1
|
Doody NE, Smith NJ, Akam EC, Askew GN, Kwok JCF, Ichiyama RM. Differential expression of genes in the RhoA/ROCK pathway in the hippocampus and cortex following intermittent hypoxia and high-intensity interval training. J Neurophysiol 2024; 132:531-543. [PMID: 38985935 PMCID: PMC11427053 DOI: 10.1152/jn.00422.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 06/13/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024] Open
Abstract
Structural neuroplasticity such as neurite extension and dendritic spine dynamics is enhanced by brain-derived neurotrophic factor (BDNF) and impaired by types of inhibitory molecules that induce growth cone collapse and actin depolymerization, for example, myelin-associated inhibitors, chondroitin sulfate proteoglycans, and negative guidance molecules. These inhibitory molecules can activate RhoA/rho-associated coiled-coil containing protein kinase (ROCK) signaling (known to restrict structural plasticity). Intermittent hypoxia (IH) and high-intensity interval training (HIIT) are known to upregulate BDNF that is associated with improvements in learning and memory and greater functional recovery following neural insults. We investigated whether the RhoA/ROCK signaling pathway is also modulated by IH and HIIT in the hippocampus, cortex, and lumbar spinal cord of male Wistar rats. The gene expression of 25 RhoA/ROCK signaling pathway components was determined following IH, HIIT, or IH combined with HIIT (30 min/day, 5 days/wk, 6 wk). IH included 10 3-min bouts that alternated between hypoxia (15% O2) and normoxia. HIIT included 10 3-min bouts alternating between treadmill speeds of 50 cm·s-1 and 15 cm·s-1. In the hippocampus, IH and HIIT significantly downregulated Acan and NgR2 mRNA that are involved in the inhibition of neuroplasticity. However, IH and IH + HIIT significantly upregulated Lingo-1 and NgR3 in the cortex. This is the first time IH and HIIT have been linked to the modulation of plasticity-inhibiting pathways. These results provide a fundamental step toward elucidating the interplay between the neurotrophic and inhibitory mechanisms involved in experience-driven neural plasticity that will aid in optimizing physiological interventions for the treatment of cognitive decline or neurorehabilitation.NEW & NOTEWORTHY Intermittent hypoxia (IH) and high-intensity interval training (HIIT) enhance neuroplasticity and upregulate neurotrophic factors in the central nervous system (CNS). We provide evidence that IH and IH + HIIT also have the capacity to regulate genes involved in the RhoA/ROCK signaling pathway that is known to restrict structural plasticity in the CNS. This provides a new mechanistic insight into how these interventions may enhance hippocampal-related plasticity and facilitate learning, memory, and neuroregeneration.
Collapse
Affiliation(s)
- Natalie E Doody
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, United Kingdom
| | - Nicole J Smith
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Elizabeth C Akam
- School of Sport, Exercise, and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Graham N Askew
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Jessica C F Kwok
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
- Institute of Experimental Medicine, The Czech Academy of Sciences, Prague 4, Czech Republic
| | - Ronaldo M Ichiyama
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
2
|
Asiamah CA, Liu Y, Ye R, Pan Y, Lu LL, Zou K, Zhao Z, Jiang P, Su Y. Polymorphism analysis and expression profile of the estrogen receptor 2 gene in Leizhou black duck. Poult Sci 2021; 101:101630. [PMID: 35033905 PMCID: PMC8762077 DOI: 10.1016/j.psj.2021.101630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/13/2021] [Accepted: 11/25/2021] [Indexed: 12/30/2022] Open
Abstract
Our previous study on the ovarian transcriptomic analysis in Leizhou black duck revealed that the ESR2 gene was involved in hormone regulation in reproduction and the estrogen signaling pathway related to reproductive performance was enriched. This suggested that ESR2 may have a functional role in the reproductive performance of the Leizhou black duck. Thus, this study aimed at evaluating the polymorphism of the ESR2 gene and its association with egg-laying traits and the distribution pattern of ESR2 mRNA in laying and non-laying Leizhou black ducks. In this study, genomic DNA was extracted from blood samples of 101 Leizhou black ducks to identify single nucleotide polymorphisms (SNPs) of the ESR2 gene to elucidate molecular markers highly associated with egg-laying traits. Four each of laying and non-laying Leizhou black ducks were selected to collect different tissues to analyze the ESR2 gene expression. A total of 23 SNPs were identified and association analysis of the single SNP sites showed that SNPs g.56805646 T>C and exon 3-20G>A were significantly (P < 0.05) associated with egg weight. Ducks with CT and AG genotypes had significantly higher (P < 0.05) egg weights than their respective other genotypes. Haplotype association analysis of g.56805646 T>C and exon 3-20G>A showed that the haplotypes were significantly associated with egg weight. Higher egg weight was seen in individuals with H3H4 haplotypes. In the hypothalamus-pituitary-gonadal (HPG) axis, the results of qRT/PCR showed that ESR2 mRNA was significantly (P < 0.05) expressed in the ovaries of both duck groups than in the hypothalamus and pituitary. In the oviduct, ESR2 was significantly (P < 0.05) higher in the infundibulum and magnum of laying and non-laying ducks respectively. This study provides a molecular marker for selecting Leizhou black ducks for egg production. In addition, it offers theoretical knowledge for studying the related biological functions of the ESR2 gene at the cellular level.
Collapse
Affiliation(s)
- Collins Amponsah Asiamah
- College of Coastal Agriculture, Guangdong Ocean University, Zhanjiang, 524025, Guangdong, PR China
| | - Yuanbo Liu
- College of Coastal Agriculture, Guangdong Ocean University, Zhanjiang, 524025, Guangdong, PR China
| | - Rungen Ye
- College of Coastal Agriculture, Guangdong Ocean University, Zhanjiang, 524025, Guangdong, PR China
| | - Yiting Pan
- College of Coastal Agriculture, Guangdong Ocean University, Zhanjiang, 524025, Guangdong, PR China
| | - Li-Li Lu
- College of Coastal Agriculture, Guangdong Ocean University, Zhanjiang, 524025, Guangdong, PR China
| | - Kun Zou
- College of Coastal Agriculture, Guangdong Ocean University, Zhanjiang, 524025, Guangdong, PR China
| | - Zhihui Zhao
- College of Coastal Agriculture, Guangdong Ocean University, Zhanjiang, 524025, Guangdong, PR China
| | - Ping Jiang
- College of Coastal Agriculture, Guangdong Ocean University, Zhanjiang, 524025, Guangdong, PR China
| | - Ying Su
- College of Coastal Agriculture, Guangdong Ocean University, Zhanjiang, 524025, Guangdong, PR China.
| |
Collapse
|
3
|
Lieshchova MA, Brygadyrenko VV. Influence of Lavandula angustifolia, Melissa officinalis and Vitex angus-castus on the organism of rats fed with excessive fat-containing diet. REGULATORY MECHANISMS IN BIOSYSTEMS 2021. [DOI: 10.15421/022125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Plant food additives are becoming more and more popular and broadly applied products, though the information on risks they poses to the organism is limited and contradictive. Obesity and overeating are some of the commonest health issues around the world, and people are increasingly consuming workability-enhancing preparations as a simple and fast method of weight control. The plant-based preparations are considered less harmful than the synthetic chemical ones. Lavandula angustifolia Mill., Melissa officinalis L. and Vitex angus-castus L. are broadly used as food additives and medicinal plants, despite the fact that their complex physiological assessment on model animals in the conditions of obesity has not yet been performed. We carried out a 30-day experiment on white male rats. All the animals were given high-fat diet, and the experimental animals, in addition to this diet, received 5% crumbled dry herbs of L. angustifolia, M. officinalis or V. angus-castus. Taking into account the overall amount of consumed food, the mean daily gain in body weight; at the end of the experiment, we determined the index of the weight of the internal organs, biochemical and morphological blood parameters. At the beginning and the end of the experiment, the rats were examined for motor and orienting activities, and emotional status. Rats on high-fat diet gained up to 112% body weight by the end of the experiment, while rats that had received V. angus-castus gained up to 119%, M. officinalis – 135%, L. angustifolia – 139%, compared with the initial body weight. Addition of medicinal plants to the diet led to increase in average daily weight increment, significantly and reliably after consuming lavender and lemon balm, less significantly and unreliably after eating Vitex. L. angustifolia and M. officinalis reduced the relative brain weight, and ingestion of L. angustifolia and M. officinalis caused notable decrease in the relative mass of the thymus (down to 58% and 47% of the relative weight of thymus in animals of the control group respectively). Also, these plants decreased the motor and orienting activities of the rats by the end of the experiment. As for the biochemical parameters of blood, the activity of alkaline phosphatase significantly increased to 406% following consumption of Melissa, to 350% after consuming lavender, and to 406% after Vitex, compared to the control group. Furthermore, all the groups were observed to have increased AST and ALT activities. Intake of lavender led to increases in cholesterol (to 125%) and LDL cholesterol (to 228%), whereas the groups that consumed lemon balm were observed to have decreases in urea nitrogen (to 79%), totalbilirubin (to 63%) and triglycerides (to 63%). Addition of Vitex led to increase in the index of aterogenecity against the background of notable fall in HDL cholesterol (to 52% of the control group). The medicinal plants also contributed to the normalization of the glucose level. Morphological analysis of blood revealed no significant changes, except heightened content of monocytes in blood, which is characteristic of all groups, including the control. Effects of L. angustifolia, M. officinalis and V. angus-castus on the organism of rats on excessive-fat diet require additional histological, histochemical and immunological surveys.
Collapse
|
4
|
Abstract
Trace amine-associated receptors (TAARs) are a family of G protein-coupled receptors (GPCRs) that are evolutionarily conserved in vertebrates. The first discovered TAAR1 is mainly expressed in the brain, and is able to detect low abundant trace amines. TAAR1 is also activated by several synthetic compounds and psychostimulant drugs like amphetamine. Activation of TAAR1 by specific agonists can regulate the classical monoaminergic systems in the brain. Further studies have revealed that other TAAR family members are highly expressed in the olfactory system which are termed olfactory TAARs. In vertebrates, olfactory TAARs can specifically recognize volatile or water-soluble amines. Some of these TAAR agonists are produced by decarboxylation of amino acids. In addition, some TAAR agonists are ethological odors that mediate animal innate behaviors. In this study, we provide a comprehensive review of TAAR agonists, including their structures, biosynthesis pathways, and functions.
Collapse
Affiliation(s)
- Zhengrong Xu
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
- Research Institute of Otolaryngology, Nanjing, 210008, China
| | - Qian Li
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, 201210, China.
| |
Collapse
|
5
|
Abstract
Trace amines are endogenous compounds classically regarded as comprising β-phenylethyalmine, p-tyramine, tryptamine, p-octopamine, and some of their metabolites. They are also abundant in common foodstuffs and can be produced and degraded by the constitutive microbiota. The ability to use trace amines has arisen at least twice during evolution, with distinct receptor families present in invertebrates and vertebrates. The term "trace amine" was coined to reflect the low tissue levels in mammals; however, invertebrates have relatively high levels where they function like mammalian adrenergic systems, involved in "fight-or-flight" responses. Vertebrates express a family of receptors termed trace amine-associated receptors (TAARs). Humans possess six functional isoforms (TAAR1, TAAR2, TAAR5, TAAR6, TAAR8, and TAAR9), whereas some fish species express over 100. With the exception of TAAR1, TAARs are expressed in olfactory epithelium neurons, where they detect diverse ethological signals including predators, spoiled food, migratory cues, and pheromones. Outside the olfactory system, TAAR1 is the most thoroughly studied and has both central and peripheral roles. In the brain, TAAR1 acts as a rheostat of dopaminergic, glutamatergic, and serotonergic neurotransmission and has been identified as a novel therapeutic target for schizophrenia, depression, and addiction. In the periphery, TAAR1 regulates nutrient-induced hormone secretion, suggesting its potential as a novel therapeutic target for diabetes and obesity. TAAR1 may also regulate immune responses by regulating leukocyte differentiation and activation. This article provides a comprehensive review of the current state of knowledge of the evolution, physiologic functions, pharmacology, molecular mechanisms, and therapeutic potential of trace amines and their receptors in vertebrates and invertebrates.
Collapse
Affiliation(s)
- Raul R Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia (R.R.G.); Neuroscience, Ophthalmology, and Rare Diseases Discovery and Translational Area, pRED, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (M.C.H.); and Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada (M.D.B.)
| | - Marius C Hoener
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia (R.R.G.); Neuroscience, Ophthalmology, and Rare Diseases Discovery and Translational Area, pRED, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (M.C.H.); and Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada (M.D.B.)
| | - Mark D Berry
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia (R.R.G.); Neuroscience, Ophthalmology, and Rare Diseases Discovery and Translational Area, pRED, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (M.C.H.); and Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada (M.D.B.)
| |
Collapse
|
6
|
Kwon S, Hsieh YS, Shin YK, Kang P, Seol GH. Linalyl acetate prevents olmesartan-induced intestinal hypermotility mediated by interference of the sympathetic inhibitory pathway in hypertensive rat. Biomed Pharmacother 2018; 102:362-368. [PMID: 29571021 DOI: 10.1016/j.biopha.2018.03.095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/15/2018] [Accepted: 03/15/2018] [Indexed: 11/16/2022] Open
Abstract
Olmesartan-associated enteropathy (OAE) is a life-threatening pathological condition, but its underlying mechanisms have not been elucidated. Although intestinal hypermotility is frequently accompanied by chronic diarrhea, there have been no studies of olmesartan-induced hypermotility. Intestinal motility should be well regulated by the enteric nervous system, but degeneration of enteric neurons has been reported in patients with chronic diarrheal diseases, such as irritable bowel syndrome, suggesting a connection between OAE and intestinal hypermotility. In this study, interference with this inhibitory pathway was analyzed in a model of olmesartan-induced intestinal hypermotility (OIH) in rats with nicotine-induced hypertension exposed to chronic immobilizing stress. The effects of the potent inhibitory neurotransmitters norepinephrine (NE) and sodium nitroprusside (SNP), which act via different pathways, were assessed ex vivo, with only NE-modulated frequency and amplitude of spontaneous contractions found to be elevated in OIH rat jejunum. Clinical symptoms frequent in OAE, including atrophy of the intestinal epithelium and weight loss, were observed in these rats. Interestingly, olmesartan significantly elevated heart rate while lowering blood pressure in OIH rats. These abnormal conditions were prevented by adding linalyl acetate (LA), while the blood pressure-lowering effects of olmesartan were maintained. These findings suggest that olmesartan induces intestinal hypermotility by interfering with the sympathetic inhibitory pathway, and reduces epithelial cell size or body weight in hypertensive rats. As LA prevented these effects, combination treatment with olmesartan plus LA may provide better antihypertensive efficacy without inducing OAE.
Collapse
Affiliation(s)
- Soonho Kwon
- Department of Basic Nursing Science, School of Nursing, Korea University, Seoul 02841, Republic of Korea
| | - Yu Shan Hsieh
- Department of Basic Nursing Science, School of Nursing, Korea University, Seoul 02841, Republic of Korea
| | - You Kyoung Shin
- Department of Basic Nursing Science, School of Nursing, Korea University, Seoul 02841, Republic of Korea
| | - Purum Kang
- Department of Basic Nursing Science, School of Nursing, Korea University, Seoul 02841, Republic of Korea
| | - Geun Hee Seol
- Department of Basic Nursing Science, School of Nursing, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
7
|
Berry MD, Gainetdinov RR, Hoener MC, Shahid M. Pharmacology of human trace amine-associated receptors: Therapeutic opportunities and challenges. Pharmacol Ther 2017; 180:161-180. [DOI: 10.1016/j.pharmthera.2017.07.002] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
8
|
Wada N, Yamanaka S, Shibato J, Rakwal R, Hirako S, Iizuka Y, Kim H, Matsumoto A, Kimura A, Takenoya F, Yasunaga G, Shioda S. Behavioral and omics analyses study on potential involvement of dipeptide balenine through supplementation in diet of senescence-accelerated mouse prone 8. GENOMICS DATA 2016; 10:38-50. [PMID: 27672559 PMCID: PMC5030327 DOI: 10.1016/j.gdata.2016.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/02/2016] [Accepted: 09/07/2016] [Indexed: 01/02/2023]
Abstract
This study investigates effects of dipeptide balenine, as a major component of whale meat extract (hereafter, WME), supplementation on senescence-accelerated mouse prone 8 (SAMP8), an Alzheimer's disease (AD) model at level of learning and memory formation and brain expression profiles genome-wide in brain. Mice fed experimental balenine (+ WME) supplemented diet for 26 weeks were subjected to four behavioral tests – open field, Y-maze, novel object recognition, and water-filled multiple T-maze – to examine effects on learning and memory. Brain transcriptome of SAMP8 mice-fed the WME diet over control low-safflower oil (LSO) diet-fed mice was delineated on a 4 × 44 K mouse whole genome DNA microarray chip. Results revealed the WME diet not only induced improvements in the learning and memory formation but also positively modulated changes in the brain of the SAMP8 mouse; the gene inventories are publically available for analysis by the scientific community. Interestingly, the SAMP8 mouse model presented many genetic characteristics of AD, and numerous novel molecules (Slc2a5, Treh, Fbp1, Aldob, Ppp1r1a, DNase1, Agxt2l1, Cyp2e1, Acsm1, Acsm2, and Pah) were revealed over the SAMR1 (senescence-accelerated mouse resistant 1) mouse, to be oppositely regulated/recovered under the balenine (+ WME) supplemented diet regime by DNA microarray and bioinformatics analyses. Our present study demonstrates an experimental strategy to understand the effects of dipeptide balenine, prominetly contained in meat diet, on SAMP8, providing new insight into whole brain transcriptome changes genome-wide. The gene expression data has been deposited into the Gene Expression Omnibus (GEO): GSE76459. The data will be a valuable resource in examining the effects of natural products, and which could also serve as a human model for further functional analysis and investigation.
Collapse
Affiliation(s)
- Nobuhiro Wada
- Department of Anatomy I, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan; Global Research Center for Innovative Life Science, Peptide Drug Innovation, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 4-41 Ebara 2-chome, Shinagawa, Tokyo 142-8501, Japan
| | - Satoru Yamanaka
- Department of Biochemistry, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan
| | - Junko Shibato
- Department of Anatomy I, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan; Global Research Center for Innovative Life Science, Peptide Drug Innovation, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 4-41 Ebara 2-chome, Shinagawa, Tokyo 142-8501, Japan
| | - Randeep Rakwal
- Department of Anatomy I, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan; Global Research Center for Innovative Life Science, Peptide Drug Innovation, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 4-41 Ebara 2-chome, Shinagawa, Tokyo 142-8501, Japan; Faculty of Health and Sport Sciences, Tsukuba International Academy for Sport Studies (TIAS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8574, Japan
| | - Satoshi Hirako
- Department of Anatomy I, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan
| | - Yuzuru Iizuka
- Department of Clinical Dietetics & Human Nutrition, Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan
| | - Hyounju Kim
- Department of Clinical Dietetics & Human Nutrition, Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan
| | - Akiyo Matsumoto
- Department of Clinical Dietetics & Human Nutrition, Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan
| | - Ai Kimura
- Department of Anatomy I, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan
| | - Fumiko Takenoya
- Department of Exercise and Sports Physiology, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 4-41 Ebara 2-chome, Shinagawa, Tokyo 142-8501, Japan
| | - Genta Yasunaga
- The Institute of Cetacean Research, Toyomi-cho 4-5, Chuo-ku, Tokyo 104-0055, Japan
| | - Seiji Shioda
- Department of Anatomy I, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan; Global Research Center for Innovative Life Science, Peptide Drug Innovation, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 4-41 Ebara 2-chome, Shinagawa, Tokyo 142-8501, Japan
| |
Collapse
|
9
|
Hori M, Kubo H, Shibato J, Saito T, Ogawa T, Wakamori M, Masuo Y, Shioda S, Rakwal R. Unraveling the rat blood genome-wide transcriptome after oral administration of lavender oil by a two-color dye-swap DNA microarray approach. GENOMICS DATA 2016; 8:139-45. [PMID: 27330992 PMCID: PMC4907047 DOI: 10.1016/j.gdata.2016.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 05/08/2016] [Accepted: 05/08/2016] [Indexed: 11/03/2022]
Abstract
Lavender oil (LO) is a commonly used essential oil in aromatherapy as non-traditional medicine. With an aim to demonstrate LO effects on the body, we have recently established an animal model investigating the influence of orally administered LO in rat tissues, genome-wide. In this brief, we investigate the effect of LO ingestion in the blood of rat. Rats were administered LO at usual therapeutic dose (5 mg/kg) in humans, and following collection of the venous blood from the heart and extraction of total RNA, the differentially expressed genes were screened using a 4 × 44-K whole-genome rat chip (Agilent microarray platform; Agilent Technologies, Palo Alto, CA, USA) in conjunction with a two-color dye-swap approach. A total of 834 differentially expressed genes in the blood were identified: 362 up-regulated and 472 down-regulated. These genes were functionally categorized using bioinformatics tools. The gene expression inventory of rat blood transcriptome under LO, a first report, has been deposited into the Gene Expression Omnibus (GEO): GSE67499. The data will be a valuable resource in examining the effects of natural products, and which could also serve as a human model for further functional analysis and investigation.
Collapse
Affiliation(s)
- Motohide Hori
- Department of Oral Biology, Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan
| | - Hiroko Kubo
- Department of Anatomy I, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan; Oriental Aromatherapy College, 5-22-9 Kameari, Katsushika, Tokyo 125-0061, Japan
| | - Junko Shibato
- Department of Anatomy I, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan; Global Research Center for Innovative Life Science, Peptide Drug Innovation, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 4-41 Ebara 2-chome, Shinagawa, Tokyo 142-8501, Japan
| | - Tomomi Saito
- Department of Anatomy I, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan
| | - Tetsuo Ogawa
- Department of Anatomy I, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan; Department of Physiology, Saitama Medical University, 38 Morohongo Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan
| | - Minoru Wakamori
- Department of Oral Biology, Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan
| | - Yoshinori Masuo
- Laboratory of Neuroscience, Department of Biology, Faculty of Science, Toho University, Funabashi, Chiba 274-8510, Japan
| | - Seiji Shioda
- Department of Anatomy I, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan; Global Research Center for Innovative Life Science, Peptide Drug Innovation, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 4-41 Ebara 2-chome, Shinagawa, Tokyo 142-8501, Japan
| | - Randeep Rakwal
- Department of Anatomy I, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan; Global Research Center for Innovative Life Science, Peptide Drug Innovation, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 4-41 Ebara 2-chome, Shinagawa, Tokyo 142-8501, Japan; Faculty of Health and Sport Sciences and Tsukuba International Academy for Sport Studies (TIAS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8574, Ibaraki, Japan
| |
Collapse
|
10
|
Yook JS, Shibato J, Rakwal R, Soya H. DNA microarray-based experimental strategy for trustworthy expression profiling of the hippocampal genes by astaxanthin supplementation in adult mouse. GENOMICS DATA 2016; 7:32-7. [PMID: 26981356 PMCID: PMC4778586 DOI: 10.1016/j.gdata.2015.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 11/06/2015] [Indexed: 11/29/2022]
Abstract
Naturally occurring astaxantin (ASX) is one of the noticeable carotenoid and dietary supplement, which has strong antioxidant and anti-inflammatory properties, and neuroprotective effects in the brain through crossing the blood-brain barrier. Specially, we are interested in the role of ASX as a brain food. Although ASX has been suggested to have potential benefit to the brain function, the underlying molecular mechanisms and events mediating such effect remain unknown. Here we examined molecular factors in the hippocampus of adult mouse fed ASX diets (0.1% and 0.5% doses) using DNA microarray (Agilent 4 × 44 K whole mouse genome chip) analysis. In this study, we described in detail our experimental workflow and protocol, and validated quality controls with the housekeeping gene expression (Gapdh and Beta-actin) on the dye-swap based approach to advocate our microarray data, which have been uploaded to Gene Expression Omnibus (accession number GSE62197) as a gene resource for the scientific community. This data will also form an important basis for further detailed experiments and bioinformatics analysis with an aim to unravel the potential molecular pathways or mechanisms underlying the positive effects of ASX supplementation on the brain, in particular the hippocampus.
Collapse
Affiliation(s)
- Jang Soo Yook
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8574, Ibaraki, Japan
| | - Junko Shibato
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8574, Ibaraki, Japan
- Global Research Center for Innovative Life Science, Peptide Drug Innovation, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 4-41 Ebara 2-chome, Shinagawa, Tokyo 142-8501, Japan
| | - Randeep Rakwal
- Global Research Center for Innovative Life Science, Peptide Drug Innovation, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 4-41 Ebara 2-chome, Shinagawa, Tokyo 142-8501, Japan
- Faculty of Health and Sport Sciences & Tsukuba International Academy for Sport Studies (TIAS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8574, Ibaraki, Japan
| | - Hideaki Soya
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8574, Ibaraki, Japan
| |
Collapse
|