1
|
Neff RJ, Radka CD. Exploring Oxylipins in Host-Microbe Interactions and Their Impact on Infection and Immunity. Curr Issues Mol Biol 2025; 47:190. [PMID: 40136444 PMCID: PMC11941309 DOI: 10.3390/cimb47030190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/10/2025] [Accepted: 03/12/2025] [Indexed: 03/27/2025] Open
Abstract
Plasma lipids are essential components of biological systems, transported through interactions with proteins to maintain cellular functions. These lipids exist in various forms, such as fatty acids, glycerolipids, glycerophospholipids, sphingolipids, sterols, and prenol lipids, derived from dietary intake, adipose tissue, and biosynthesis. While the association between certain fatty acids and cardiovascular diseases has been widely recognized, polyunsaturated fatty acids (PUFAs) exhibit cardioprotective effects, reducing risks of arrhythmias and heart-related mortality. This is due to their role in the production of eicosanoids, which modulate inflammation. Chronic inflammation, particularly in obesity, is significantly influenced by fatty acids, with saturated fatty acids promoting inflammation and PUFAs mitigating it. Oxylipins, bioactive molecules derived from the oxidation of PUFAs, play crucial roles in immune regulation across various organisms, including plants, fungi, and bacteria. These molecules, such as prostaglandins, leukotrienes, and resolvins, regulate immune responses during infection and inflammation. The production of oxylipins extends beyond mammals, with fungi and bacteria synthesizing these molecules to modulate immune responses, promoting both defense and pathogenesis. This review delves into the multifaceted effects of oxylipins, exploring their impact on host and microbial interactions, with a focus on their potential for therapeutic applications in modulating infection and immune response.
Collapse
Affiliation(s)
| | - Christopher D. Radka
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40536, USA;
| |
Collapse
|
2
|
Pseudomonas aeruginosa Secretes the Oxylipin Autoinducer Synthases OdsA and OdsB via the Xcp Type 2 Secretion System. J Bacteriol 2022; 204:e0011422. [PMID: 35658521 DOI: 10.1128/jb.00114-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The oxylipin-dependent quorum-sensing system (ODS) of Pseudomonas aeruginosa relies on the production and sensing of two extracellular oxylipins, 10S-hydroxy-(8E)-octadecenoic acid (10-HOME) and 7S,10S-dihydroxy-(8E)-octadecenoic acid (7,10-DiHOME). Here, we implemented a genetic screen of P. aeruginosa strain PAO1 aimed to identify genes required for 10-HOME and 7,10-DiHOME production. Among the 14 genes identified, four encoded previously known components of the ODS and 10 encoded parts of the Xcp type II secretion system (T2SS). We subsequently created a clean xcpQ deletion mutant, which encodes the necessary outer membrane component of Xcp, and found it recapitulated the impaired functionality of the T2SS transposon mutants. Further studies showed that the ΔxcpQ mutant was unable to secrete the oxylipin synthase enzymes across the outer membrane. Specifically, immunoblotting for OdsA, which is responsible for the generation of 10-HOME from oleic acid, detected the enzyme in supernatants from wild-type PAO1 but not ΔxcpQ cultures. Likewise, chromatography of supernatants found that 10-HOME was not in supernatants collected from the ΔxcpQ mutant. Accordingly, diol synthase activity was increased in the periplasm of ΔxcpQ mutant consistent with a stoppage in its transport. Importantly, after exposure of the ΔxcpQ mutant to exogenous 10-HOME and 7,10-DiHOME, the ODS effector genes become active; thus, the sensing component of the ODS does not involve the T2SS. Finally, we observed that Xcp contributed to robust in vitro and in vivo biofilm formation in oleic acid availability- and ODS-dependent manner. Thus, T2SS-mediated transport of the oxylipin synthase enzymes to outside the bacterial cell is required for ODS functionality. IMPORTANCE We previously showed that the ODS of P. aeruginosa produces and responds to oxylipins derived from host oleic acid by enhancing biofilm formation and virulence. Here, we developed a genetic screen strategy to explore the molecular basis for oxylipins synthesis and detection. Unexpectedly, we found that the ODS autoinducer synthases cross the outer membrane using the Xcp type 2 secretion system (T2SS) of P. aeruginosa, and so the biosynthesis of oxylipins occurs extracellularly. T2SS promoted biofilm formation in the presence of oleic acid as a result of ODS activation. Our results identify two new T2SS secreted proteins in P. aeruginosa and reveal a new way by which this important opportunistic pathogen interacts with the host environment.
Collapse
|
3
|
Characterization of the enzymes involved in the diol synthase metabolic pathway in Pseudomonas aeruginosa. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Tran TK, Singhvi M, Jeong JW, Dikshit PK, Kim HR, Hou CT, Kim BS. Production of 7,10-dihydroxy-8(E)-octadecenoic acid using cell-free supernatant of Pseudomonas aeruginosa. Enzyme Microb Technol 2021; 150:109892. [PMID: 34489045 DOI: 10.1016/j.enzmictec.2021.109892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 10/20/2022]
Abstract
Cell-free synthesis has been adopted in the bioconversion process due to its known advantages, such as fast production rate, high product content, and no substrate/product inhibition effect. In this study, the cell-free supernatant of Pseudomonas aeruginosa was used to improve the production of 7,10-dihydroxy-8(E)-octadecenoic acid (DOD) from oleic acid. DOD production using cell-free supernatant demonstrated reduction in bioconversion duration and higher product concentration than conventional method using whole cell culture. The maximum DOD concentration (6.41 g/L) was obtained after 36 h of biotransformation using 1 % v/v oleic acid as a substrate with a productivity of 0.178 g/L/h and a yield of 74.8 %. DOD concentration, productivity, and yield using cell-free supernatant were 2.12, 7.12, and 2.22 times higher, respectively, than using the conventional whole cell culture method. Of the carbon and nitrogen sources used in pre-culture, galactose and sodium glutamate along with diammonium phosphate were found to be the most effective for DOD production. An incubation temperature of 27 °C and pH 8.0 were found to be most favorable for DOD production. In addition, sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis demonstrated the presence of enzymes related to DOD production in the cell-free supernatant, which was substantiated by performing DOD production experiment using the supernatant enzymes extracted from protein gel bands with oleic acid as a substrate. To the best of our knowledge, this is the first report on DOD production using a cell-free supernatant and verifying the existence of the relevant enzymes in the cell-free supernatant. Compared to whole cell process, cell-free DOD production holds several advantages, including higher DOD productivity which could be beneficial for large-scale production.
Collapse
Affiliation(s)
- Tuan Kiet Tran
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Mamata Singhvi
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Ji Wan Jeong
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Pritam Kumar Dikshit
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Hak-Ryul Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Ching T Hou
- National Center for Agricultural Utilization Research, ARS, USDA, Peoria, IL, 61604, USA
| | - Beom Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea.
| |
Collapse
|
5
|
Oxylipins mediate cell-to-cell communication in Pseudomonas aeruginosa. Commun Biol 2019; 2:66. [PMID: 30793044 PMCID: PMC6377657 DOI: 10.1038/s42003-019-0310-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 01/15/2019] [Indexed: 12/20/2022] Open
Abstract
Oxygenated unsaturated fatty acids, known as oxylipins, are signaling molecules commonly used for cell-to-cell communication in eukaryotes. However, a role for oxylipins in mediating communication in prokaryotes has not previously been described. Bacteria mainly communicate via quorum sensing, which involves the production and detection of diverse small molecules termed autoinducers. Here we show that oleic acid-derived oxylipins produced by Pseudomonas aeruginosa function as autoinducers of a novel quorum sensing system. We found that this system controls the cell density-dependent expression of a gene subset independently of the quorum sensing systems thus far described in this bacterium. We identified a LysR-type transcriptional regulator as the primary receptor of the oxylipin signal. The discovery of this oxylipin-dependent quorum sensing system reveals that prokaryote-derived oxylipins also mediate cell-to-cell communication in bacteria. Eriel Martínez et al. report that the bacterial pathogen Pseudomonas aeruginosa can convert oleic acids into oxylipins for use in cell-cell communication. This quorum sensing system is regulated by the bacterial protein called oxylipin-dependent diol synthase regulator OdsR.
Collapse
|
6
|
Martínez E, Campos-Gómez J. Oxylipins produced by Pseudomonas aeruginosa promote biofilm formation and virulence. Nat Commun 2016; 7:13823. [PMID: 27929111 PMCID: PMC5155153 DOI: 10.1038/ncomms13823] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/02/2016] [Indexed: 01/14/2023] Open
Abstract
The oxygenation of unsaturated fatty acids by dioxygenases occurs in all kingdoms of life and produces physiologically important lipids called oxylipins. The biological roles of oxylipins have been extensively studied in animals, plants, algae and fungi, but remain largely unidentified in prokaryotes. The bacterium Pseudomonas aeruginosa displays a diol synthase activity that transforms several monounsaturated fatty acids into mono- and di-hydroxylated derivatives. Here we show that oxylipins derived from this activity inhibit flagellum-driven motility and upregulate type IV pilus-dependent twitching motility of P. aeruginosa. Consequently, these oxylipins promote bacterial organization in microcolonies, increasing the ability of P. aeruginosa to form biofilms in vitro and in vivo (in Drosophila flies). We also demonstrate that oxylipins produced by P. aeruginosa promote virulence in Drosophila flies and lettuce. Our study thus uncovers a role for prokaryotic oxylipins in the physiology and pathogenicity of bacteria.
Collapse
Affiliation(s)
- Eriel Martínez
- Southern Research, Department of Infectious Diseases, Drug Discovery Division, 2000 Ninth Ave South, Birmingham, Alabama 35205, USA
| | - Javier Campos-Gómez
- Southern Research, Department of Infectious Diseases, Drug Discovery Division, 2000 Ninth Ave South, Birmingham, Alabama 35205, USA
| |
Collapse
|
7
|
Watcharakul S, Röther W, Birke J, Umsakul K, Hodgson B, Jendrossek D. Biochemical and spectroscopic characterization of purified Latex Clearing Protein (Lcp) from newly isolated rubber degrading Rhodococcus rhodochrous strain RPK1 reveals novel properties of Lcp. BMC Microbiol 2016; 16:92. [PMID: 27215318 PMCID: PMC4877957 DOI: 10.1186/s12866-016-0703-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 05/10/2016] [Indexed: 11/10/2022] Open
Abstract
Background Biodegradation of rubber (polyisoprene) is initiated by oxidative cleavage of the polyisoprene backbone and is performed either by an extracellular rubber oxygenase (RoxA) from Gram-negative rubber degrading bacteria or by a latex clearing protein (Lcp) secreted by Gram-positive rubber degrading bacteria. Only little is known on the biochemistry of polyisoprene cleavage by Lcp and on the types and functions of the involved cofactors. Results A rubber-degrading bacterium was isolated from the effluent of a rubber-processing factory and was taxonomically identified as a Rhodococcus rhodochrous species. A gene of R. rhodochrous RPK1 that coded for a polyisoprene-cleaving latex clearing protein (lcpRr) was identified, cloned, expressed in Escherichia coli and purified. Purified LcpRr had a specific activity of 3.1 U/mg at 30 °C and degraded poly(1,4-cis-isoprene) to a mixture of oligoisoprene molecules with terminal keto and aldehyde groups. The pH optimum of LcpRr was higher (pH 8) than for other rubber-cleaving enzymes (≈ pH 7). UVvis spectroscopic analysis of LcpRr revealed a cytochrome-specific absorption spectrum with an additional feature at long wavelengths that has not been observed for any other rubber-cleaving enzyme. The presence of one b-type haem in LcpRr as a co-factor was confirmed by (i) metal analysis, (ii) solvent extraction, (iii) bipyridyl assay and (iv) detection of haem-b specific m/z values via mass-spectrometry. Conclusions Our data point to substantial differences in the active sites of Lcp proteins obtained from different rubber degrading bacteria. Electronic supplementary material The online version of this article (doi:10.1186/s12866-016-0703-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sirimaporn Watcharakul
- Institute of Microbiology, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany.,Prince of Songkla University, Songkla, Thailand
| | - Wolf Röther
- Institute of Microbiology, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Jakob Birke
- Institute of Microbiology, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | | | | | - Dieter Jendrossek
- Institute of Microbiology, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany.
| |
Collapse
|