1
|
Abdi E, Latifi-Navid S, Panahi A, Latifi-Navid H. LncRNA polymorphisms and lung cancer risk. Per Med 2023; 20:511-522. [PMID: 37916472 DOI: 10.2217/pme-2023-0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Lung cancer (LC) imposes a significant burden, and is associated with high mortality and morbidity among malignant tumors. Aberrant expression of particular lncRNAs is closely linked to LC. LncRNA polymorphisms cause abnormal expression levels and/or structural dysfunction. They can affect the progression of cancer, survival, response to chemotherapy and recurrence rates in cancer patients. The present article provides a comprehensive overview of the effect of lncRNA genetic polymorphisms on LC. It is proposed that lncRNA-related variants can be used to predict cancer risk and therapeutic outcomes. More large-scale trials on diverse ethnic groups are required to validate the results, thus personalizing LC therapy based on lncRNA genotypes.
Collapse
Affiliation(s)
- Esmat Abdi
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, 5619911367, Iran
| | - Saeid Latifi-Navid
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, 5619911367, Iran
| | - Alireza Panahi
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, 5619911367, Iran
| | - Hamid Latifi-Navid
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran, 14965/161, Iran
| |
Collapse
|
2
|
Shahi A, Afzali S, Firoozi Z, Mohaghegh P, Moravej A, Hosseinipour A, Bahmanyar M, Mansoori Y. Potential roles of NLRP3 inflammasome in the pathogenesis of Kawasaki disease. J Cell Physiol 2023; 238:513-532. [PMID: 36649375 DOI: 10.1002/jcp.30948] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/12/2022] [Accepted: 01/05/2023] [Indexed: 01/19/2023]
Abstract
There is a heterogeneous group of rare illnesses that fall into the vasculitis category and are characterized mostly by blood vessel inflammation. Ischemia and disrupted blood flow will cause harm to the organs whose blood arteries become inflamed. Kawasaki disease (KD) is the most prevalent kind of vasculitis in children aged 5 years or younger. Because KD's cardiovascular problems might persist into adulthood, it is no longer thought of as a self-limiting disease. KD is a systemic vasculitis with unknown initiating factors. Numerous factors, such as genetic predisposition and infectious pathogens, are implicated in the etiology of KD. As endothelial cell damage and inflammation can lead to coronary endothelial dysfunction in KD, some studies hypothesized the crucial role of pyroptosis in the pathogenesis of KD. Additionally, pyroptosis-related proteins like caspase-1, apoptosis-associated speck-like protein containing a CARD (ASC), proinflammatory cytokines like IL-1 and IL-18, lactic dehydrogenase, and Gasdermin D (GSDMD) have been found to be overexpressed in KD patients when compared to healthy controls. These occurrences may point to an involvement of inflammasomes and pyroptotic cell death in the etiology of KD and suggest potential treatment targets. Based on these shreds of evidence, in this review, we aim to focus on one of the well-defined inflammasomes, NLRP3, and its role in the pathophysiology of KD.
Collapse
Affiliation(s)
- Abbas Shahi
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shima Afzali
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Firoozi
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
- Department of Medical Genetics, Fasa University of Medical Sciences, Fasa, Iran
| | - Poopak Mohaghegh
- Pediatrics Department, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Ali Moravej
- Department of Immunology, Fasa University of Medical Sciences, Fasa, Iran
| | - Ali Hosseinipour
- Department of Internal Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Maryam Bahmanyar
- Pediatrics Department, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Yaser Mansoori
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
- Department of Medical Genetics, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
3
|
Li HC, Yang CH, Lo SY. Long noncoding RNAs in hepatitis B virus replication and oncogenesis. World J Gastroenterol 2022; 28:2823-2842. [PMID: 35978877 PMCID: PMC9280728 DOI: 10.3748/wjg.v28.i25.2823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/16/2022] [Accepted: 05/22/2022] [Indexed: 02/06/2023] Open
Abstract
Several diverse long noncoding RNAs (lncRNAs) have been identified to be involved in hepatitis B virus (HBV) replication and oncogenesis, especially those dysregulated in HBV-related hepatocellular carcinoma (HCC). Most of these dysregulated lncRNAs are modulated by the HBV X protein. The regulatory mechanisms of some lncRNAs in HBV replication and oncogenesis have been characterized. Genetic polymorphisms of several lncRNAs affecting HBV replication or oncogenesis have also been studied. The prognosis of HCC remains poor. It is important to identify novel tumor markers for early diagnosis and find more therapeutic targets for effective treatments of HCC. Some dysregulated lncRNAs in HBV-related HCC may become biomarkers for early diagnosis and/or the therapeutic targets of HCC. This mini-review summarizes these findings briefly, focusing on recent developments.
Collapse
Affiliation(s)
- Hui-Chun Li
- Department of Biochemistry, Tzu Chi University, Hualien 97004, Taiwan
| | - Chee-Hing Yang
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien 97004, Taiwan
| | - Shih-Yen Lo
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien 97004, Taiwan
- Department of Laboratory Medicine, Buddhist Tzu Chi General Hospital, Hualien 97004, Taiwan
| |
Collapse
|
4
|
Feng Y, Wang Z, Zhu M, Li S, Dong S, Gong L, Li X, Zhang S, Jia T, Kong X, Tian J, Sun L. Single Nucleotide Polymorphisms of EXOC1, BCL2, CCAT2, and CARD8 Genes and Susceptibility to Cervical Cancer in the Northern Chinese Han Population. Front Oncol 2022; 12:878529. [PMID: 35814404 PMCID: PMC9267950 DOI: 10.3389/fonc.2022.878529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/30/2022] [Indexed: 11/29/2022] Open
Abstract
Cervical cancer (CC) is one of the main malignant tumors that threaten the health and lives of women around the world, and its morbidity and mortality rate ranks fourth. At present, most studies on the genetic background of CC focus on genetic polymorphisms. Single nucleotide polymorphisms (SNPs) are considered clinically as potential diagnostic and therapeutic biomarkers for a variety of tumors. Therefore, we aimed to explore the association between SNPs in different genes (EXOC1 gene, BCL2 gene, CCAT2 gene and CARD8 gene) and susceptibility to CC. This study is a case-control study based on women in northern Chinese, which included 492 women with CC and 510 healthy women. This study used multiplex PCR combined with next-generation sequencing to genotype the selected SNPs (rs13117307(C/T) in EXOC1 gene, rs2279115(C/A) in BCL2 gene, rs6983267(G/T) in CCAT2 gene and rs7248320(G/A) in CARD8 gene). The results of the study showed that there was no significant association between the four SNPs and the susceptibility to CC. However, in further stratified analysis, we found that rs13117307 and rs2279115 were significantly related to squamous cell carcinoma antigen (SCC-Ag) levels in women with CC, and rs6983267 was significantly related to the menopausal status of women with CC. Specifically, alleles T of rs13117307 and genoytpe AA of rs2279115 when SCC-Ag is greater than 1.5 ng/ml increase the risk of CC. The genotype TG/TG+TT of rs6983267 increases the risk of CC in premenopausal women. In conclusion, although we did not directly find a significant correlation between four SNPs, rs13117307 in EXOC1 gene,rs2279115 in BCL2 gene, rs6983267 in CCAT2 gene and rs7248320 in CARD8 gene, and CC susceptibility, we found that SNPs rs13117307, rs2279115, rs6983267 were associated with the clinical characteristics of several patients' CC patients. Therefore, this study provides us with new ideas for understanding CC and the diagnosis and treatment of CC in the future.
Collapse
Affiliation(s)
- Yanan Feng
- Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People’s Hospital, Hangzhou, China
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhenzhen Wang
- Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People’s Hospital, Hangzhou, China
| | - Manning Zhu
- Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People’s Hospital, Hangzhou, China
| | - Songxue Li
- Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People’s Hospital, Hangzhou, China
| | - Shuang Dong
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Liping Gong
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaoying Li
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shuang Zhang
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tianshuang Jia
- Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People’s Hospital, Hangzhou, China
| | - Xianchao Kong
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiawei Tian
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Litao Sun, ; Jiawei Tian,
| | - Litao Sun
- Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People’s Hospital, Hangzhou, China
- *Correspondence: Litao Sun, ; Jiawei Tian,
| |
Collapse
|
5
|
Ramachandran D, Dörk T. Genomic Risk Factors for Cervical Cancer. Cancers (Basel) 2021; 13:5137. [PMID: 34680286 PMCID: PMC8533931 DOI: 10.3390/cancers13205137] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/04/2021] [Accepted: 10/11/2021] [Indexed: 12/28/2022] Open
Abstract
Cervical cancer is the fourth common cancer amongst women worldwide. Infection by high-risk human papilloma virus is necessary in most cases, but not sufficient to develop invasive cervical cancer. Despite a predicted genetic heritability in the range of other gynaecological cancers, only few genomic susceptibility loci have been identified thus far. Various case-control association studies have found corroborative evidence for several independent risk variants at the 6p21.3 locus (HLA), while many reports of associations with variants outside the HLA region remain to be validated in other cohorts. Here, we review cervical cancer susceptibility variants arising from recent genome-wide association studies and meta-analysis in large cohorts and propose 2q14 (PAX8), 17q12 (GSDMB), and 5p15.33 (CLPTM1L) as consistently replicated non-HLA cervical cancer susceptibility loci. We further discuss the available evidence for these loci, knowledge gaps, future perspectives, and the potential impact of these findings on precision medicine strategies to combat cervical cancer.
Collapse
Affiliation(s)
| | - Thilo Dörk
- Gynaecology Research Unit, Department of Gynaecology and Obstetrics, Comprehensive Cancer Center, Hannover Medical School, D-30625 Hannover, Germany;
| |
Collapse
|
6
|
Guo K, Qiu L, Xu Y, Gu X, Zhang L, Lin K, Wang X, Song S, Liu Y, Niu Z, Ma S. Single-Nucleotide Polymorphism LncRNA AC008392.1/rs7248320 in CARD8 is Associated with Kawasaki Disease Susceptibility in the Han Chinese Population. J Inflamm Res 2021; 14:4809-4816. [PMID: 34584439 PMCID: PMC8464376 DOI: 10.2147/jir.s331727] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/09/2021] [Indexed: 12/12/2022] Open
Abstract
Background Kawasaki disease (KD) is a multisystem vasculitis in infants and young children and involved in the NOD-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome activation. Genetic factors may increase the risk of KD. To assess the association between rs7248320 in long noncoding RNA (lncRNA) AC008392.1 located in the upstream region of CARD8 and the risk of KD, a case–control study was conducted in the Han Chinese population. Methods This study genotyped the polymorphism rs7248320 in the lncRNA AC008392.1 gene using the TaqMan real-time polymerase chain reaction assay. The genetic contribution of rs7248320 was evaluated using odds ratios (ORs) and 95% confidence intervals (CIs) using unconditional logistic regression analysis. The association between rs7248320 and KD susceptibility was analyzed by performing a hospital-based case–control study including 559 KD patients and 1055 non-KD controls. Results In this study, a significant relationship between rs7248320 and KD risk was observed in the genotype/allele frequency distribution. The rs7248320 polymorphism was associated with a significantly decreased risk of KD after adjustment for age and sex (AG vs AA: adjusted OR = 0.80, 95% CI: 0.64–0.99, P = 0.0421; GG vs AA: adjusted OR = 0.71, 95% CI: 0.51–1.00, P = 0.0492; AG/GG vs AA: adjusted OR = 0.78, 95% CI: 0.63–0.96, P = 0.0186). Moreover, the rs7248320 G allele also exhibited a decreased risk for KD (adjusted OR = 0.83, 95% CI: 0.72–0.97, P = 0.0193) compared with the A allele. In the stratification analysis, compared to the rs7248320 AA genotype, AG/GG genotypes were more protective for males (OR = 0.71, 95% CI: 0.55–0.93, P = 0.0122). Conclusion This study suggests for the first time that the lncRNA AC008392.1 rs7248320 polymorphism may be involved in KD susceptibility in the Han Chinese population.
Collapse
Affiliation(s)
- Kai Guo
- Department of Transfusion Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Lijuan Qiu
- Department of Transfusion Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Yufen Xu
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Xiaoqiong Gu
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Linyuan Zhang
- Department of Clinical Lab, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Kun Lin
- Department of Clinical Lab, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Xiaohuan Wang
- Department of Transfusion Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Shanshan Song
- Department of Transfusion Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Yu Liu
- Department of Transfusion Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Zijian Niu
- Department of Transfusion Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Shuxuan Ma
- Department of Transfusion Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| |
Collapse
|
7
|
Zhang H, Chen X, Zhang J, Wang X, Chen H, Liu L, Liu S. Long non‑coding RNAs in HBV‑related hepatocellular carcinoma (Review). Int J Oncol 2019; 56:18-32. [PMID: 31746420 DOI: 10.3892/ijo.2019.4909] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 09/02/2019] [Indexed: 12/25/2022] Open
Abstract
Hepatitis B virus (HBV)‑related hepatocellular carcinoma (HCC) is a global health problem that accounts for more than half of total liver cancer cases in developing countries. Despite the growing number of researches conducted, the molecular mechanism underlying the development of HCC remains elusive. Long non‑coding RNAs (lncRNAs), which are non‑coding RNAs >200 nt in length that were previously considered to be transcriptional noise, have been found to be dysregulated in HBV‑related HCC with the help of high‑throughput omics techniques. Subsequent investigations revealed that aberrant expression of lncRNAs may affect the risk of HBV‑related HCC through diverse mechanisms, including epigenetic silencing of transcriptional activation, alternative splicing, molecular sponging, modulating protein stability, and by serving as precursors of miRNAs. Although the sensitivity and specificity of lncRNAs must be further validated, a number of circulating lncRNAs have been identified as useful biomarkers for HBV‑related HCC. In addition to these findings, recent studies also unveiled that certain genetic polymorphisms in lncRNAs may affect the occurrence and prognosis of HBV‑related HCC. The aim of the present review was to provide an overview of the mechanisms underlying the involvement of lncRNAs in HBV‑related HCC. Subsequently, lncRNAs found to be dysregulated in HBV‑related HCC were focused on and current findings on circulating lncRNAs and their genetic polymorphisms were discussed.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Sichuan 610000, P.R. China
| | - Xuebing Chen
- Department of Infectious Diseases, People's Hospital of Deyang City, Deyang, Sichuan 618000, P.R. China
| | - Jian Zhang
- Department of Pathology, People's Hospital of Deyang City, Deyang, Sichuan 618000, P.R. China
| | - Xianwei Wang
- Department of Pathology, People's Hospital of Deyang City, Deyang, Sichuan 618000, P.R. China
| | - Huijuan Chen
- Department of Pathology, People's Hospital of Deyang City, Deyang, Sichuan 618000, P.R. China
| | - Lin Liu
- Department of Pathology, People's Hospital of Deyang City, Deyang, Sichuan 618000, P.R. China
| | - Shanling Liu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Sichuan 610000, P.R. China
| |
Collapse
|
8
|
Yin Q, Sun K, Xiang X, Juan J, Cao Y, Song J, Yang Y, Shi M, Tian Y, Liu K, Fang K, Li J, Tang X, Wu Y, Qin X, Wu T, Chen D, Hu Y. Identification of Novel CXCL12 Genetic Polymorphisms Associated with Type 2 Diabetes Mellitus: A Chinese Sib-Pair Study. Genet Test Mol Biomarkers 2019; 23:435-441. [PMID: 31294628 DOI: 10.1089/gtmb.2018.0149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Aims: To discover possible relationships between CXCL12 single nucleotide polymorphisms (SNPs) and type 2 diabetes mellitus (T2DM) and its risk factors. Methods: The present sib-pair study was conducted in a rural community of Beijing, China. SNPs rs2297630, rs1746048, and rs1801157 located within or nearby the CXCL12 gene were genotyped using the allele-specific polymerase chain reaction method. Haseman-Elston regression was used to investigate linkages between these SNPs and T2DM. A generalized estimating equation logistic regression model was used to discover associations between the SNPs, T2DM, and its risk factors. Results: A total of 3171 participants were recruited, comprising 2277 sib pairs. After Bonferroni correction (α = 0.016), rs2297630 was found to be significantly linked to (p = 0.003) and associated with T2DM (AA vs. GG/GA: OR = 2.26, 95% CI: 1.31-3.88, p = 0.003). There were interactions between rs2297630 and dyslipidemia (p < 0.001) and between rs1746048 and hypertension (p = 0.011). Compared to dyslipidemia-free subjects with rs2297630 GG/GA genotypes, dyslipidemia patients with rs2297630 AA had a higher risk of T2DM (OR = 4.15, 95% CI: 2.24-7.67, p < 0.001). Compared to hypertension-free subjects with rs1746048 CC genotypes, hypertension-free subjects with rs1746048 CT/TT had a decreased risk of T2DM (OR = 0.77, 95% CI: 0.60-0.99, p = 0.045). Conclusions: A novel linkage and association was found between rs2297630 and T2DM. Moreover, novel interactions were found between rs2297630 and dyslipidemia as well as rs1746048 and hypertension. These findings will help identify individuals at higher risk of developing T2DM.
Collapse
Affiliation(s)
- Qiongzhou Yin
- 1 Department of Epidemiology and Biostatistics, School of Public Public Health, Peking University, Beijing, China
| | - Kexin Sun
- 1 Department of Epidemiology and Biostatistics, School of Public Public Health, Peking University, Beijing, China
| | - Xiao Xiang
- 1 Department of Epidemiology and Biostatistics, School of Public Public Health, Peking University, Beijing, China
| | - Juan Juan
- 1 Department of Epidemiology and Biostatistics, School of Public Public Health, Peking University, Beijing, China
| | - Yaying Cao
- 1 Department of Epidemiology and Biostatistics, School of Public Public Health, Peking University, Beijing, China
| | - Jing Song
- 1 Department of Epidemiology and Biostatistics, School of Public Public Health, Peking University, Beijing, China
| | - Yanfen Yang
- 1 Department of Epidemiology and Biostatistics, School of Public Public Health, Peking University, Beijing, China
| | - Moye Shi
- 1 Department of Epidemiology and Biostatistics, School of Public Public Health, Peking University, Beijing, China
| | - Yaohua Tian
- 1 Department of Epidemiology and Biostatistics, School of Public Public Health, Peking University, Beijing, China
| | - Kuo Liu
- 2 Department of Epidemiology & Biostatistics, Capital Medical University, Beijing, China
| | - Kai Fang
- 3 Beijing Center for Disease Prevention and Control, Beijing, China
| | - Jing Li
- 1 Department of Epidemiology and Biostatistics, School of Public Public Health, Peking University, Beijing, China
| | - Xun Tang
- 1 Department of Epidemiology and Biostatistics, School of Public Public Health, Peking University, Beijing, China
| | - Yiqun Wu
- 1 Department of Epidemiology and Biostatistics, School of Public Public Health, Peking University, Beijing, China
| | - Xueying Qin
- 1 Department of Epidemiology and Biostatistics, School of Public Public Health, Peking University, Beijing, China
| | - Tao Wu
- 1 Department of Epidemiology and Biostatistics, School of Public Public Health, Peking University, Beijing, China
| | - Dafang Chen
- 1 Department of Epidemiology and Biostatistics, School of Public Public Health, Peking University, Beijing, China
| | - Yonghua Hu
- 1 Department of Epidemiology and Biostatistics, School of Public Public Health, Peking University, Beijing, China
| |
Collapse
|
9
|
The Genetic Polymorphisms of NLRP3 Inflammasome Associated with T Helper Cells in Patients with Multiple Myeloma. J Immunol Res 2018; 2018:7569809. [PMID: 30211233 PMCID: PMC6126087 DOI: 10.1155/2018/7569809] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 06/28/2018] [Accepted: 07/17/2018] [Indexed: 12/24/2022] Open
Abstract
The pathogenesis of multiple myeloma (MM) remains unclear and the NLRP3 inflammasome has been more and more recognized in the progression of many diseases. To investigate the role of the NLRP3 inflammasome in MM, we determined the genetic polymorphisms and expression of NLRP3 inflammasome-related genes (IL-1β, IL-18, CARD8, and NF-κB) in MM patients, and explored their clinical relevance. Furthermore, we investigated the relationship of the NLRP3 inflammasome with Th cells in MM. Our study showed that the CARD8-C10X (rs2043211) AT genotype contributed to the susceptibility of MM. CARD8-C10X TT patients had earlier clinical stage. The WBC count in the three CARD8 genotypes showed an increasing trend (AA<AT<TT). Compared with patients with NF-κB-94 ins/del ATTG ins/ins and ins/del, patients with del/del had the highest myeloma cell ratio. Patients with IL-18 (rs16944) TT had the highest hemoglobin concentration (GG<GT<TT). Furthermore, we found that the genotype of CARD8-C10X (rs2043211) or NF-κB-94 ins/del ATTG was closely related to the frequency of Th1. Therefore, the genetic polymorphisms of the NLRP3 inflammasome associated with Th cells might be involved in the pathogenesis of multiple myeloma.
Collapse
|
10
|
Lv X, Cui Z, Li H, Li J, Yang Z, Bi Y, Gao M, Zhou B, Yin Z. Polymorphism in lncRNA AC008392.1 and its interaction with smoking on the risk of lung cancer in a Chinese population. Cancer Manag Res 2018; 10:1377-1387. [PMID: 29881308 PMCID: PMC5985799 DOI: 10.2147/cmar.s160818] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Purpose To evaluate the association between rs7248320 in lncRNA AC008392.1 and the risk of lung cancer, this case–control study was carried out in a Chinese population. This study also evaluated the gene–environment interaction between rs7248320 and exposure to smoking status on the risk of lung cancer. Patients and methods We conducted a hospital-based case–control study including 512 lung cancer cases and 588 healthy controls. The association between rs7248320 and the risk of lung cancer was analyzed, and the gene–environment interaction was estimated on an additive scale. Results The variant genotype of rs7248320 was significantly related to the risk of non-small-cell lung cancer (NSCLC). Individuals carrying homozygous GG genotype had decreased risk of NSCLC, compared with individuals carrying the homozygous wild AA genotype/heterozygote GA genotype (adjusted odds ratio [OR] =0.653, 95% confidence interval [CI] =0.442–0.966, P=0.033). Moreover, in the subgroup of ages, there were statistically significant associations between rs7248320 and the risk of lung cancer and NSCLC in the population over 60 years of age. Compared with individuals carrying genotypes AA/GA, individuals with genotype GG had the lower risk of lung cancer and NSCLC (adjusted ORs were 0.579 and 0.433, 95% CIs were 0.338–0.994 and 0.231–0.811, P-values were 0.048 and 0.009, respectively). Compared with homozygote AA, the homozygote GG was associated with a decreased risk in NSCLC (OR =0.456, 95% CI =0.235–0.887, P=0.021). There were no statistically significant results in gene–environment interactions on an additive scale. Conclusion These findings suggest that lncRNA AC008392.1 rs7248320 may be involved in genetic susceptibility to NSCLC in a Chinese population.
Collapse
Affiliation(s)
- Xiaoting Lv
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, 110122, People's Republic of China.,Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang, 110122, People's Republic of China
| | - Zhigang Cui
- School of Nursing, China Medical University, Shenyang, 110122, People's Republic of China
| | - Hang Li
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, 110122, People's Republic of China.,Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang, 110122, People's Republic of China
| | - Juan Li
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, 110122, People's Republic of China.,Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang, 110122, People's Republic of China
| | - Zitai Yang
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, 110122, People's Republic of China.,Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang, 110122, People's Republic of China
| | - Yanhong Bi
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, 110122, People's Republic of China.,Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang, 110122, People's Republic of China
| | - Min Gao
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, 110122, People's Republic of China.,Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang, 110122, People's Republic of China
| | - Baosen Zhou
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, 110122, People's Republic of China.,Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang, 110122, People's Republic of China
| | - Zhihua Yin
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, 110122, People's Republic of China.,Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang, 110122, People's Republic of China
| |
Collapse
|
11
|
Single nucleotide polymorphisms in ZNRD1-AS1 increase cancer risk in an Asian population. Oncotarget 2018; 8:10064-10070. [PMID: 28052024 PMCID: PMC5354641 DOI: 10.18632/oncotarget.14334] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 12/01/2016] [Indexed: 12/12/2022] Open
Abstract
Single nucleotide polymorphisms (SNPs) in human zinc ribbon domain containing 1 antisense RNA 1 (ZNRD1-AS1) have been associated with cancer development. In this meta-analysis, we more precisely estimated the associations between three expression quantitative trait loci SNPs in ZNRD1-AS1 (rs3757328, rs6940552, and rs9261204) and cancer susceptibility. The data for three SNPs were extracted from eligible studies, which included 5,293 patients and 5,440 controls. Overall, no significant associations between SNPs in ZNRD1-AS1 (rs3757328, rs6940552, and rs9261204) and cancer risk were observed. However, in further subgroup analyses based on cancer type, we found that the A allele of rs3757328 increased the risk of some cancer in both allele contrast (OR = 1.15, 95% CI = 1.05 – 1.25) and recessive models (OR = 1.79; 95% CI = 1.33 – 2.41). The A allele of rs6940552 and the G allele of rs9261204 also increased the risk of some cancer in an Asian population in allele contrast (OR = 1.17, 95% CI = 1.08 – 1.26, and OR = 1.25, 95% CI = 1.16 – 1.34, respectively) and recessive models (OR = 1.44, 95% CI = 1.18 – 1.77, and OR = 1.49; 95% CI = 1.23 – 1.80, respectively). Thus, rs3757328, rs6940552, and rs9261204 in ZNRD1-AS1 are all associated with increased some cancer risk in an Asian population.
Collapse
|
12
|
Li J, Li C, Wang J, Song G, Zhao Z, Wang H, Wang W, Li H, Li Z, Miao Y, Li G, Zhang Y. Genome-wide analysis of differentially expressed lncRNAs and mRNAs in primary gonadotrophin adenomas by RNA-seq. Oncotarget 2018; 8:4585-4606. [PMID: 27992366 PMCID: PMC5354857 DOI: 10.18632/oncotarget.13948] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 12/08/2016] [Indexed: 12/19/2022] Open
Abstract
Recently, long non-coding RNAs (lncRNAs) have received increased research interest owing to their participation via distinct mechanisms in the biological processes of nonfunctional pituitary adenomas. However, changes in the expression of lncRNAs in gonadotrophin adenoma, which is the most common nonfunctional pituitary adenomas, have not yet been reported. In this study, we performed a genome-wide analysis of lncRNAs and mRNAs obtained from gonadotrophin adenoma patients’ samples and normal pituitary tissues using RNA-seq. The differentially expressed lncRNAs and mRNAs were identified using fold-change filtering. We identified 839 lncRNAs and 1015 mRNAs as differentially expressed. Gene Ontology analysis indicated that the biological functions of differentially expressed mRNAs were related to transcription regulator activity and basic metabolic processes. Ingenuity Pathway Analysis was performed to identify 64 canonical pathways that were significantly enriched in the tumor samples. Furthermore, to investigate the potential regulatory roles of the differentially expressed lncRNAs on the mRNAs, we constructed general co-expression networks for 100 coding and 577 non-coding genes that showed significantly correlated expression patterns in tumor cohort. In particular, we built a special sub-network of co-expression involving 186 lncRNAs interacting with 15 key coding genes of the mTOR pathway, which might promote the pathogenesis of gonadotrophin tumor. This is the first study to explore the patterns of genome-wide lncRNAs expression and co-expression with mRNAs, which might contribute to the molecular pathogenesis of gonadotrophin adenoma.
Collapse
Affiliation(s)
- Jiye Li
- Beijing Neurosurgical Institute, Capital Medical University, Tiantan Xili, Dongcheng District, Beijing, China
| | - Chuzhong Li
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Beijing Institute for Brain Disorders Brain Tumor Center, China National Clinical Research Center for Neurological Diseases, Capital Medical University, Beijing, China
| | - Jianpeng Wang
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Guidong Song
- Beijing Neurosurgical Institute, Capital Medical University, Tiantan Xili, Dongcheng District, Beijing, China
| | - Zheng Zhao
- Beijing Neurosurgical Institute, Capital Medical University, Tiantan Xili, Dongcheng District, Beijing, China
| | - Haoyuan Wang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wen Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hailong Li
- Department of Neurosurgery, Navy General Hospital, Beijing, China
| | - Zhenye Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yazhou Miao
- Beijing Neurosurgical Institute, Capital Medical University, Tiantan Xili, Dongcheng District, Beijing, China
| | - Guilin Li
- Beijing Neurosurgical Institute, Capital Medical University, Tiantan Xili, Dongcheng District, Beijing, China
| | - Yazhuo Zhang
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Beijing Institute for Brain Disorders Brain Tumor Center, China National Clinical Research Center for Neurological Diseases, Capital Medical University, Beijing, China
| |
Collapse
|
13
|
da Silva WC, Reis EC, Oshiro TM, Pontillo A. Genetics of Inflammasomes. EXPERIENTIA SUPPLEMENTUM (2012) 2018; 108:321-341. [PMID: 30536178 DOI: 10.1007/978-3-319-89390-7_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Mutations in inflammasome genes are responsible for rare monogenic and polygenic autoinflammatory diseases. On the other side, genetic polymorphisms in the same molecules contribute to the development of common multifactorial diseases (i.e., autoimmune diseases, cardiovascular pathologies, cancer). In this chapter we depicted the current knowledge about inflammasome genetics.
Collapse
Affiliation(s)
- Wanessa Cardoso da Silva
- Laboratório de Investigação em Dermatologia e Imunodeficiências, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil.
- Avenida Dr. Enéas de Carvalho Aguiar, 470 - Instituto de Medicina Tropical (IMT) Prédio 2 - 3° andar, São Paulo, SP, Brasil.
| | - Edione C Reis
- Laboratório de Imunogenética, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil
- Avenida Prof. Lineu Prestes, 1730 - 05508-000 Cidade Universitária, São Paulo, SP, Brasil
| | - Telma M Oshiro
- Laboratório de Investigação em Dermatologia e Imunodeficiências, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
- Avenida Dr. Enéas de Carvalho Aguiar, 470 - Instituto de Medicina Tropical (IMT) Prédio 2 - 3° andar, São Paulo, SP, Brasil
| | - Alessandra Pontillo
- Laboratório de Imunogenética, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil
- Avenida Prof. Lineu Prestes, 1730 - 05508-000 Cidade Universitária, São Paulo, SP, Brasil
| |
Collapse
|
14
|
Murthy MN, Blauwendraat C, Guelfi S, Hardy J, Lewis PA, Trabzuni D. Increased brain expression of GPNMB is associated with genome wide significant risk for Parkinson's disease on chromosome 7p15.3. Neurogenetics 2017; 18:121-133. [PMID: 28391543 PMCID: PMC5522530 DOI: 10.1007/s10048-017-0514-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 03/20/2017] [Indexed: 12/14/2022]
Abstract
Genome wide association studies (GWAS) for Parkinson’s disease (PD) have previously revealed a significant association with a locus on chromosome 7p15.3, initially designated as the glycoprotein non-metastatic melanoma protein B (GPNMB) locus. In this study, the functional consequences of this association on expression were explored in depth by integrating different expression quantitative trait locus (eQTL) datasets (Braineac, CAGEseq, GTEx, and Phenotype-Genotype Integrator (PheGenI)). Top risk SNP rs199347 eQTLs demonstrated increased expressions of GPNMB, KLHL7, and NUPL2 with the major allele (AA) in brain, with most significant eQTLs in cortical regions, followed by putamen. In addition, decreased expression of the antisense RNA KLHL7-AS1 was observed in GTEx. Furthermore, rs199347 is an eQTL with long non-coding RNA (AC005082.12) in human tissues other than brain. Interestingly, transcript-specific eQTLs in immune-related tissues (spleen and lymphoblastoid cells) for NUPL2 and KLHL7-AS1 were observed, which suggests a complex functional role of this eQTL in specific tissues, cell types at specific time points. Significantly increased expression of GPNMB linked to rs199347 was consistent across all datasets, and taken in combination with the risk SNP being located within the GPNMB gene, these results suggest that increased expression of GPNMB is the causative link explaining the association of this locus with PD. However, other transcript eQTLs and subsequent functional roles cannot be excluded. This highlights the importance of further investigations to understand the functional interactions between the coding genes, antisense, and non-coding RNA species considering the tissue and cell-type specificity to understand the underlying biological mechanisms in PD.
Collapse
Affiliation(s)
- Megha N Murthy
- Genetics and Genomics Laboratory, DOS in Genetics and Genomics, University of Mysore, Mysore, Karnataka, 570006, India
- School of Pharmacy, University of Reading, Whiteknights, Reading, RG6 6AP, UK
| | - Cornelis Blauwendraat
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Sebastian Guelfi
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - John Hardy
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Patrick A Lewis
- School of Pharmacy, University of Reading, Whiteknights, Reading, RG6 6AP, UK
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Daniah Trabzuni
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK.
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia.
| |
Collapse
|
15
|
Ma S, Yang J, Song C, Ge Z, Zhou J, Zhang G, Hu Z. Expression quantitative trait loci for PAX8 contributes to the prognosis of hepatocellular carcinoma. PLoS One 2017; 12:e0173700. [PMID: 28339471 PMCID: PMC5365105 DOI: 10.1371/journal.pone.0173700] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 02/25/2017] [Indexed: 12/26/2022] Open
Abstract
Paired-box family member PAX8 encodes a transcription factor that has a role in cell differentiation and cell growth and may participate in the prognosis of hepatocellular carcinoma (HCC). By bioinformatics analysis, we identified several single nucleotide polymorphisms (SNPs) within a newly identified long non-coding RNA (lncRNA) AC016683.6 as expression quantitative trait loci (eQTLs) for PAX8. Hence, we hypothesized that PAX8eQTLs in lncRNA AC016683.6 may influence the HCC prognosis. We then performed a case-only study to assess the association between the two SNPs as well as the prognosis of HCC in 331 HBV-positive HCC patients without surgical treatment. Cox proportional hazard models were used for survival analysis with adjustments for the age, gender, smoking status, drinking status, Barcelona-Clinic Liver Cancer (BCLC) stage, and chemotherapy or TACE (transcatheter hepatic arterial chemoembolization) status. We found that the G allele of rs1110839 and the T allele of rs4848320 in PAX8was significantly associated with a better prognosis compared with the T allele of rs1110839 and the C allele of rs4848320 (adjusted HR = 0.74, 95% CI = 0.61–0.91, P = 0.004 for rs1110839 and adjusted HR = 0.71, 95% CI = 0.54–0.94, P = 0.015 for rs4848320 in the additive model). Furthermore, the combined effect of the variant genotypes for these two SNPs was more prominent in patients with the BCLC-C stage orpatients with chemotherapy or TACE. Although the exact biological function remains to be explored, our findings suggest a possible association of PAX8eQTLs in lncRNA AC016683.6 with the HCC prognosis inthe Chinese population. Further large and functional studies are needed to confirm our findings.
Collapse
Affiliation(s)
- Shijie Ma
- Department of Gastroenterology, Huai'an First People's Hospital, Nanjing Medical University, Nanjing, China
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing,China
| | - Jianshui Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing,China
| | - Ci Song
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing,China
| | - Zijun Ge
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing,China
| | - Jing Zhou
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing,China
| | - Guoxin Zhang
- Departmentof Gastroenterology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- * E-mail: (ZH); (GZ)
| | - Zhibin Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing,China
- * E-mail: (ZH); (GZ)
| |
Collapse
|
16
|
Lv Z, Xu Q, Yuan Y. A systematic review and meta-analysis of the association between long non-coding RNA polymorphisms and cancer risk. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 771:1-14. [PMID: 28342449 DOI: 10.1016/j.mrrev.2016.10.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 10/26/2016] [Indexed: 02/07/2023]
Abstract
It has been suggested that long non-coding RNA (lncRNA) gene polymorphisms are associated with cancer risk. In this article, we conducted a systematic review related to studies on the association between lncRNA single-nucleotide polymorphisms (SNPs) and the overall risk of cancer. A total 17 SNPs in four common lncRNA genes were included in the meta-analysis. In the lncRNA H19, the rs2735971 A/G, rs2839698C/T, and rs3024270 G/C polymorphisms, but not rs217727C/T, were correlated with overall cancer risk. The results also suggested that other SNPs were correlated with overall cancer risk, namely, two in HOTAIR (HOX transcript antisense RNA: rs920778C/T and rs7958904 G/C) and two in PRNCR1 (rs1016343C/T and rs16901946 A/G). No association was found between the three ZNRD1-AS1 (ZNRD1 antisense RNA 1) SNPs and the risk of cancer. In summary, our findings suggest that quite a few studied lncRNA SNPs are associated with overall cancer risk; therefore, they are potential predictive biomarkers for the risk of cancer. Moreover, other lncRNA SNPs investigated were also relevant to cancer but studies on them are limited, and they were also briefly reviewed as candidate cancer markers.
Collapse
Affiliation(s)
- Zhi Lv
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang 110001, China
| | - Qian Xu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang 110001, China.
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang 110001, China.
| |
Collapse
|
17
|
Xu Y, Yan C, Hao Z, Zhou J, Fan S, Tai S, Yang C, Zhang L, Liang C. Association between BHMT gene rs3733890 polymorphism and cancer risk: evidence from a meta-analysis. Onco Targets Ther 2016; 9:5225-33. [PMID: 27578989 PMCID: PMC5001659 DOI: 10.2147/ott.s103901] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND AND OBJECTIVE The gene betaine-homocysteine methyltransferase (BHMT) has drawn much attention during the past decades. An increasing number of clinical and genetic investigations have supposed that BHMT rs3733890 polymorphism might be associated with risk of breast cancer and ovarian cancer. As no consistent conclusion has been achieved, we conducted an up-to-date summary of BHMT rs3733890 polymorphism and cancer risk through a meta-analysis. MATERIALS AND METHODS The articles were collected from PubMed, Google Scholar, and CNKI (Chinese) databases up to December 2015. Then, the correlations were determined by reading the titles and abstracts and by further reading the full text to filter the unqualified articles. Odds ratio (OR) and the corresponding 95% confidence intervals (CI) were used to assess the results. RESULTS Among 187 articles collected in the analysis, seven studies with a total of 2,832 cases and 3,958 controls were included for evaluation of the association between BHMT rs3733890 polymorphism and susceptibility of cancer risk. The heterogeneity test showed no significant differences. Furthermore, we found that BHMT -742G>A polymorphism in case and control groups showed no statistically significant association with susceptibility in various cancer types except for uterine cervical cancer (A vs G: OR =0.641, 95% CI =0.445-0.923, P=0.017; AA+AG vs GG: OR =0.579, 95% CI =0.362-0.924, P=0.022). In addition, no statistically significant association was uncovered when stratification analyses were conducted by ethnicity and genotyping methods. CONCLUSION Our results have shown no obvious evidence that rs3733890 polymorphism in BHMT gene affected the susceptibility of head and neck squamous cell carcinoma, breast cancer, ovarian cancer, colorectal adenoma, and liver cancer. In contrast, we found the protective role of BHMT -742G>A polymorphism in uterine cervical cancer incidence. Future well-designed studies comprising larger sample size are warranted to verify our findings.
Collapse
Affiliation(s)
- Yue Xu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University and Institute of Urology
| | - Cunye Yan
- First School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Zongyao Hao
- Department of Urology, The First Affiliated Hospital of Anhui Medical University and Institute of Urology
| | - Jun Zhou
- Department of Urology, The First Affiliated Hospital of Anhui Medical University and Institute of Urology
| | - Song Fan
- Department of Urology, The First Affiliated Hospital of Anhui Medical University and Institute of Urology
| | - Sheng Tai
- Department of Urology, The First Affiliated Hospital of Anhui Medical University and Institute of Urology
| | - Cheng Yang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University and Institute of Urology
| | - Li Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University and Institute of Urology
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University and Institute of Urology
| |
Collapse
|
18
|
Han J, Zhou W, Jia M, Wen J, Jiang J, Shi J, Zhang K, Ma H, Liu J, Ren J, Dai M, Hu Z, Hang D, Li N, Shen H. Expression quantitative trait loci in long non-coding RNA PAX8-AS1 are associated with decreased risk of cervical cancer. Mol Genet Genomics 2016; 291:1743-8. [DOI: 10.1007/s00438-016-1217-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 05/14/2016] [Indexed: 02/07/2023]
|
19
|
Bhartiya D, Scaria V. Genomic variations in non-coding RNAs: Structure, function and regulation. Genomics 2016; 107:59-68. [DOI: 10.1016/j.ygeno.2016.01.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 01/05/2016] [Accepted: 01/08/2016] [Indexed: 01/05/2023]
|