1
|
Alemán OR, Quintero JC, Camacho-Arroyo I. The language of glioblastoma: A tale of cytokines and sex hormones communication. Neurooncol Adv 2025; 7:vdaf017. [PMID: 40351835 PMCID: PMC12063100 DOI: 10.1093/noajnl/vdaf017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025] Open
Abstract
Glioblastoma (GB) is the most aggressive and frequent tumor in the central nervous system and, in humans, represents the worst prognosis for cancer. GB develops a very complex microenvironment, recruiting and interacting with a variety of cells and soluble factors, including immune cells, cytokines, and sex hormones, that contribute to GB survival and progression. Recent evidence has shown a crosstalk between cytokine and sex hormone signaling in GB. This communication could provide GB resistance to treatments and malignancy. Then, how GB orchestrates this communication is a matter of interest. For instance, a critical interaction between tumor necrosis factor-beta (TGF-β) and estrogen receptor signaling has been reported in regulating epithelial-mesenchymal transition, an essential step in GB progression. Furthermore, an inhibition of TGF-β signaling by androgen receptor has been reported to promote GB tumorigenesis in men. Conversely, it has been described that cytokines regulate steroid hormone production in different organs, and this mechanism could be involved in GB development and progression. All these data suggest an intercommunication between the immune and endocrine systems in the tumor microenvironment. Thus, in this review, we focus on explaining the knowledge about this critical intercommunication system and its implication in GB progression.
Collapse
Affiliation(s)
- Omar Rafael Alemán
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 11000, México
| | - Juan Carlos Quintero
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 11000, México
| | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 11000, México
| |
Collapse
|
2
|
Yin J, Liu G, Zhang Y, Zhou Y, Pan Y, Zhang Q, Yu R, Gao S. Gender differences in gliomas: From epidemiological trends to changes at the hormonal and molecular levels. Cancer Lett 2024; 598:217114. [PMID: 38992488 DOI: 10.1016/j.canlet.2024.217114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/28/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Gender plays a crucial role in the occurrence and development of cancer, as well as in the metabolism of nutrients and energy. Men and women display significant differences in the incidence, prognosis, and treatment response across various types of cancer, including certain sex-specific tumors. It has been observed that male glioma patients have a higher incidence and worse prognosis than female patients, but there is currently a limited systematic evaluation of sex differences in gliomas. The purpose of this study is to provide an overview of the association between fluctuations in sex hormone levels and changes in their receptor expression with the incidence, progression, treatment, and prognosis of gliomas. Estrogen may have a protective effect on glioma patients, while exposure to androgens increases the risk of glioma. We also discussed the specific genetic and molecular differences between genders in terms of the malignant nature and prognosis of gliomas. Factors such as TP53, MGMT methylation status may play a crucial role. Therefore, it is essential to consider the gender of patients while treating glioma, particularly the differences at the hormonal and molecular levels. This approach can help in the adoption of an individualized treatment strategy.
Collapse
Affiliation(s)
- Jiale Yin
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, China; Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Gai Liu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, China; Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Yue Zhang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, China; Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Yu Zhou
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, China; Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Yuchun Pan
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, China; Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Qiaoshan Zhang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, China; Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Rutong Yu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, China; Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Shangfeng Gao
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, China; Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China.
| |
Collapse
|
3
|
Chen HC, Lin HY, Chiang YH, Yang WB, Wang CH, Yang PY, Hu SL, Hsu TI. Progesterone boosts abiraterone-driven target and NK cell therapies against glioblastoma. J Exp Clin Cancer Res 2024; 43:218. [PMID: 39103871 DOI: 10.1186/s13046-024-03144-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024] Open
Abstract
INTRODUCTION Glioblastoma (GBM) poses a significant challenge in oncology, with median survival times barely extending beyond a year due to resistance to standard therapies like temozolomide (TMZ). This study introduces a novel therapeutic strategy combining progesterone (Prog) and abiraterone (Abi) aimed at enhancing GBM treatment efficacy by modulating the tumor microenvironment and augmenting NK cell-mediated immunity. METHODS We employed in vitro and in vivo GBM models to assess the effects of Prog and Abi on cell viability, proliferation, apoptosis, and the immune microenvironment. Techniques included cell viability assays, Glo-caspase 3/7 apoptosis assays, RNA-seq and qPCR for gene expression, Seahorse analysis for mitochondrial function, HPLC-MS for metabolomics analysis, and immune analysis by flow cytometry to quantify NK cell infiltration. RESULTS Prog significantly reduced the IC50 of Abi in TMZ-resistant GBM cell, suggesting the enhanced cytotoxicity. Treatment induced greater apoptosis than either agent alone, suppressed tumor growth, and prolonged survival in mouse models. Notably, there was an increase in CD3-/CD19-/CD56+/NK1.1+ NK cell infiltration in treated tumors, indicating a shift towards an anti-tumor immune microenvironment. The combination therapy also resulted in a reduction of MGMT expression and a suppression of mitochondrial respiration and glycolysis in GBM cells. CONCLUSION The combination of Prog and Abi represents a promising therapeutic approach for GBM, showing potential in suppressing tumor growth, extending survival, and modulating the immune microenvironment. These findings warrant further exploration into the clinical applicability of this strategy to improve outcomes for GBM patients.
Collapse
Affiliation(s)
- Hsien-Chung Chen
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan
- Department of Neurosurgery, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Hong-Yi Lin
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan
- Research Center for Neuroscience, Taipei Medical University, Taipei, Taiwan
| | - Yung-Hsiao Chiang
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan
- Research Center for Neuroscience, Taipei Medical University, Taipei, Taiwan
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Surgery, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wen-Bin Yang
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, Taiwan
- Research Center for Neuroscience, Taipei Medical University, Taipei, Taiwan
- International Master Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Chung-Han Wang
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, Taiwan
| | - Pei-Yu Yang
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, Taiwan
| | - Siou-Lian Hu
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, Taiwan
| | - Tsung-I Hsu
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, Taiwan.
- Research Center for Neuroscience, Taipei Medical University, Taipei, Taiwan.
- International Master Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
- TMU Research Center for Drug Discovery, Taipei Medical University, Taipei, Taiwan.
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.
- TMU Research Center of Cancer Translational Medicine, Taipei, Taiwan.
| |
Collapse
|
4
|
Jang B, Yoon D, Lee JY, Kim J, Hong J, Koo H, Sa JK. Integrative multi-omics characterization reveals sex differences in glioblastoma. Biol Sex Differ 2024; 15:23. [PMID: 38491408 PMCID: PMC10943869 DOI: 10.1186/s13293-024-00601-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/04/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Glioblastoma (GBM) is the most common and lethal primary brain tumor in adults, with limited treatment modalities and poor prognosis. Recent studies have highlighted the importance of considering sex differences in cancer incidence, prognosis, molecular disparities, and treatment outcomes across various tumor types, including colorectal adenocarcinoma, lung adenocarcinoma, and GBM. METHODS We performed comprehensive analyses of large-scale multi-omics data (genomic, transcriptomic, and proteomic data) from TCGA, GLASS, and CPTAC to investigate the genetic and molecular determinants that contribute to the unique clinical properties of male and female GBM patients. RESULTS Our results revealed several key differences, including enrichments of MGMT promoter methylation, which correlated with increased overall and post-recurrence survival and improved response to chemotherapy in female patients. Moreover, female GBM exhibited a higher degree of genomic instability, including aneuploidy and tumor mutational burden. Integrative proteomic and phosphor-proteomic characterization uncovered sex-specific protein abundance and phosphorylation activities, including EGFR activation in males and SPP1 hyperphosphorylation in female patients. Lastly, the identified sex-specific biomarkers demonstrated prognostic significance, suggesting their potential as therapeutic targets. CONCLUSIONS Collectively, our study provides unprecedented insights into the fundamental modulators of tumor progression and clinical outcomes between male and female GBM patients and facilitates sex-specific treatment interventions. Highlights Female GBM patients were characterized by increased MGMT promoter methylation and favorable clinical outcomes compared to male patients. Female GBMs exhibited higher levels of genomic instability, including aneuploidy and TMB. Each sex-specific GBM is characterized by unique pathway dysregulations and molecular subtypes. EGFR activation is prevalent in male patients, while female patients are marked by SPP1 hyperphosphorylation.
Collapse
Affiliation(s)
- Byunghyun Jang
- Department of Biomedical Informatics, Korea University College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea
| | - Dayoung Yoon
- Department of Biomedical Informatics, Korea University College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea
| | - Ji Yoon Lee
- Department of Biomedical Informatics, Korea University College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea
| | - Jiwon Kim
- Department of Biomedical Informatics, Korea University College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea
| | - Jisoo Hong
- Department of Biomedical Informatics, Korea University College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea
| | - Harim Koo
- Department of Biomedical Informatics, Korea University College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, South Korea
- Department of Clinical Research, Research Institute and Hospital, National Cancer Center, Goyang, South Korea
| | - Jason K Sa
- Department of Biomedical Informatics, Korea University College of Medicine, Seoul, South Korea.
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea.
| |
Collapse
|
5
|
Bai P, Fan T, Wang X, Zhao L, Zhong R, Sun G. Modulating MGMT expression through interfering with cell signaling pathways. Biochem Pharmacol 2023; 215:115726. [PMID: 37524206 DOI: 10.1016/j.bcp.2023.115726] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
Guanine O6-alkylating agents are widely used as first-line chemotherapeutic drugs due to their ability to induce cytotoxic DNA damage. However, a major hurdle in their effectiveness is the emergence of chemoresistance, largely attributed to the DNA repair pathway mediated by O6-methylguanine-DNA methyltransferase (MGMT). MGMT plays an important role in removing the alkyl groups from lethal O6-alkylguanine (O6-AlkylG) adducts formed by chemotherapeutic alkylating agents. By doing so, MGMT enables tumor cells to evade apoptosis and develop drug resistance toward DNA alkylating agents. Although covalent inhibitors of MGMT, such as O6-benzylguanine (O6-BG) and O6-(4-bromothenyl)guanine (O6-4-BTG or lomeguatrib), have been explored in clinical settings, their utility is limited due to severe delayed hematological toxicity observed in most patients when combined with alkylating agents. Therefore, there is an urgent need to identify new targets and unravel the underlying molecular mechanisms and to develop alternative therapeutic strategies that can overcome MGMT-mediated tumor resistance. In this context, the regulation of MGMT expression via interfering the specific cell signaling pathways (e.g., Wnt/β-catenin, NF-κB, Hedgehog, PI3K/AKT/mTOR, JAK/STAT) emerges as a promising strategy for overcoming tumor resistance, and ultimately enhancing the efficacy of DNA alkylating agents in chemotherapy.
Collapse
Affiliation(s)
- Peiying Bai
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Tengjiao Fan
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China; Department of Medical Technology, Beijing Pharmaceutical University of Staff and Workers, Beijing 100079, China
| | - Xin Wang
- Department of Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100029, China
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Guohui Sun
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
6
|
Zhou Y, Xiao X, Peng C, Song D, Ouyang F, Wang L. Progesterone induces glioblastoma cell apoptosis by coactivating extrinsic and intrinsic apoptotic pathways. Mol Cell Toxicol 2023. [DOI: 10.1007/s13273-022-00327-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
7
|
Mohamed OS, Darwish MM, Gayyed MF, Hanna GA, Nanous WZ, Raouf MM. Cytoprotective effect and clinical outcome of perioperative progesterone in brain tumors, a randomized microscopically evidence study. EGYPTIAN JOURNAL OF ANAESTHESIA 2022. [DOI: 10.1080/11101849.2022.2112014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
Affiliation(s)
- Omyma Shehata Mohamed
- Anesthesia and Intensive Care Unit, Faculty of Medicine, Minia University Hospital, Minia University, Minia, Egypt
| | - Mohab Mohamad Darwish
- Neurosurgery, Faculty of Medicine, Minia University Hospital, Minia University, Minia, Egypt
| | | | - George abdelshaheed Hanna
- Anesthesia and Intensive Care Unit, Faculty of Medicine, Minia University Hospital, Minia University, Minia, Egypt
| | - Walid Zeidan Nanous
- Neurosurgery, Faculty of Medicine, Minia University Hospital, Minia University, Minia, Egypt
| | - Mina Maher Raouf
- Anesthesia and Intensive Care Unit, Faculty of Medicine, Minia University Hospital, Minia University, Minia, Egypt
| |
Collapse
|
8
|
Otręba M, Stojko J, Kabała‑Dzik A, Rzepecka‑Stojko A. Perphenazine and prochlorperazine decrease glioblastoma U‑87 MG cell migration and invasion: Analysis of the ABCB1 and ABCG2 transporters, E‑cadherin, α‑tubulin and integrins (α3, α5, and β1) levels. Oncol Lett 2022; 23:182. [PMID: 35527777 PMCID: PMC9073583 DOI: 10.3892/ol.2022.13302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/29/2022] [Indexed: 11/29/2022] Open
Abstract
Glioblastoma multiforme is the most frequent type of malignant brain tumor, and is one of the most lethal and untreatable human tumors with a very poor survival rate. Therefore, novel and effective strategies of treatment are required. Integrins play a crucial role in the regulation of cellular adhesion and invasion. Integrins and α-tubulin are very important in cell migration, whereas E-cadherin plays a main role in tumor metastasis. Notably, drugs serve a crucial role in glioblastoma treatment; however, they have to penetrate the blood-brain barrier (BBB) to be effective. ABC transporters, including ATP binding cassette subfamily B member 1 (ABCB1) and ATP binding cassette subfamily G member 2 (ABCG2), are localized in the brain endothelial capillaries of the BBB, have a crucial role in the development of multidrug resistance and are modulated by phenothiazine derivatives. The impact of perphenazine and prochlorperazine on the motility of human Uppsala 87 malignant glioma (U87-MG) cells was evaluated using a wound-healing assay, cellular migration and invasion were assessed by Transwell assay, and the protein expression levels of ABCB1, ABCG2, E-cadherin, α-tubulin and integrins were determined by western blotting. The present study explored the effects of perphenazine and prochlorperazine on the levels of ABCB1, ABCG2, E-cadherin, α-tubulin and integrins (α3, α5, and β1), as well as on the migratory and invasive ability of U87-MG cells. The results suggested that perphenazine and prochlorperazine may modulate the expression levels of multidrug resistance proteins (they decreased ABCB1 and increased ABCG2 expression), E-cadherin, α-tubulin and integrins, and could impair the migration and invasion of U-87 MG cells. In conclusion, the decrease in migratory and invasive ability following treatment with phenothiazine derivatives due to the increase in ABCG2 and E-cadherin expression, and decrease in α-tubulin and integrins expression, may suggest that research on perphenazine and prochlorperazine in the treatment of glioblastoma is worth continuing.
Collapse
Affiliation(s)
- Michał Otręba
- Department of Drug Technology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41‑200 Sosnowiec, Poland
| | - Jerzy Stojko
- Department of Toxicology and Bioanalysis, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41‑200 Sosnowiec, Poland
| | - Agata Kabała‑Dzik
- Department of Pathology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41‑200 Sosnowiec, Poland
| | - Anna Rzepecka‑Stojko
- Department of Drug Technology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41‑200 Sosnowiec, Poland
| |
Collapse
|
9
|
Pott J, Horn K, Zeidler R, Kirsten H, Ahnert P, Kratzsch J, Loeffler M, Isermann B, Ceglarek U, Scholz M. Sex-Specific Causal Relations between Steroid Hormones and Obesity-A Mendelian Randomization Study. Metabolites 2021; 11:738. [PMID: 34822396 PMCID: PMC8624973 DOI: 10.3390/metabo11110738] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 12/15/2022] Open
Abstract
Steroid hormones act as important regulators of physiological processes including gene expression. They provide possible mechanistic explanations of observed sex-dimorphisms in obesity and coronary artery disease (CAD). Here, we aim to unravel causal relationships between steroid hormones, obesity, and CAD in a sex-specific manner. In genome-wide meta-analyses of four steroid hormone levels and one hormone ratio, we identified 17 genome-wide significant loci of which 11 were novel. Among loci, seven were female-specific, four male-specific, and one was sex-related (stronger effects in females). As one of the loci was the human leukocyte antigen (HLA) region, we analyzed HLA allele counts and found four HLA subtypes linked to 17-OH-progesterone (17-OHP), including HLA-B*14*02. Using Mendelian randomization approaches with four additional hormones as exposure, we detected causal effects of dehydroepiandrosterone sulfate (DHEA-S) and 17-OHP on body mass index (BMI) and waist-to-hip ratio (WHR). The DHEA-S effect was stronger in males. Additionally, we observed the causal effects of testosterone, estradiol, and their ratio on WHR. By mediation analysis, we found a direct sex-unspecific effect of 17-OHP on CAD while the other four hormone effects on CAD were mediated by BMI or WHR. In conclusion, we identified the sex-specific causal networks of steroid hormones, obesity-related traits, and CAD.
Collapse
Affiliation(s)
- Janne Pott
- Institute for Medical Informatics, Statistics and Epidemiology, Medical Faculty, University of Leipzig, 04107 Leipzig, Germany; (K.H.); (H.K.); (P.A.); (M.L.)
- LIFE Research Center for Civilization Diseases, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany; (J.K.); (B.I.); (U.C.)
| | - Katrin Horn
- Institute for Medical Informatics, Statistics and Epidemiology, Medical Faculty, University of Leipzig, 04107 Leipzig, Germany; (K.H.); (H.K.); (P.A.); (M.L.)
- LIFE Research Center for Civilization Diseases, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany; (J.K.); (B.I.); (U.C.)
| | - Robert Zeidler
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, 04103 Leipzig, Germany;
| | - Holger Kirsten
- Institute for Medical Informatics, Statistics and Epidemiology, Medical Faculty, University of Leipzig, 04107 Leipzig, Germany; (K.H.); (H.K.); (P.A.); (M.L.)
- LIFE Research Center for Civilization Diseases, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany; (J.K.); (B.I.); (U.C.)
| | - Peter Ahnert
- Institute for Medical Informatics, Statistics and Epidemiology, Medical Faculty, University of Leipzig, 04107 Leipzig, Germany; (K.H.); (H.K.); (P.A.); (M.L.)
- LIFE Research Center for Civilization Diseases, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany; (J.K.); (B.I.); (U.C.)
| | - Jürgen Kratzsch
- LIFE Research Center for Civilization Diseases, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany; (J.K.); (B.I.); (U.C.)
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, 04103 Leipzig, Germany;
| | - Markus Loeffler
- Institute for Medical Informatics, Statistics and Epidemiology, Medical Faculty, University of Leipzig, 04107 Leipzig, Germany; (K.H.); (H.K.); (P.A.); (M.L.)
- LIFE Research Center for Civilization Diseases, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany; (J.K.); (B.I.); (U.C.)
| | - Berend Isermann
- LIFE Research Center for Civilization Diseases, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany; (J.K.); (B.I.); (U.C.)
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, 04103 Leipzig, Germany;
| | - Uta Ceglarek
- LIFE Research Center for Civilization Diseases, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany; (J.K.); (B.I.); (U.C.)
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, 04103 Leipzig, Germany;
| | - Markus Scholz
- Institute for Medical Informatics, Statistics and Epidemiology, Medical Faculty, University of Leipzig, 04107 Leipzig, Germany; (K.H.); (H.K.); (P.A.); (M.L.)
- LIFE Research Center for Civilization Diseases, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany; (J.K.); (B.I.); (U.C.)
| |
Collapse
|
10
|
Fedotcheva TA, Fedotcheva NI, Shimanovsky NL. Progestins as Anticancer Drugs and Chemosensitizers, New Targets and Applications. Pharmaceutics 2021; 13:pharmaceutics13101616. [PMID: 34683909 PMCID: PMC8540053 DOI: 10.3390/pharmaceutics13101616] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/22/2021] [Accepted: 10/01/2021] [Indexed: 01/13/2023] Open
Abstract
Progesterone and its synthetic analogues, progestins, participate in the regulation of cell differentiation, proliferation and cell cycle progression. Progestins are usually applied for contraception, maintenance of pregnancy, and hormone replacement therapy. Recently, their effectiveness in the treatment of hormone-sensitive tumors was revealed. According to current data, the anticancer activity of progestins is mainly mediated by their cytotoxic and chemosensitizing influence on different cancer cells. In connection with the detection of previously unknown targets of the progestin action, which include the membrane-associated progesterone receptor (PR), non-specific transporters related to the multidrug resistance (MDR) and mitochondrial permeability transition pore (MPTP), and checkpoints of different signaling pathways, new aspects of their application have emerged. It is likely that the favorable influence of progestins is predominantly associated with the modulation of expression and activity of MDR-related proteins, the inhibition of survival signaling pathways, especially TGF-β and Wnt/β-catenin pathways, which activate the proliferation and promote MDR in cancer cells, and the facilitation of mitochondrial-dependent apoptosis. Biological effects of progestins are mediated by the inhibition of these signaling pathways, as well as the direct interaction with the nucleotide-binding domain of ABC-transporters and mitochondrial adenylate translocase as an MPTP component. In these ways, progestins can restore the proliferative balance, the ability for apoptosis, and chemosensitivity to drugs, which is especially important for hormone-dependent tumors associated with estrogen stress, epithelial-to-mesenchymal transition, and drug resistance.
Collapse
Affiliation(s)
- Tatiana A. Fedotcheva
- Science Research Laboratory of Molecular Pharmacology, Medical Biological Faculty, Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Ostrovityanova St. 1, 117997 Moscow, Russia;
- Correspondence: ; Tel.: +7-916-935-31-96
| | - Nadezhda I. Fedotcheva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya str., 3, Pushchino, 142290 Moscow, Russia;
| | - Nikolai L. Shimanovsky
- Science Research Laboratory of Molecular Pharmacology, Medical Biological Faculty, Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Ostrovityanova St. 1, 117997 Moscow, Russia;
| |
Collapse
|
11
|
Karami A, Hossienpour M, Mohammadi Noori E, Rahpyma M, Najafi K, Kiani A. Synergistic Effect of Gefitinib and Temozolomide on U87MG Glioblastoma Angiogenesis. Nutr Cancer 2021; 74:1299-1307. [PMID: 34296963 DOI: 10.1080/01635581.2021.1952441] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
One of the most common and deadly brain tumors is Glioblastoma multiforme (GBM). Due to recent advances in angiogenesis and its related key factors, this process as a hallmark in glioblastoma has attracted more consideration from the research community. Temozolomide (TMZ) as the first-line treatment used to treat GBM but, resistance to TMZ limits its effectiveness and the need for better treatments is still felt. Therefore, we aimed to examine the Synergistic effects of Gefitinib (GFI) in combination with Temozolomide on VEGF and MMPs in glioma cell line (U87MG). Our results displayed that GFI could induce cytotoxic effects in U87MG with IC50 values of 11 μM. U87MG cells produced large amounts of VEGF without any stimuli, and the results showed that GFI in combination with TMZ caused a significant decrease in VEGF production in these cells. In this study, we demonstrated that after treating with TMZ and GFI, there was more decrease in the levels of MMP 2 and 9 secretions in cells than treatment with GFI and TMZ doses alone. This study indicates synergistic effects of GFI plus TMZ against glioma are mediated by the potentiated anti-angiogenesis. Therefore, it can be considered as a promising plan for future studies.
Collapse
Affiliation(s)
- Afshin Karami
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Maryam Hossienpour
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ehsan Mohammadi Noori
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mehdi Rahpyma
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Khadijeh Najafi
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amir Kiani
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
12
|
Atif F, Yousuf S, Espinosa-Garcia C, Stein DG. Progesterone Modulates Mitochondrial Functions in Human Glioblastoma Cells. Mol Neurobiol 2021; 58:3805-3816. [PMID: 33847913 DOI: 10.1007/s12035-021-02382-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/31/2021] [Indexed: 11/25/2022]
Abstract
A substantial literature supports the notion that cancer is a metabolic disease. Mitochondria are sexually dimorphic, and progesterone (P4) plays a key regulatory role in mitochondrial functions. We investigated the effect of P4 on mitochondrial functions in three human glioblastoma multiforme (GBM) cell lines. In dose-response and time-response studies, GBM cells were exposed to different concentrations of P4 followed by mitochondrial stress-testing with a Seahorse analyzer. Data were analyzed for oxygen consumption rate (OCR), extracellular acidification rate (ECAR), and spare respiratory capacity (SRC) to determine the effects of P4 exposure on mitochondrial respiration and rate of glycolysis. We also examined the effect of P4 on mitochondrial superoxide radical generation by confocal microscopy. As early as 1h post-P4 exposure, we found a substantial dose-dependent inhibitory effect of P4 on OCR, ECAR, and SRC in all GBM cell lines. P4 treatment altered the levels of basal respiration, maximum respiration, nonmitochondrial oxygen consumption, ATP production, and proton leak. P4 given at 80-μM concentration showed the maximum inhibitory effect compared to controls. Live imaging data showed an 11-22% increase in superoxide radical generation in all three GBM cell lines following 6h exposure to a high concentration of P4. Our data show that high-dose P4 exerts an inhibitory effect on both mitochondrial respiration and glycolysis in GBM cells. These effects would lead to decreased tumor size and rate of growth, representing a potential treatment to control the spread of GBM.
Collapse
Affiliation(s)
- Fahim Atif
- Brain Research Laboratory, Department of Emergency Medicine, Emory University School of Medicine, Whitehead Biomedical Research Building, Room 655A, Atlanta, GA, 30322, USA.
| | - Seema Yousuf
- Brain Research Laboratory, Department of Emergency Medicine, Emory University School of Medicine, Whitehead Biomedical Research Building, Room 655A, Atlanta, GA, 30322, USA
| | - Claudia Espinosa-Garcia
- Brain Research Laboratory, Department of Emergency Medicine, Emory University School of Medicine, Whitehead Biomedical Research Building, Room 655A, Atlanta, GA, 30322, USA
| | - Donald G Stein
- Brain Research Laboratory, Department of Emergency Medicine, Emory University School of Medicine, Whitehead Biomedical Research Building, Room 655A, Atlanta, GA, 30322, USA
- Neuroscience and Behavioral Biology Program, Emory College of Arts and Sciences, Atlanta, GA, 30322, USA
| |
Collapse
|
13
|
Bello-Alvarez C, Camacho-Arroyo I. Impact of sex in the prevalence and progression of glioblastomas: the role of gonadal steroid hormones. Biol Sex Differ 2021; 12:28. [PMID: 33752729 PMCID: PMC7986260 DOI: 10.1186/s13293-021-00372-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/04/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND As in other types of cancers, sex is an essential factor in the origin and progression of glioblastomas. Research in the field of endocrinology and cancer suggests that gonadal steroid hormones play an important role in the progression and prevalence of glioblastomas. In the present review, we aim to discuss the actions and mechanism triggered by gonadal steroid hormones in glioblastomas. MAIN BODY Glioblastoma is the most common malignant primary brain tumor. According to the epidemiological data, glioblastomas are more frequent in men than in women in a 1.6/1 proportion both in children and adults. This evidence, and the knowledge about sex influence over the prevalence of countless diseases, suggest that male gonadal steroid hormones, such as testosterone, promote glioblastomas growth. In contrast, a protective role of female gonadal steroid hormones (estradiol and progesterone) against glioblastomas has been questioned. Several pieces of evidence demonstrate a variety of effects induced by female and male gonadal steroid hormones in glioblastomas. Several studies indicate that pregnancy, a physiological state with the highest progesterone and estradiol levels, accelerates the progression of low-grade astrocytomas to glioblastomas and increases the symptoms associated with these tumors. In vitro studies have demonstrated that progesterone has a dual role in glioblastoma cells: physiological concentrations promote cell proliferation, migration, and invasion while very high doses (out physiological range) reduce cell proliferation and increases cell death. CONCLUSION Gonadal steroid hormones can stimulate the progression of glioblastomas through the increase in proliferation, migration, and invasion. However, the effects mentioned above depend on the concentrations of these hormones and the receptor involved in hormone actions. Estradiol and progesterone can exert promoter or protective effects while the role of testosterone has been always associated to glioblastomas progression.
Collapse
Affiliation(s)
- Claudia Bello-Alvarez
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), 04510, Ciudad de México, México
| | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), 04510, Ciudad de México, México.
| |
Collapse
|
14
|
Astrocytoma: A Hormone-Sensitive Tumor? Int J Mol Sci 2020; 21:ijms21239114. [PMID: 33266110 PMCID: PMC7730176 DOI: 10.3390/ijms21239114] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/23/2020] [Accepted: 11/27/2020] [Indexed: 12/19/2022] Open
Abstract
Astrocytomas and, in particular, their most severe form, glioblastoma, are the most aggressive primary brain tumors and those with the poorest vital prognosis. Standard treatment only slightly improves patient survival. Therefore, new therapies are needed. Very few risk factors have been clearly identified but many epidemiological studies have reported a higher incidence in men than women with a sex ratio of 1:4. Based on these observations, it has been proposed that the neurosteroids and especially the estrogens found in higher concentrations in women's brains could, in part, explain this difference. Estrogens can bind to nuclear or membrane receptors and potentially stimulate many different interconnected signaling pathways. The study of these receptors is even more complex since many isoforms are produced from each estrogen receptor encoding gene through alternative promoter usage or splicing, with each of them potentially having a specific role in the cell. The purpose of this review is to discuss recent data supporting the involvement of steroids during gliomagenesis and to focus on the potential neuroprotective role as well as the mechanisms of action of estrogens in gliomas.
Collapse
|
15
|
Altinoz MA, Ucal Y, Yilmaz MC, Kiris İ, Ozisik O, Sezerman U, Ozpinar A, Elmaci İ. Progesterone at high doses reduces the growth of U87 and A172 glioblastoma cells: Proteomic changes regarding metabolism and immunity. Cancer Med 2020; 9:5767-5780. [PMID: 32590878 PMCID: PMC7433824 DOI: 10.1002/cam4.3223] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/24/2020] [Accepted: 05/15/2020] [Indexed: 12/16/2022] Open
Abstract
While pregnancy may accelerate glioblastoma multiforme (GBM) growth, parity and progesterone (P4) containing treatments (ie, hormone replacement therapy) reduce the risk of GBM development. In parallel, low and high doses of P4 exert stimulating and inhibitory actions on GBM growth, respectively. The mechanisms behind the high‐dose P4‐suppression of GBM growth is unknown. In the present study, we assessed the changes in growth and proteomic profiles when high‐dose P4 (100 and 300 µM) was administered in human U87 and A172 GBM cell lines. The xCELLigence system was used to examine cell growth when different concentrations of P4 (20, 50, 100, and 300 µM) was administered. The protein profiles were determined by two‐dimensional gel electrophoresis in both cell lines when 100 and 300 µM P4 were administered. Finally, the pathways enriched by the differentially expressed proteins were assessed using bioinformatic tools. Increasing doses of P4 blocked the growth of both GBM cells. We identified 26 and 51 differentially expressed proteins (fc > 2) in A172 and U87 cell lines treated with P4, respectively. Only the pro‐tumorigenic mitochondrial ornithine aminotransferase and anti‐apoptotic mitochondrial 60 kDa heat shock protein were downregulated in A172 cell line and U87 cell line when treated with P4, respectively. Detoxification of reactive oxygen species, cellular response to stress, glucose metabolism, and immunity‐related proteins were altered in P4‐treated GBM cell lines. The paradox on the effect of low and high doses of P4 on GBM growth is gaining attention. The mechanism related to the high dose of P4 on GBM growth can be explained by the alterations in detoxification mechanisms, stress, and immune response and glucose metabolism. P4 suppresses GBM growth and as it is nontoxic in comparison to classical chemotherapeutics, it can be used as a new strategy in GBM treatment in the future.
Collapse
Affiliation(s)
- Meric A Altinoz
- Department of Medical Biochemistry, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Yasemin Ucal
- Department of Medical Biochemistry, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Muazzez C Yilmaz
- Department of Medical Biochemistry, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - İrem Kiris
- Department of Medical Biochemistry, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Ozan Ozisik
- Medical Genetics, Aix Marseille University, Inserm, MMG, Marseille, France
| | - Ugur Sezerman
- Department of Biostatistics and Medical Informatics, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Aysel Ozpinar
- Department of Medical Biochemistry, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - İlhan Elmaci
- Department of Neurosurgery, Acibadem Maslak Hospital and School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| |
Collapse
|
16
|
Herbener VJ, Burster T, Goreth A, Pruss M, von Bandemer H, Baisch T, Fitzel R, Siegelin MD, Karpel-Massler G, Debatin KM, Westhoff MA, Strobel H. Considering the Experimental use of Temozolomide in Glioblastoma Research. Biomedicines 2020; 8:E151. [PMID: 32512726 PMCID: PMC7344626 DOI: 10.3390/biomedicines8060151] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/30/2020] [Accepted: 05/31/2020] [Indexed: 12/17/2022] Open
Abstract
Temozolomide (TMZ) currently remains the only chemotherapeutic component in the approved treatment scheme for Glioblastoma (GB), the most common primary brain tumour with a dismal patient's survival prognosis of only ~15 months. While frequently described as an alkylating agent that causes DNA damage and thus-ultimately-cell death, a recent debate has been initiated to re-evaluate the therapeutic role of TMZ in GB. Here, we discuss the experimental use of TMZ and highlight how it differs from its clinical role. Four areas could be identified in which the experimental data is particularly limited in its translational potential: 1. transferring clinical dosing and scheduling to an experimental system and vice versa; 2. the different use of (non-inert) solvent in clinic and laboratory; 3. the limitations of established GB cell lines which only poorly mimic GB tumours; and 4. the limitations of animal models lacking an immune response. Discussing these limitations in a broader biomedical context, we offer suggestions as to how to improve transferability of data. Finally, we highlight an underexplored function of TMZ in modulating the immune system, as an example of where the aforementioned limitations impede the progression of our knowledge.
Collapse
Affiliation(s)
- Verena J. Herbener
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, D-89075 Ulm, Germany; (V.J.H.); (A.G.); (H.v.B.); (T.B.); (R.F.); (K.-M.D.); (H.S.)
| | - Timo Burster
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan 010000, Kazakhstan;
| | - Alicia Goreth
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, D-89075 Ulm, Germany; (V.J.H.); (A.G.); (H.v.B.); (T.B.); (R.F.); (K.-M.D.); (H.S.)
| | - Maximilian Pruss
- Department of Gynecology and Obstetrics, Medical Faculty, University Hospital of the Heinrich-Heine-University Duesseldorf, D-40225 Duesseldorf, Germany;
- Department of Neurosurgery, University Medical Center Ulm, D-89081 Ulm, Germany;
| | - Hélène von Bandemer
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, D-89075 Ulm, Germany; (V.J.H.); (A.G.); (H.v.B.); (T.B.); (R.F.); (K.-M.D.); (H.S.)
| | - Tim Baisch
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, D-89075 Ulm, Germany; (V.J.H.); (A.G.); (H.v.B.); (T.B.); (R.F.); (K.-M.D.); (H.S.)
| | - Rahel Fitzel
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, D-89075 Ulm, Germany; (V.J.H.); (A.G.); (H.v.B.); (T.B.); (R.F.); (K.-M.D.); (H.S.)
| | - Markus D. Siegelin
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA;
| | - Georg Karpel-Massler
- Department of Neurosurgery, University Medical Center Ulm, D-89081 Ulm, Germany;
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, D-89075 Ulm, Germany; (V.J.H.); (A.G.); (H.v.B.); (T.B.); (R.F.); (K.-M.D.); (H.S.)
| | - Mike-Andrew Westhoff
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, D-89075 Ulm, Germany; (V.J.H.); (A.G.); (H.v.B.); (T.B.); (R.F.); (K.-M.D.); (H.S.)
| | - Hannah Strobel
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, D-89075 Ulm, Germany; (V.J.H.); (A.G.); (H.v.B.); (T.B.); (R.F.); (K.-M.D.); (H.S.)
| |
Collapse
|
17
|
Elmaci I, Ozpinar A, Ozpinar A, Perez JL, Altinoz MA. From epidemiology and neurometabolism to treatment: Vitamin D in pathogenesis of glioblastoma Multiforme (GBM) and a proposal for Vitamin D + all-trans retinoic acid + Temozolomide combination in treatment of GBM. Metab Brain Dis 2019; 34:687-704. [PMID: 30937698 DOI: 10.1007/s11011-019-00412-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 03/26/2019] [Indexed: 12/14/2022]
Abstract
Here we review tumoricidal efficacy of Vitamin D analogues in glioblastoma multiforme (GBM) and potential synergisms with retinoic acid and temozolomide based on epidemiological and cellular studies. Epidemiological data suggest that winter birth is associated with higher risk of GBM, and GBM debulking in the winter enhanced mortality, which may relate with lower exposure to sunlight essential to convert cholecalciferol to Vitamin D. Comparative studies on blood bank specimens revealed that higher prediagnosis levels of calcidiol are associated with lower risk of GBM in elderly men. Supplemental Vitamin D reduced mortality in GBM patients in comparison to nonusers. Expression of Vitamin D Receptor is associated with a good prognosis in GBM. Conversely, Vitamin D increases glial tumor synthesis of neutrophins NGF and NT-3, the low affinity neurotrophin receptor p75NTR, IL-6 and VEGF, which may enhance glioma growth. Antitumor synergisms between temozolomide and Vitamin D and Vitamin D with Vitamin A derivatives were observed. Hence, we hypothesize that Calcitriol + ATRA (All-Trans Retinoic Acid) + Temozolomide - CAT combination might be a safer approach to benefit from Vitamin D in the management of high-grade glial tumors. Adding acetazolomide to this protocol may reduce the risk of pseudotumor cerebri, as both Vitamin D and Vitamin A excess may cause intracranial hypertension; this approach may provide further benefit as acetazolomide also exhibits anticancer activity.
Collapse
Affiliation(s)
- Ilhan Elmaci
- Acibadem University, Istanbul, Neuroacademy Group, Istanbul, Turkey
| | - Aysel Ozpinar
- Department of Medical Biochemistry, Acibadem University, Istanbul, Turkey
| | - Alp Ozpinar
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jennifer L Perez
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Meric A Altinoz
- Department of Medical Biochemistry, Acibadem University, Istanbul, Turkey.
- Neurooncology Branch, Neuroacademy Group, Istanbul, Turkey.
- Department of Psychiatry, Maastricht University, Maastricht, Holland, The Netherlands.
| |
Collapse
|
18
|
Progesterone Is More Effective Than Dexamethasone in Prolonging Overall Survival and Preserving Neurologic Function in Experimental Animals with Orthotopic Glioblastoma Allografts. World Neurosurg 2019; 125:e497-e507. [PMID: 30710720 DOI: 10.1016/j.wneu.2019.01.113] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/20/2019] [Accepted: 01/21/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Dexamethasone (DEXA) has been widely used in the management of peritumoral brain edema. DEXA, however, has many systemic side effects and can interact negatively with glioma therapy. Progesterone (PROG), however, is a well-tolerated and readily accessible anti-inflammatory and antiedema agent, with potent neuroprotective properties. We investigated whether PROG could serve as a viable alternative to DEXA in the management of peritumoral brain edema. METHODS We used an orthotopic C6 glioblastoma model with male Sprague-Dawley rats. Tumor grafts were allowed to grow for 14 days before drug treatment with DEXA 1 mg/kg, PROG 10 mg/kg, or PROG 20 mg/kg for 5 consecutive days. The overall animal survival and neurologic function were evaluated. Mechanistic studies on blood-brain barrier permeability and angiogenic responses were performed on the ex vivo tumor grafts. RESULTS We found that all drug treatments prolonged overall survival to different extents. PROG 10 mg led to significantly longer survival and better preservation of neurologic function and body weight. The blood-brain barrier permeability was better preserved with PROG 10 mg than with DEXA, possibly through downregulation of matrix metalloproteinase-9 and aquaporin-4 expression. Antiangiogenic responses were also observed in the PROG group. CONCLUSIONS The present proof-of-concept pilot study has provided novel information on the use of PROG as a corticosteroid-sparing agent in brain tumor management. Further translational and clinical studies are warranted.
Collapse
|
19
|
Atif F, Yousuf S, Espinosa-Garcia C, Sergeeva E, Stein DG. Progesterone Treatment Attenuates Glycolytic Metabolism and Induces Senescence in Glioblastoma. Sci Rep 2019; 9:988. [PMID: 30700763 PMCID: PMC6353890 DOI: 10.1038/s41598-018-37399-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 12/04/2018] [Indexed: 12/14/2022] Open
Abstract
We examined the effect of progesterone treatments on glycolytic metabolism and senescence as possible mechanisms in controlling the growth of glioblastoma multiforme (GBM). In an orthotopic mouse model, after tumor establishment, athymic nude mice received treatment with progesterone or vehicle for 40 days. Compared to controls, high-dose progesterone administration produced a significant reduction in tumor size (~47%) and an increased survival rate (~43%) without any demonstrable toxicity to peripheral organs (liver, kidney). This was accompanied by a significant improvement in spontaneous locomotor activity and reduced anxiety-like behavior. In a follow-up in vitro study of U87MG-luc, U87dEGFR and U118MG tumor cells, we observed that high-dose progesterone inhibited expression of Glut1, which facilitated glucose transport into the cytoplasm; glyceraldehyde 3-phosphate dehydrogenase (GAPDH; a glycolysis enzyme); ATP levels; and cytoplasmic FoxO1 and Phospho-FoxO1, both of which control glycolytic metabolism through upstream PI3K/Akt/mTOR signaling in GBM. In addition, progesterone administration attenuated EGFR/PI3K/Akt/mTOR signaling, which is highly activated in grade IV GBM. High-dose progesterone also induced senescence in GBM as evidenced by changes in cell morphology and β-galactocidase accumulation. In conclusion, progesterone inhibits the modulators of glycolytic metabolism and induces premature senescence in GBM cells and this can help to reduce/slow tumor progression.
Collapse
Affiliation(s)
- Fahim Atif
- Brain Research Laboratory, Department of Emergency Medicine, School of Medicine, Emory University, Atlanta, GA, 30322, USA.
| | - Seema Yousuf
- Brain Research Laboratory, Department of Emergency Medicine, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Claudia Espinosa-Garcia
- Brain Research Laboratory, Department of Emergency Medicine, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Elena Sergeeva
- Brain Research Laboratory, Department of Emergency Medicine, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Donald G Stein
- Brain Research Laboratory, Department of Emergency Medicine, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| |
Collapse
|
20
|
Repurposing of idebenone as a potential anti-cancer agent. Biochem J 2019; 476:245-259. [DOI: 10.1042/bcj20180384] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 01/01/2019] [Accepted: 01/01/2019] [Indexed: 12/22/2022]
Abstract
AbstractGlioblastoma (GB) represents the most common and aggressive form of malignant primary brain tumour associated with high rates of morbidity and mortality. In the present study, we considered the potential use of idebenone (IDE), a Coenzyme Q10 analogue, as a novel chemotherapeutic agent for GB. On two GB cell lines, U373MG and U87MG, IDE decreased the viable cell number and enhanced the cytotoxic effects of two known anti-proliferative agents: temozolomide and oxaliplatin. IDE also affected the clonogenic and migratory capacity of both GB cell lines, at 25 and 50 µM, a concentration equivalent to that transiently reached in plasma after oral intake that is deemed safe for humans. p21 protein expression was decreased in both cell lines, indicating that IDE likely exerts its effects through cell cycle dysregulation, and this was confirmed in U373MG cells only by flow cytometric cell cycle analysis which showed S-phase arrest. Caspase-3 protein expression was also significantly decreased in U373MG cells indicating IDE-induced apoptosis that was confirmed by flow cytometric Annexin V/propidium iodide staining. No major decrease in caspase-3 expression was observed in U87MG cells nor apoptosis as observed by flow cytometry analysis. Overall, the present study demonstrates that IDE has potential as an anti-proliferative agent for GB by interfering with several features of glioma pathogenesis such as proliferation and migration, and hence might be a drug that could be repurposed for aiding cancer treatments. Furthermore, the synergistic combinations of IDE with other agents aimed at different pathways involved in this type of cancer are promising.
Collapse
|
21
|
Respondek M, Beberok A, Rok J, Rzepka Z, Wrześniok D, Buszman E. MIM1, the Mcl-1 - specific BH3 mimetic induces apoptosis in human U87MG glioblastoma cells. Toxicol In Vitro 2018; 53:126-135. [PMID: 30134184 DOI: 10.1016/j.tiv.2018.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/04/2018] [Accepted: 08/16/2018] [Indexed: 01/19/2023]
Abstract
Glioblastoma multiforme (GBM) is the most common and high aggressive malignant brain tumor. Despite evolving oncology treatment and novel chemotherapeutic agents the median survival of patients diagnosed with GBM is only 12-15 months. This grim fact highlights necessity to identify new drugs that could improve the effectiveness of GBM patients treatment. MIM1 is a specific low molecular Mcl-1 protein inhibitor able to induce Mcl-1-dependent cancer cells death. The aim of this study was to examine the effect of MIM1 as well as MIM1 and temozolomide (TMZ) mixture on cell viability, apoptosis and cell cycle progression in human U87MG glioblastoma cells. Cell viability was performed by the WST-1 assay. Mitochondrial membrane potential, Annexin V assay, DNA fragmentation and cell cycle distribution were determined by fluorescence image cytometer NucleoCounter NC-3000. The obtained results show that MIM1 and MIM1/TMZ mixture decrease glioblastoma cells viability in a dose- and time- dependent manner. Moreover, the exposure of U87MG cells to MIM1 and MIM1/TMZ mixture causes mitochondrial dysfunction as well as DNA fragmentation and cell cycle arrest at G2/M phase. This study provides for the first time convincing evidence that BH3 mimetic MIM1, which inhibits Mcl-1 antiapoptotic protein may be an efficacious molecule able to induction of apoptosis and sensitize GBM cells to alkylating agents.
Collapse
Affiliation(s)
- Michalina Respondek
- Medical University of Silesia, School of Pharmacy with the Division of Laboratory Medicine, Department of Pharmaceutical Chemistry, Jagiellońska 4, 41-200 Sosnowiec, Poland.
| | - Artur Beberok
- Medical University of Silesia, School of Pharmacy with the Division of Laboratory Medicine, Department of Pharmaceutical Chemistry, Jagiellońska 4, 41-200 Sosnowiec, Poland
| | - Jakub Rok
- Medical University of Silesia, School of Pharmacy with the Division of Laboratory Medicine, Department of Pharmaceutical Chemistry, Jagiellońska 4, 41-200 Sosnowiec, Poland
| | - Zuzanna Rzepka
- Medical University of Silesia, School of Pharmacy with the Division of Laboratory Medicine, Department of Pharmaceutical Chemistry, Jagiellońska 4, 41-200 Sosnowiec, Poland
| | - Dorota Wrześniok
- Medical University of Silesia, School of Pharmacy with the Division of Laboratory Medicine, Department of Pharmaceutical Chemistry, Jagiellońska 4, 41-200 Sosnowiec, Poland
| | - Ewa Buszman
- Medical University of Silesia, School of Pharmacy with the Division of Laboratory Medicine, Department of Pharmaceutical Chemistry, Jagiellońska 4, 41-200 Sosnowiec, Poland
| |
Collapse
|
22
|
Altinoz MA, Nalbantoglu J, Ozpinar A, Emin Ozcan M, Del Maestro RF, Elmaci I. From epidemiology and neurodevelopment to antineoplasticity. Medroxyprogesterone reduces human glial tumor growth in vitro and C6 glioma in rat brain in vivo. Clin Neurol Neurosurg 2018; 173:20-30. [PMID: 30055402 DOI: 10.1016/j.clineuro.2018.07.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/03/2018] [Accepted: 07/13/2018] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Glial tumor growth may accelerate during gestation, but epidemiological studies consistently demonstrated that parousity reduces life long risk of glial tumors. Pregnancy may also accelerate growth of medulloblastoma and meningioma, but parousity does not confer protection against these tumors. We were the first to show that medroxyprogesterone acetate (MPA) reduces rat C6 glioma growth in vitro. Now we aimed to determine the effects of MPA on human brain cancers (particularly glioblastoma) in vitro and C6 glioma in vivo. PATIENTS AND METHODS We evaluated the effects of MPA on: i) monolayer growth of human U87 and U251 glioblastoma, ii) 3D-spheroid growth and invasion of C6 rat glioma and human U251 glioma, iii) interactions with PI3-Kinase inhibitors and coxsackie-adenovirus receptor (CAR) in modifying 3D-spheroid invasion of glioma. RESULTS MPA at low doses (3.25-13 μM) insignificantly stimulated and at high doses (above 52 μM) strongly suppressed the growth of human U87 and U251 cells in vitro. MPA also binds to glucocorticoid receptors similar to dexamethasone (Dex) and unexpectedly, PI3-Kinase inhibitors at low doses suppressed anti-invasive efficacies of MPA and Dex. MPA exerted higher invasion-inhibitory effects on CAR-expressing human glioma cells. Lastly, MPA suppressed growth of C6 glioma implanted into rat brain. CONCLUSION Progesterone analogues deserve to be studied in future experimental models of high grade glial brain tumors.
Collapse
Affiliation(s)
- Meric A Altinoz
- Neuroacademy Research Group, Istanbul, Turkey; Department of Psychiatry, Maastricht University, Holland, Netherlands.
| | - Josephine Nalbantoglu
- Department of Neuroimmunology, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Aysel Ozpinar
- Department of Medical Biochemistry, Acibadem University, Istanbul, Turkey
| | - M Emin Ozcan
- Department of Neurology, Kizilay Hospital, Bakirkoy, Istanbul, Turkey
| | | | - Ilhan Elmaci
- Neuroacademy Research Group, Istanbul, Turkey; Department of Neurosurgery, Memorial Hospital, Istanbul, Turkey
| |
Collapse
|
23
|
Altinoz MA, Ozpinar A, Elmaci I. Reproductive epidemiology of glial tumors may reveal novel treatments: high-dose progestins or progesterone antagonists as endocrino-immune modifiers against glioma. Neurosurg Rev 2018; 42:351-369. [DOI: 10.1007/s10143-018-0953-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/10/2018] [Accepted: 01/28/2018] [Indexed: 12/15/2022]
|
24
|
Xiu J, Piccioni D, Juarez T, Pingle SC, Hu J, Rudnick J, Fink K, Spetzler DB, Maney T, Ghazalpour A, Bender R, Gatalica Z, Reddy S, Sanai N, Idbaih A, Glantz M, Kesari S. Multi-platform molecular profiling of a large cohort of glioblastomas reveals potential therapeutic strategies. Oncotarget 2017; 7:21556-69. [PMID: 26933808 PMCID: PMC5008305 DOI: 10.18632/oncotarget.7722] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/28/2016] [Indexed: 01/22/2023] Open
Abstract
Glioblastomas (GBM) are the most aggressive and prevalent form of gliomas with abysmal prognosis and limited treatment options. We analyzed clinically relevant molecular aberrations suggestive of response to therapies in 1035 GBM tumors. Our analysis revealed mutations in 39 genes of 48 tested. IHC revealed expression of PD-L1 in 19% and PD-1 in 46%. MGMT-methylation was seen in 43%, EGFRvIII in 19% and 1p19q co-deletion in 2%. TP53 mutation was associated with concurrent mutations, while IDH1 mutation was associated with MGMT-methylation and TP53 mutation and was mutually exclusive of EGFRvIII mutation. Distinct biomarker profiles were seen in GBM compared with WHO grade III astrocytoma, suggesting different biology and potentially different treatment approaches. Analysis of 17 metachronous paired tumors showed frequent biomarker changes, including MGMT-methylation and EGFR aberrations, indicating the need for a re-biopsy for tumor profiling to direct subsequent therapy. MGMT-methylation, PR and TOPO1 appeared as significant prognostic markers in sub-cohorts of GBM defined by age. The current study represents the largest biomarker study on clinical GBM tumors using multiple technologies to detect gene mutation, amplification, protein expression and promoter methylation. These data will inform planning for future personalized biomarker-based clinical trials and identifying effective treatments based on tumor biomarkers.
Collapse
Affiliation(s)
| | - David Piccioni
- Neuro-Oncology Program, Moores Cancer Center, UC San Diego, La Jolla, CA, USA
| | - Tiffany Juarez
- Neuro-Oncology Program, Moores Cancer Center, UC San Diego, La Jolla, CA, USA
| | - Sandeep C Pingle
- Neuro-Oncology Program, Moores Cancer Center, UC San Diego, La Jolla, CA, USA
| | - Jethro Hu
- Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | - Karen Fink
- Baylor University Medical Center, Dallas, TX, USA
| | | | | | | | | | | | | | - Nader Sanai
- Barrow Neurological Institute, Phoenix, AZ, USA
| | - Ahmed Idbaih
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Service de Neurologie 2-Mazarin, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, UMRS 975, Institut du Cerveau et de la Moelle, Paris, France.,Inserm U 975, Paris, France.,CNRS, UMR 7225, Paris, France
| | | | - Santosh Kesari
- Neuro-Oncology Program, Moores Cancer Center, UC San Diego, La Jolla, CA, USA.,Translational Neuro-Oncology Laboratories, Department of Neurosciences UC San Diego, La Jolla, CA, USA.,Department of Translational Neuro-Oncology and Neurotherapeutics, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| |
Collapse
|
25
|
Yousuf S, Brat DJ, Shu HK, Wang Y, Stein DG, Atif F. Progesterone improves neurocognitive outcomes following therapeutic cranial irradiation in mice. Horm Behav 2017; 96:21-30. [PMID: 28866326 DOI: 10.1016/j.yhbeh.2017.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 07/20/2017] [Accepted: 08/23/2017] [Indexed: 12/13/2022]
Abstract
Despite improved therapeutic methods, CNS toxicity resulting from cancer treatment remains a major cause of post-treatment morbidity. More than half of adult patients with cranial irradiation for brain cancer develop neurobehavioral/cognitive deficits that severely impact quality of life. We examined the neuroprotective effects of the neurosteroid progesterone (PROG) against ionizing radiation (IR)-induced neurobehavioral/cognitive deficits in mice. Male C57/BL mice were exposed to one of two fractionated dose regimens of IR (3Gy×3 or 3Gy×5). PROG (16mg/kg; 0.16mg/g) was given as a pre-, concurrent or post-IR treatment for 14days. Mice were tested for short- and long-term effects of IR and PROG on neurobehavioral/cognitive function on days 10 and 30 after IR treatment. We evaluated both hippocampus-dependent and -independent memory functions. Locomotor activity, elevated plus maze, novel object recognition and Morris water maze tests revealed behavioral deficits following IR. PROG treatment produced improvement in behavioral performance at both time points in the mice given IR. Western blot analysis of hippocampal and cortical tissue showed that IR at both doses induced astrocytic activation (glial fibrillary acidic protein), reactive macrophages/microglia (CD68) and apoptosis (cleaved caspase-3) and PROG treatment inhibited these markers of brain injury. There was no significant difference in the degree of deficit in any test between the two dose regimens of IR at either time point. These findings could be important in the context of patients with brain tumors who may undergo radiotherapy and eventually develop cognitive deficits.
Collapse
Affiliation(s)
- Seema Yousuf
- Brain Research Laboratory, Department of Emergency Medicine, 1365 B Clifton Rd NE, Suite 5100, Atlanta, GA 30322, USA.
| | - Daniel J Brat
- Department of Pathology, Emory University Hospital Room H183, 1364 Clifton Rd NE, Atlanta, GA 30322, USA.
| | - Hui-Kuo Shu
- Department of Radiation Oncology, 1365 C Clifton Rd NE, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Ya Wang
- Department of Radiation Oncology, 1365 C Clifton Rd NE, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Donald G Stein
- Brain Research Laboratory, Department of Emergency Medicine, 1365 B Clifton Rd NE, Suite 5100, Atlanta, GA 30322, USA.
| | - Fahim Atif
- Brain Research Laboratory, Department of Emergency Medicine, 1365 B Clifton Rd NE, Suite 5100, Atlanta, GA 30322, USA.
| |
Collapse
|
26
|
Review of Natural Product-Derived Compounds as Potent Antiglioblastoma Drugs. BIOMED RESEARCH INTERNATIONAL 2017; 2017:8139848. [PMID: 29181405 PMCID: PMC5664208 DOI: 10.1155/2017/8139848] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 08/17/2017] [Accepted: 09/17/2017] [Indexed: 12/28/2022]
Abstract
Common care for glioblastoma multiforme (GBM) is a surgical resection followed by radiotherapy and temozolomide- (TMZ-) based chemotherapy. Unfortunately, these therapies remain inadequate involving severe mortality and recurrence. Recently, new approaches discovering combinations of multiple inhibitors have been proposed along with the identification of key driver mutations that are specific to each patient. To date, this approach is still limited by the lack of effective therapy. Hopefully, novel compounds derived from natural products are suggested as potential solutions. Inhibitory effects of natural products on angiogenesis and metastasis and cancer suppressive effect of altering miRNA expression are provident discoveries. Angelica sinensis accelerates apoptosis by their key substances influencing factors of apoptosis pathways. Brazilin displays antitumor features by making influence on reactive oxygen species (ROS) intensity. Sargassum serratifolium, flavonoids, and so on have antimetastasis effect. Ficus carica controls miRNA that inhibits translation of certain secretory pathway proteins during the UPR. Serratia marcescens and patupilone (EPO 906) are physically assessed materials through clinical trials related to GBM progression. Consequently, our review puts emphasis on the potential of natural products in GBM treatment by regulating multiple malignant cancer-related pathway solving pending problem such as reducing toxicity and side effect.
Collapse
|
27
|
Marquina-Sánchez B, González-Jorge J, Hansberg-Pastor V, Wegman-Ostrosky T, Baranda-Ávila N, Mejía-Pérez S, Camacho-Arroyo I, González-Arenas A. The interplay between intracellular progesterone receptor and PKC plays a key role in migration and invasion of human glioblastoma cells. J Steroid Biochem Mol Biol 2017; 172:198-206. [PMID: 27717886 DOI: 10.1016/j.jsbmb.2016.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 09/27/2016] [Accepted: 10/03/2016] [Indexed: 10/20/2022]
Abstract
Intracellular progesterone receptors (PRs) and protein kinases C (PKCs) are known regulators of cancer cell proliferation and metastasis. Both PRs and PKCs are found overexpressed in grade IV human astrocytomas, also known as glioblastomas, which are the most frequent and aggressive brain tumors. In the present study, we investigated whether PR activation by PKC induces the migration and invasion of glioblastoma derived cell lines and if PKCα and δ isoforms are involved in PR activation. We observed that PKC activation with tetradecanoylphorbol acetate (TPA) increases the migration and invasion capacity of two human glioblastoma derived human cell lines (U251 MG and U87) and that the treatment with the PR receptor antagonist RU486 blocks these processes. Interestingly, the pharmacological inhibition of the isoenzymes PKCα and PKCδ also resulted in a blocked PR transcriptional activity. Also, TPA-dependent PR activation increases the expression of progesterone-induced blocking factor (PIBF), a known PR target gene. These results hint to an existing cross-talk between PKCs and PRs in regulating the infiltration process of human glioblastomas.
Collapse
Affiliation(s)
- Brenda Marquina-Sánchez
- Departamento de Medicina Genómica y Toxicología Ambiental, Programa de Investigación en Cancer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Jesús González-Jorge
- Departamento de Medicina Genómica y Toxicología Ambiental, Programa de Investigación en Cancer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Valeria Hansberg-Pastor
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, Mexico
| | - Talia Wegman-Ostrosky
- Dirección de Investigación, Instituto Nacional Cancerología, Ciudad de México, Mexico
| | - Noemi Baranda-Ávila
- División de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México 14080, Mexico
| | - Sonia Mejía-Pérez
- Subdirección de Neurocirugía, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México, Mexico
| | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| | - Aliesha González-Arenas
- Departamento de Medicina Genómica y Toxicología Ambiental, Programa de Investigación en Cancer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| |
Collapse
|
28
|
Proliferative and Invasive Effects of Progesterone-Induced Blocking Factor in Human Glioblastoma Cells. BIOMED RESEARCH INTERNATIONAL 2017; 2017:1295087. [PMID: 28168193 PMCID: PMC5266854 DOI: 10.1155/2017/1295087] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 11/24/2016] [Accepted: 12/15/2016] [Indexed: 11/22/2022]
Abstract
Progesterone-induced blocking factor (PIBF) is a progesterone (P4) regulated protein expressed in different types of high proliferative cells including astrocytomas, the most frequent and aggressive brain tumors. It has been shown that PIBF increases the number of human astrocytoma cells. In this work, we evaluated PIBF regulation by P4 and the effects of PIBF on proliferation, migration, and invasion of U87 and U251 cells, both derived from human glioblastomas. PIBF mRNA expression was upregulated by P4 (10 nM) from 12 to 24 h. Glioblastoma cells expressed two PIBF isoforms, 90 and 57 kDa. The content of the shorter isoform was increased by P4 at 24 h, while progesterone receptor antagonist RU486 (10 μM) blocked this effect. PIBF (100 ng/mL) increased the number of U87 cells on days 4 and 5 of treatment and induced cell proliferation on day 4. Wound-healing assays showed that PIBF increased the migration of U87 (12–48 h) and U251 (24 and 48 h) cells. Transwell invasion assays showed that PIBF augmented the number of invasive cells in both cell lines at 24 h. These data suggest that PIBF promotes proliferation, migration, and invasion of human glioblastoma cells.
Collapse
|
29
|
Expression of Progesterone Receptor Membrane Component 1 (PGRMC1), Progestin and AdipoQ Receptor 7 (PAQPR7), and Plasminogen Activator Inhibitor 1 RNA-Binding Protein (PAIRBP1) in Glioma Spheroids In Vitro. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8065830. [PMID: 27340667 PMCID: PMC4908248 DOI: 10.1155/2016/8065830] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/14/2016] [Accepted: 04/27/2016] [Indexed: 11/25/2022]
Abstract
Objective. Some effects of progesterone on glioma cells can be explained through the slow, genomic mediated response via nuclear receptors; the other effects suggest potential role of a fast, nongenomic action mediated by membrane-associated progesterone receptors. Methods. The effects of progesterone treatment on the expression levels of progesterone receptor membrane component 1 (PGRMC1), plasminogen activator inhibitor 1 RNA-binding protein (PAIRBP1), and progestin and adipoQ receptor 7 (PAQR7) on both mRNA and protein levels were investigated in spheroids derived from human glioma cell lines U-87 MG and LN-229. Results. The only significant alteration at the transcript level was the decrease in PGRMC1 mRNA observed in LN-229 spheroids treated with 30 ng/mL of progesterone. No visible alterations at the protein levels were observed using immunohistochemical analysis. Stimulation of U-87 MG spheroids resulted in an increase of PGRMC1 but a decrease of PAIRBP1 protein. Double immunofluorescent detection of PGRMC1 and PAIRBP1 identified the two proteins to be partially colocalized in the cells. Western blot analysis revealed the expected bands for PGRMC1 and PAIRBP1, whereas two bands were detected for PAQR7. Conclusion. The progesterone action is supposed to be mediated via membrane-associated progesterone receptors as the nuclear progesterone receptor was absent in tested spheroids.
Collapse
|