1
|
Li N, Wang H, Zhao H, Wang M, Cai J, Hao Y, Yu J, Jiang Y, Lü X, Liu B. Cooperative interactions between Veillonella ratti and Lactobacillus acidophilus ameliorate DSS-induced ulcerative colitis in mice. Food Funct 2023; 14:10475-10492. [PMID: 37934670 DOI: 10.1039/d3fo03898j] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Veillonella and Lactobacillus species are key regulators of a healthy gut environment through metabolic cross-feeding, influencing lactic acid and short-chain fatty acid (SCFA) levels, which are crucial for gut health. This study aims to investigate how Veillonella ratti (V. ratti) and Lactobacillus acidophilus (LA) interact with each other and alleviate dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) in a mouse model. We assess their metabolic interactions regarding carbon sources through co-culturing in a modified medium. In the in vitro experiments, V. ratti and LA were inoculated in mono-cultures and co-culture, and viable cell counts, OD600, pH, lactic acid, glucose and SCFAs were measured. For the in vivo experiment, 60 C57BL/6 mice were randomly divided into five groups and administered V. ratti and LA alone or in combination via oral gavage (1 × 109 CFU mL-1 per day per mouse) for 14 days. On the seventh day, 2.5% DSS was added to the drinking water to induce colitis. The effects of these probiotics on UC were evaluated by assessing intestinal barrier integrity and intestinal inflammation in the gut microenvironment. In vitro results demonstrated that co-culturing V. ratti with LA significantly increased viable cell numbers, lactic acid production, and SCFA production, while reducing pH and glucose levels in the medium. In vivo findings revealed that intervention with V. ratti, particularly in combination with LA, alleviated symptoms, including weight loss, colon shortening, and tissue damage. These probiotics mitigated intestinal inflammation by down-regulating pro-inflammatory molecules, such as IL-6, IL-1β, IL-γ, iNOS, and IFN-γ, as well as oxidative stress markers, including MDA and MPO. Concurrently, they upregulated the activity of anti-inflammatory enzymes, namely, SOD and GSH, and promoted the production of SCFAs. The combined intervention of V. ratti and LA significantly increased acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, and total SCFAs in cecal contents. Furthermore, the intervention of V. ratti and LA increased the abundance of beneficial bacteria, such as Akkermansia, while reducing the abundance of harmful bacteria, such as Escherichia-Shigella and Desulfovibrio, thereby mitigating excessive inflammation. These findings highlight the enhanced therapeutic effects resulting from the interactions between V. ratti and LA, demonstrating the potential of this combined probiotic approach.
Collapse
Affiliation(s)
- Na Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Hejing Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Huizhu Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Mengyang Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Jin Cai
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Yi Hao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Jia Yu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Yun Jiang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Bianfang Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
2
|
AB 5 Enterotoxin-Mediated Pathogenesis: Perspectives Gleaned from Shiga Toxins. Toxins (Basel) 2022; 14:toxins14010062. [PMID: 35051039 PMCID: PMC8779504 DOI: 10.3390/toxins14010062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 02/01/2023] Open
Abstract
Foodborne diseases affect an estimated 600 million people worldwide annually, with the majority of these illnesses caused by Norovirus, Vibrio, Listeria, Campylobacter, Salmonella, and Escherichia coli. To elicit infections in humans, bacterial pathogens express a combination of virulence factors and toxins. AB5 toxins are an example of such toxins that can cause various clinical manifestations, including dehydration, diarrhea, kidney damage, hemorrhagic colitis, and hemolytic uremic syndrome (HUS). Treatment of most bacterial foodborne illnesses consists of fluid replacement and antibiotics. However, antibiotics are not recommended for infections caused by Shiga toxin-producing E. coli (STEC) because of the increased risk of HUS development, although there are conflicting views and results in this regard. Lack of effective treatment strategies for STEC infections pose a public health threat during outbreaks; therefore, the debate on antibiotic use for STEC infections could be further explored, along with investigations into antibiotic alternatives. The overall goal of this review is to provide a succinct summary on the mechanisms of action and the pathogenesis of AB5 and related toxins, as expressed by bacterial foodborne pathogens, with a primary focus on Shiga toxins (Stx). The role of Stx in human STEC disease, detection methodologies, and available treatment options are also briefly discussed.
Collapse
|
3
|
Tang J, Wu Q, Tang X, Shi R, Suo J, Huang G, An J, Wang J, Yang J, Hao W, She R, Suo X. Development of a vivo rabbit ligated intestinal Loop Model for HCMV infection. J Anim Sci Biotechnol 2016; 7:69. [PMID: 27999668 PMCID: PMC5154130 DOI: 10.1186/s40104-016-0129-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 11/19/2016] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Human Cytomegalovirus (HCMV) infections can be found throughout the body, especially in epithelial tissue. Animal model was established by inoculation of HCMV (strain AD-169) or coinoculation with Hepatitis E virus (HEV) into the ligated sacculus rotundus and vermiform appendix in living rabbits. The specimens were collected from animals sacrificed 1 and a half hours after infection. RESULTS The virus was found to be capable of reproducing in these specimens through RT-PCR and Western-blot. Severe inflammation damage was found in HCMV-infected tissue. The viral protein could be detected in high amounts in the mucosal epithelium and lamina propria by immunohistochemistry and immunofluorescense. Moreover, there are strong positive signals in lymphocytes, macrophages, and lymphoid follicles. Quantitative statistics indicate that lymphocytes among epithlium cells increased significantly in viral infection groups. CONCLUSIONS The results showed that HCMV or HEV + HCMV can efficiently infect in rabbits by vivo ligated intestine loop inoculation. The present study successfully developed an infective model in vivo rabbit ligated intestinal Loop for HCMV pathogenesis study. This rabbit model can be helpful for understanding modulation of the gut immune system with HCMV infection.
Collapse
Affiliation(s)
- Jin Tang
- National animal protozoa laboratory,College of VeterinaryMedicine, China Agricultural University, Beijing, 100193 China
| | - Qiaoxing Wu
- Laboratory of Animal Pathology & Public Health, College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
| | - Xinming Tang
- National animal protozoa laboratory,College of VeterinaryMedicine, China Agricultural University, Beijing, 100193 China
| | - Ruihan Shi
- Laboratory of Animal Pathology & Public Health, College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
| | - Jingxia Suo
- National animal protozoa laboratory,College of VeterinaryMedicine, China Agricultural University, Beijing, 100193 China
| | - Guangping Huang
- National animal protozoa laboratory,College of VeterinaryMedicine, China Agricultural University, Beijing, 100193 China
| | - Junqing An
- Laboratory of Animal Pathology & Public Health, College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
| | - Jingyuan Wang
- Laboratory of Animal Pathology & Public Health, College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
| | - Jinling Yang
- Laboratory of Animal Pathology & Public Health, College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
| | - Wenzhuo Hao
- Laboratory of Animal Pathology & Public Health, College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
| | - Ruiping She
- Laboratory of Animal Pathology & Public Health, College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
| | - Xun Suo
- National animal protozoa laboratory,College of VeterinaryMedicine, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
4
|
Baranzoni GM, Fratamico PM, Gangiredla J, Patel I, Bagi LK, Delannoy S, Fach P, Boccia F, Anastasio A, Pepe T. Characterization of Shiga Toxin Subtypes and Virulence Genes in Porcine Shiga Toxin-Producing Escherichia coli. Front Microbiol 2016; 7:574. [PMID: 27148249 PMCID: PMC4838603 DOI: 10.3389/fmicb.2016.00574] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/07/2016] [Indexed: 11/18/2022] Open
Abstract
Similar to ruminants, swine have been shown to be a reservoir for Shiga toxin-producing Escherichia coli (STEC), and pork products have been linked with outbreaks associated with STEC O157 and O111:H-. STEC strains, isolated in a previous study from fecal samples of late-finisher pigs, belonged to a total of 56 serotypes, including O15:H27, O91:H14, and other serogroups previously associated with human illness. The isolates were tested by polymerase chain reaction (PCR) and a high-throughput real-time PCR system to determine the Shiga toxin (Stx) subtype and virulence-associated and putative virulence-associated genes they carried. Select STEC strains were further analyzed using a Minimal Signature E. coli Array Strip. As expected, stx2e (81%) was the most common Stx variant, followed by stx1a (14%), stx2d (3%), and stx1c (1%). The STEC serogroups that carried stx2d were O15:H27, O159:H16 and O159:H-. Similar to stx2a and stx2c, the stx2d variant is associated with development of hemorrhagic colitis and hemolytic uremic syndrome, and reports on the presence of this variant in STEC strains isolated from swine are lacking. Moreover, the genes encoding heat stable toxin (estIa) and enteroaggregative E. coli heat stable enterotoxin-1 (astA) were commonly found in 50 and 44% of isolates, respectively. The hemolysin genes, hlyA and ehxA, were both detected in 7% of the swine STEC strains. Although the eae gene was not found, other genes involved in host cell adhesion, including lpfAO113 and paa were detected in more than 50% of swine STEC strains, and a number of strains also carried iha, lpfAO26, lpfAO157, fedA, orfA, and orfB. The present work provides new insights on the distribution of virulence factors among swine STEC strains and shows that swine may carry Stx1a-, Stx2e-, or Stx2d-producing E. coli with virulence gene profiles associated with human infections.
Collapse
Affiliation(s)
- Gian Marco Baranzoni
- Eastern Regional Research Center, United States Department of Agriculture - Agricultural Research Service Wyndmoor, PA, USA
| | - Pina M Fratamico
- Eastern Regional Research Center, United States Department of Agriculture - Agricultural Research Service Wyndmoor, PA, USA
| | - Jayanthi Gangiredla
- Center of Food Safety and Applied Nutrition, U.S. Food and Drug Administration Laurel, MD, USA
| | - Isha Patel
- Center of Food Safety and Applied Nutrition, U.S. Food and Drug Administration Laurel, MD, USA
| | - Lori K Bagi
- Eastern Regional Research Center, United States Department of Agriculture - Agricultural Research Service Wyndmoor, PA, USA
| | - Sabine Delannoy
- Food Safety Laboratory, University of Paris-Est, Anses, Maisons-Alfort France
| | - Patrick Fach
- Food Safety Laboratory, University of Paris-Est, Anses, Maisons-Alfort France
| | - Federica Boccia
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples Italy
| | - Aniello Anastasio
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples Italy
| | - Tiziana Pepe
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples Italy
| |
Collapse
|