Collapse
|
5
|
Doucet J, Truong C, Frank-Webb E, Lee HK, Daneva A, Gao Z, Nowack MK, Goring DR. Identification of a role for an E6-like 1 gene in early pollen-stigma interactions in Arabidopsis thaliana. PLANT REPRODUCTION 2019; 32:307-322. [PMID: 31069543 DOI: 10.1007/s00497-019-00372-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/29/2019] [Indexed: 05/22/2023]
Abstract
We describe a function for a novel Arabidopsis gene, E6-like 1 (E6L1), that was identified as a highly expressed gene in the stigma and plays a role in early post-pollination stages. In Arabidopsis, successful pollen-stigma interactions are dependent on rapid recognition of compatible pollen by the stigmatic papillae located on the surface of the pistil and the subsequent regulation of pollen hydration and germination, and followed by the growth of pollen tubes through the stigma surface. Here we have described the function of a novel gene, E6-like 1 (E6L1), that was identified through the analysis of transcriptome datasets, as one of highest expressed genes in the stigma, and furthermore, its expression was largely restricted to the stigma and trichomes. The first E6 gene was initially identified as a highly expressed gene during cotton fiber development, and related E6-like predicted proteins are found throughout the Angiosperms. To date, no orthologous genes have been assigned a biological function. Both the Arabidopsis E6L1 and cotton E6 proteins are predicted to be secreted, and this was confirmed using an E6L1:RFP fusion construct. To further investigate E6L1's function, one T-DNA and two independent CRISPR-generated mutants were analyzed for compatible pollen-stigma interactions, and pollen hydration, pollen adhesion, and seed set were mildly impaired for the e6l1 mutants. This work identifies E6L1 as a novel stigmatic factor that plays a role during the early post-pollination stages in Arabidopsis.
Collapse
Affiliation(s)
- Jennifer Doucet
- Department of Cell and Systems Biology, University of Toronto, Toronto, M5S 3B2, Canada
| | - Christina Truong
- Department of Cell and Systems Biology, University of Toronto, Toronto, M5S 3B2, Canada
| | - Elizabeth Frank-Webb
- Department of Cell and Systems Biology, University of Toronto, Toronto, M5S 3B2, Canada
| | - Hyun Kyung Lee
- Department of Cell and Systems Biology, University of Toronto, Toronto, M5S 3B2, Canada
| | - Anna Daneva
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center of Plant Systems Biology, Ghent, Belgium
| | - Zhen Gao
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center of Plant Systems Biology, Ghent, Belgium
| | - Moritz K Nowack
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center of Plant Systems Biology, Ghent, Belgium
| | - Daphne R Goring
- Department of Cell and Systems Biology, University of Toronto, Toronto, M5S 3B2, Canada.
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, M5S 3B2, Canada.
| |
Collapse
|
6
|
Ijaz B, Zhao N, Kong J, Hua J. Fiber Quality Improvement in Upland Cotton ( Gossypium hirsutum L.): Quantitative Trait Loci Mapping and Marker Assisted Selection Application. FRONTIERS IN PLANT SCIENCE 2019; 10:1585. [PMID: 31921240 PMCID: PMC6917639 DOI: 10.3389/fpls.2019.01585] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/12/2019] [Indexed: 05/17/2023]
Abstract
Genetic improvement in fiber quality is one of the main challenges for cotton breeders. Fiber quality traits are controlled by multiple genes and are classified as complex quantitative traits, with a negative relationship with yield potential, so the genetic gain is low in traditional genetic improvement by phenotypic selection. The availability of Gossypium genomic sequences facilitates the development of high-throughput molecular markers, quantitative trait loci (QTL) fine mapping and gene identification, which helps us to validate candidate genes and to use marker assisted selection (MAS) on fiber quality in breeding programs. Based on developments of high density linkage maps, QTLs fine mapping, marker selection and omics, we have performed trait dissection on fiber quality traits in diverse populations of upland cotton. QTL mapping combined with multi-omics approaches such as, RNA sequencing datasets to identify differentially expressed genes have benefited the improvement of fiber quality. In this review, we discuss the application of molecular markers, QTL mapping and MAS for fiber quality improvement in upland cotton.
Collapse
Affiliation(s)
- Babar Ijaz
- Laboratory of Cotton Genetics, Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Nan Zhao
- Laboratory of Cotton Genetics, Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Jie Kong
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Jinping Hua
- Laboratory of Cotton Genetics, Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- *Correspondence: Jinping Hua,
| |
Collapse
|
7
|
Xin S, Tao C, Li H. Cloning and Functional Analysis of the Promoter of an Ascorbate Oxidase Gene from Gossypium hirsutum. PLoS One 2016; 11:e0161695. [PMID: 27597995 PMCID: PMC5012575 DOI: 10.1371/journal.pone.0161695] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 08/10/2016] [Indexed: 01/19/2023] Open
Abstract
Apoplastic ascorbate oxidase (AO) plays significant roles in plant cell growth. However, the mechanism of underlying the transcriptional regulation of AO in Gossypium hirsutum remains unclear. Here, we obtained a 1,920-bp promoter sequence from the Gossypium hirsutum ascorbate oxidase (GhAO1) gene, and this GhAO1 promoter included a number of known cis-elements. Promoter activity analysis in overexpressing pGhAO1::GFP-GUS tobacco (Nicotiana benthamiana) showed that the GhAO1 promoter exhibited high activity, driving strong reporter gene expression in tobacco trichomes, leaves and roots. Promoter 5'-deletion analysis demonstrated that truncated GhAO1 promoters with serial 5'-end deletions had different GUS activities. A 360-bp fragment was sufficient to activate GUS expression. The P-1040 region had less GUS activity than the P-720 region, suggesting that the 320-bp region from nucleotide -720 to -1040 might include a cis-element acting as a silencer. Interestingly, an auxin-responsive cis-acting element (TGA-element) was uncovered in the promoter. To analyze the function of the TGA-element, tobacco leaves transformed with promoters with different 5' truncations were treated with indole-3-acetic acid (IAA). Tobacco leaves transformed with the promoter regions containing the TGA-element showed significantly increased GUS activity after IAA treatment, implying that the fragment spanning nucleotides -1760 to -1600 (which includes the TGA-element) might be a key component for IAA responsiveness. Analyses of the AO promoter region and AO expression pattern in Gossypium arboreum (Ga, diploid cotton with an AA genome), Gossypium raimondii (Gr, diploid cotton with a DD genome) and Gossypium hirsutum (Gh, tetraploid cotton with an AADD genome) indicated that AO promoter activation and AO transcription were detected together only in D genome/sub-genome (Gr and Gh) cotton. Taken together, these results suggest that the 1,920-bp GhAO1 promoter is a functional sequence with a potential effect on fiber cell development, mediated by TGA-element containing sequences, via the auxin-signaling pathway.
Collapse
Affiliation(s)
- Shan Xin
- College of life sciences, Key laboratory of Agrobiotechnology, Shihezi University, Shihezi, Xinjiang, China
| | - Chengcheng Tao
- College of life sciences, Key laboratory of Agrobiotechnology, Shihezi University, Shihezi, Xinjiang, China
| | - Hongbin Li
- College of life sciences, Key laboratory of Agrobiotechnology, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|