1
|
Martinez JD, Wilson LG, Brancaleone WP, Peterson KG, Popke DS, Garzon VC, Perez Tremble RE, Donnelly MJ, Mendez Ortega SL, Torres D, Shaver JJ, Jiang S, Yang Z, Aton SJ. Hypnotic treatment improves sleep architecture and EEG disruptions and rescues memory deficits in a mouse model of fragile X syndrome. Cell Rep 2024; 43:114266. [PMID: 38787724 PMCID: PMC11910971 DOI: 10.1016/j.celrep.2024.114266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/20/2023] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Fragile X syndrome (FXS) is associated with disrupted cognition and sleep abnormalities. Sleep loss negatively impacts cognitive function, and one untested possibility is that disrupted cognition in FXS is exacerbated by abnormal sleep. We tested whether ML297, a hypnotic acting on G-protein-activated inward-rectifying potassium (GIRK) channels, could reverse sleep phenotypes and disrupted memory in Fmr1-/y mice. Fmr1-/y mice exhibit reduced non-rapid eye movement (NREM) sleep and fragmented NREM architecture, altered sleep electroencephalogram (EEG) oscillations, and reduced EEG coherence between cortical areas; these are partially reversed following ML297 administration. Treatment following contextual fear or spatial learning restores disrupted memory consolidation in Fmr1-/y mice. During memory recall, Fmr1-/y mice show an altered balance of activity among hippocampal principal neurons vs. parvalbumin-expressing interneurons; this is partially reversed by ML297. Because sleep disruption could impact neurophysiological phenotypes in FXS, augmenting sleep may improve disrupted cognition in this disorder.
Collapse
Affiliation(s)
- Jessy D Martinez
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lydia G Wilson
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - William P Brancaleone
- Undergraduate Program in Neuroscience, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kathryn G Peterson
- Undergraduate Program in Neuroscience, University of Michigan, Ann Arbor, MI 48109, USA
| | - Donald S Popke
- Undergraduate Program in Neuroscience, University of Michigan, Ann Arbor, MI 48109, USA
| | - Valentina Caicedo Garzon
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Roxanne E Perez Tremble
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Marcus J Donnelly
- Undergraduate Program in Neuroscience, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Daniel Torres
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - James J Shaver
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sha Jiang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zhongying Yang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sara J Aton
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
2
|
Huang J, Xu F, Yang L, Tuolihong L, Wang X, Du Z, Zhang Y, Yin X, Li Y, Lu K, Wang W. Involvement of the GABAergic system in PTSD and its therapeutic significance. Front Mol Neurosci 2023; 16:1052288. [PMID: 36818657 PMCID: PMC9928765 DOI: 10.3389/fnmol.2023.1052288] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/16/2023] [Indexed: 02/04/2023] Open
Abstract
The neurobiological mechanism of post-traumatic stress disorder (PTSD) is poorly understood. The inhibition of GABA neurons, especially in the amygdala, is crucial for the precise regulation of the consolidation, expression, and extinction of fear conditioning. The GABAergic system is involved in the pathophysiological process of PTSD, with several studies demonstrating that the function of the GABAergic system decreases in PTSD patients. This paper reviews the preclinical and clinical studies, neuroimaging techniques, and pharmacological studies of the GABAergic system in PTSD and summarizes the role of the GABAergic system in PTSD. Understanding the role of the GABAergic system in PTSD and searching for new drug targets will be helpful in the treatment of PTSD.
Collapse
Affiliation(s)
| | - Fei Xu
- Department of Psychiatry of School of Public Health, Southern Medical University, Guangzhou, China
| | - Liping Yang
- Department of Applied Psychology of School of Public Health, Southern Medical University, Guangzhou, China
| | - Lina Tuolihong
- Department of Basic Medical of Basic Medical College, Southern Medical University, Guangzhou, China
| | - Xiaoyu Wang
- Eight-Year Master's and Doctoral Program in Clinical Medicine of the First Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Zibo Du
- Eight-Year Master's and Doctoral Program in Clinical Medicine of the First Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Yiqi Zhang
- Eight-Year Master's and Doctoral Program in Clinical Medicine of the First Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Xuanlin Yin
- Department of Basic Medical of Basic Medical College, Southern Medical University, Guangzhou, China
| | - Yingjun Li
- Department of Medical Laboratory Science, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Kangrong Lu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, China
| | - Wanshan Wang
- Department of Laboratory Animal Center, Southern Medical University, Guangzhou, China
| |
Collapse
|
3
|
Repeated ketamine anesthesia during neurodevelopment upregulates hippocampal activity and enhances drug reward in male mice. Commun Biol 2022; 5:709. [PMID: 35840630 PMCID: PMC9287305 DOI: 10.1038/s42003-022-03667-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 06/30/2022] [Indexed: 11/09/2022] Open
Abstract
Early exposures to anesthetics can cause long-lasting changes in excitatory/inhibitory synaptic transmission (E/I imbalance), an important mechanism for neurodevelopmental disorders. Since E/I imbalance is also involved with addiction, we further investigated possible changes in addiction-related behaviors after multiple ketamine anesthesia in late postnatal mice. Postnatal day (PND) 16 mice received multiple ketamine anesthesia (35 mg kg-1, 5 days), and behavioral changes were evaluated at PND28 and PND56. Although mice exposed to early anesthesia displayed normal behavioral sensitization, we found significant increases in conditioned place preference to both low-dose ketamine (20 mg kg-1) and nicotine (0.5 mg kg-1). By performing transcriptome analysis and whole-cell recordings in the hippocampus, a brain region involved with CPP, we also discovered enhanced neuronal excitability and E/I imbalance in CA1 pyramidal neurons. Interestingly, these changes were not found in female mice. Our results suggest that repeated ketamine anesthesia during neurodevelopment may influence drug reward behavior later in life.
Collapse
|
4
|
Bajo VM, Nodal FR, Korn C, Constantinescu AO, Mann EO, Boyden ES, King AJ. Silencing cortical activity during sound-localization training impairs auditory perceptual learning. Nat Commun 2019; 10:3075. [PMID: 31300665 PMCID: PMC6625986 DOI: 10.1038/s41467-019-10770-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 05/28/2019] [Indexed: 11/09/2022] Open
Abstract
The brain has a remarkable capacity to adapt to changes in sensory inputs and to learn from experience. However, the neural circuits responsible for this flexible processing remain poorly understood. Using optogenetic silencing of ArchT-expressing neurons in adult ferrets, we show that within-trial activity in primary auditory cortex (A1) is required for training-dependent recovery in sound-localization accuracy following monaural deprivation. Because localization accuracy under normal-hearing conditions was unaffected, this highlights a specific role for cortical activity in learning. A1-dependent plasticity appears to leave a memory trace that can be retrieved, facilitating adaptation during a second period of monaural deprivation. However, in ferrets in which learning was initially disrupted by perturbing A1 activity, subsequent optogenetic suppression during training no longer affected localization accuracy when one ear was occluded. After the initial learning phase, the reweighting of spatial cues that primarily underpins this plasticity may therefore occur in A1 target neurons.
Collapse
Affiliation(s)
- Victoria M Bajo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK.
| | - Fernando R Nodal
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | - Clio Korn
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK.,UCSF School of Medicine, San Francisco, CA, 94143-0410, USA
| | - Alexandra O Constantinescu
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK.,Institute of Cognitive Neuroscience, University College London, London, WC1N 3AR, UK
| | - Edward O Mann
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | - Edward S Boyden
- Departments of Biological Engineering and Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Andrew J King
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK.
| |
Collapse
|
5
|
Smith C, Frolinger T, Brathwaite J, Sims S, Pasinetti GM. Dietary polyphenols enhance optogenetic recall of fear memory in hippocampal dentate gyrus granule neuron subpopulations. Commun Biol 2018; 1:42. [PMID: 30271926 PMCID: PMC6123622 DOI: 10.1038/s42003-018-0043-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 03/30/2018] [Indexed: 12/23/2022] Open
Abstract
Grape-derived polyphenols have been investigated for their role in promoting memory in model systems of stress, but little is known about select subpopulations of neurons that are influenced by polyphenols to improve memory performance. Granule neurons in the hippocampal dentate gyrus are vulnerable to stressors that impair contextual memory function and can be influenced by dietary polyphenols. We utilized a c-fos-tTA/TRE-ChR2 optogenetics model in which neurons activated during fear learning are labeled with ChR2-mCherry and can be optically reactivated in a different context to recapitulate the behavioral output of a related memory. Treatment with dietary polyphenols increased fear memory recall and ChR2-mCherry expression in dentate gyrus neurons, suggesting that dietary polyphenols promote recruitment of neurons to a fear memory engram. We show that dietary polyphenols promote memory function and offer a general method to map cellular subpopulations influenced by dietary polyphenols, in part through the mechanism of c-Fos expression enhancement. Chad Smith et al. show that dietary polyphenols, compounds found in grapes, enable mice to remember fearful events more effectively and map this function to the hippocampal dentate gyrus neurons. This study offers a way to identify the cellular subpopulations regulated by dietary polyphenols.
Collapse
Affiliation(s)
- Chad Smith
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, USA.,JJ Peters VA Medical Center, Bronx, 10468, VA, USA
| | - Tal Frolinger
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, USA.,JJ Peters VA Medical Center, Bronx, 10468, VA, USA
| | - Justin Brathwaite
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, USA.,JJ Peters VA Medical Center, Bronx, 10468, VA, USA
| | - Steven Sims
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, USA.,JJ Peters VA Medical Center, Bronx, 10468, VA, USA
| | - Giulio M Pasinetti
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, USA. .,JJ Peters VA Medical Center, Bronx, 10468, VA, USA.
| |
Collapse
|
6
|
Amadi U, Lim SH, Liu E, Baratta MV, Goosens KA. Hippocampal Processing of Ambiguity Enhances Fear Memory. Psychol Sci 2016; 28:143-161. [PMID: 28182526 DOI: 10.1177/0956797616674055] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Despite the ubiquitous use of Pavlovian fear conditioning as a model for fear learning, the highly predictable conditions used in the laboratory do not resemble real-world conditions, in which dangerous situations can lead to unpleasant outcomes in unpredictable ways. In the current experiments, we varied the timing of aversive events after predictive cues in rodents and discovered that temporal ambiguity of aversive events greatly enhances fear. During fear conditioning with unpredictably timed aversive events, pharmacological inactivation of the dorsal hippocampus or optogenetic silencing of cornu ammonis 1 cells during aversive negative prediction errors prevented this enhancement of fear without affecting fear learning for predictable events. Dorsal hippocampal inactivation also prevented ambiguity-related enhancement of fear during auditory fear conditioning under a partial-reinforcement schedule. These results reveal that information about the timing and occurrence of aversive events is rapidly acquired and that unexpectedly timed or omitted aversive events generate hippocampal signals to enhance fear learning.
Collapse
Affiliation(s)
- Ugwechi Amadi
- McGovern Institute for Brain Research and the Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology
| | - Seh Hong Lim
- McGovern Institute for Brain Research and the Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology
| | - Elizabeth Liu
- McGovern Institute for Brain Research and the Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology
| | - Michael V Baratta
- McGovern Institute for Brain Research and the Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology
| | - Ki A Goosens
- McGovern Institute for Brain Research and the Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology
| |
Collapse
|
7
|
Mirtazapine exerts an anxiolytic-like effect through activation of the median raphe nucleus-dorsal hippocampal 5-HT pathway in contextual fear conditioning in rats. Prog Neuropsychopharmacol Biol Psychiatry 2016; 70:17-23. [PMID: 27137833 DOI: 10.1016/j.pnpbp.2016.04.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 04/09/2016] [Accepted: 04/28/2016] [Indexed: 12/20/2022]
Abstract
The functional role of serotonergic projections from the median raphe nucleus (MRN) to the dorsal hippocampus (DH) in anxiety remains understood poorly. The purpose of the present research was to examine the functional role of this pathway, using the contextual fear conditioning (CFC) model of anxiety. We show that intra-MRN microinjection of mirtazapine, a noradrenergic and specific serotonergic antidepressant, reduced freezing in CFC without affecting general motor activity dose-dependently, suggesting an anxiolytic-like effect. In addition, intra-MRN microinjection of mirtazapine dose-dependently increased extracellular concentrations of serotonin (5-HT) but not dopamine in the DH. Importantly, intra-DH pre-microinjection of WAY-100635, a 5-HT1A antagonist, significantly attenuated the effect of mirtazapine on freezing. These results, for the first time, suggest that activation of the MRN-DH 5-HT1A pathway exerts an anxiolytic-like effect in CFC. This is consistent with the literature that the hippocampus is essential for retrieval of contextual memory and that 5-HT1A receptor activation in the hippocampus primarily exerts an inhibitory effect on the neuronal activity.
Collapse
|
8
|
Abstract
To understand brain function, it is essential that we discover how cellular signaling specifies normal and pathological brain function. In this regard, chemogenetic technologies represent valuable platforms for manipulating neuronal and non-neuronal signal transduction in a cell-type-specific fashion in freely moving animals. Designer Receptors Exclusively Activated by Designer Drugs (DREADD)-based chemogenetic tools are now commonly used by neuroscientists to identify the circuitry and cellular signals that specify behavior, perceptions, emotions, innate drives, and motor functions in species ranging from flies to nonhuman primates. Here I provide a primer on DREADDs highlighting key technical and conceptual considerations and identify challenges for chemogenetics going forward.
Collapse
|
9
|
Halonen JD, Zoladz PR, Park CR, Diamond DM. Behavioral and Neurobiological Assessments of Predator-Based Fear Conditioning and Extinction. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/jbbs.2016.68033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Fuller PM, Yamanaka A, Lazarus M. How genetically engineered systems are helping to define, and in some cases redefine, the neurobiological basis of sleep and wake. Temperature (Austin) 2015; 2:406-17. [PMID: 27227054 PMCID: PMC4843941 DOI: 10.1080/23328940.2015.1075095] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 07/13/2015] [Accepted: 07/15/2015] [Indexed: 10/29/2022] Open
Abstract
The advent of genetically engineered systems, including transgenic animals and recombinant viral vectors, has facilitated a more detailed understanding of the molecular and cellular substrates regulating brain function. In this review we highlight some of the most recent molecular biology and genetic technologies in the experimental "systems neurosciences," many of which are rapidly becoming a methodological standard, and focus in particular on those tools and techniques that permit the reversible and cell-type specific manipulation of neurons in behaving animals. These newer techniques encompass a wide range of approaches including conditional deletion of genes based on Cre/loxP technology, gene silencing using RNA interference, cell-type specific mapping or ablation and reversible manipulation (silencing and activation) of neurons in vivo. Combining these approaches with viral vector delivery systems, in particular adeno-associated viruses (AAV), has extended, in some instances greatly, the utility of these tools. For example, the spatially- and/or temporally-restricted transduction of specific neuronal cell populations is now routinely achieved using the combination of Cre-driver mice and stereotaxic-based delivery of AAV expressing Cre-dependent cassettes. We predict that the experimental application of these tools, including creative combinatorial approaches and the development of even newer reagents, will prove necessary for a complete understanding of the neuronal circuits subserving most neurobiological functions, including the regulation of sleep and wake.
Collapse
Affiliation(s)
- Patrick M Fuller
- Department of Neurology; Beth Israel Deaconess Medical Center; Division of Sleep Medicine; Harvard Medical School; Boston, MA USA
| | - Akihiro Yamanaka
- Department of Neuroscience II; Research Institute of Environmental Medicine; Nagoya University; Nagoya, Aichi, Japan
| | - Michael Lazarus
- International Institute for Integrative Sleep Medicine; University of Tsukuba; Tsukuba, Ibaraki, Japan
| |
Collapse
|