1
|
Kirkland ME, Patfield S, Hughes AC, Hernlem B, He X. A novel Shiga toxin 2a neutralizing antibody therapeutic with low immunogenicity and high efficacy. Antimicrob Agents Chemother 2024; 68:e0059823. [PMID: 38047751 PMCID: PMC10777836 DOI: 10.1128/aac.00598-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/18/2023] [Indexed: 12/05/2023] Open
Abstract
Shiga toxin-producing Escherichia coli infections are difficult to treat due to the risk of antibiotic-induced stress upregulating the production of toxins, medical treatment is consequently limited to supportive care to prevent the development of hemolytic uremic syndrome (HUS). Here, we introduce a potentially therapeutic humanized mouse monoclonal antibody (Hu-mAb 2-5) targeting Stx2a, the most common Shiga toxin subtype identified from outbreaks. We demonstrate that Hu-mAb 2-5 has low immunogenicity in healthy adults ex vivo and high neutralizing efficacy in vivo, protecting mice from mortality and HUS-related tissue damage.
Collapse
Affiliation(s)
- Marina E. Kirkland
- United States Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, California, USA
- U.S. Department of Energy, Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA
| | - Stephanie Patfield
- United States Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, California, USA
| | - Anna C. Hughes
- United States Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, California, USA
| | - Bradley Hernlem
- United States Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, California, USA
| | - Xiaohua He
- United States Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, California, USA
| |
Collapse
|
2
|
Liu Y, Thaker H, Wang C, Xu Z, Dong M. Diagnosis and Treatment for Shiga Toxin-Producing Escherichia coli Associated Hemolytic Uremic Syndrome. Toxins (Basel) 2022; 15:10. [PMID: 36668830 PMCID: PMC9862836 DOI: 10.3390/toxins15010010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/13/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC)-associated hemolytic uremic syndrome (STEC-HUS) is a clinical syndrome involving hemolytic anemia (with fragmented red blood cells), low levels of platelets in the blood (thrombocytopenia), and acute kidney injury (AKI). It is the major infectious cause of AKI in children. In severe cases, neurological complications and even death may occur. Treating STEC-HUS is challenging, as patients often already have organ injuries when they seek medical treatment. Early diagnosis is of great significance for improving prognosis and reducing mortality and sequelae. In this review, we first briefly summarize the diagnostics for STEC-HUS, including history taking, clinical manifestations, fecal and serological detection methods for STEC, and complement activation monitoring. We also summarize preventive and therapeutic strategies for STEC-HUS, such as vaccines, volume expansion, renal replacement therapy (RRT), antibiotics, plasma exchange, antibodies and inhibitors that interfere with receptor binding, and the intracellular trafficking of the Shiga toxin.
Collapse
Affiliation(s)
- Yang Liu
- Department of Nephrology, The First Hospital of Jilin University, Changchun 130021, China
- Department of Urology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Hatim Thaker
- Department of Urology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Chunyan Wang
- Department of Nephrology, Children’s Hospital of Fudan University, Shanghai 201102, China
| | - Zhonggao Xu
- Department of Nephrology, The First Hospital of Jilin University, Changchun 130021, China
| | - Min Dong
- Department of Urology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
3
|
Structural and Functional Characterization of Stx2k, a New Subtype of Shiga Toxin 2. Microorganisms 2019; 8:microorganisms8010004. [PMID: 31861375 PMCID: PMC7022315 DOI: 10.3390/microorganisms8010004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/12/2019] [Accepted: 12/14/2019] [Indexed: 01/07/2023] Open
Abstract
Shiga toxin (Stx) is the major virulence factor of Shiga toxin-producing Escherichia coli (STEC). Stx evolves rapidly and, as such, new subtypes continue to emerge that challenge the efficacy of existing disease management and surveillance strategies. A new subtype, Stx2k, was recently identified in E. coli isolated from a wide range of sources including diarrheal patients, animals, and raw meats, and was poorly detected by existing immunoassays. In this study, the structure of Stx2kE167Q was determined at 2.29 Å resolution and the conservation of structure with Stx2a was revealed. A novel polyclonal antibody capable of neutralizing Stx2k and an immunoassay, with a 10-fold increase in sensitivity compared to assays using extant antibodies, were developed. Stx2k is less toxic than Stx2a in Vero cell assays but is similar to Stx2a in receptor-binding preference, thermostability, and acid tolerance. Although Stx2k does not appear to be as potent as Stx2a to Vero cells, the wide distribution and blended virulence profiles of the Stx2k-producing strains suggest that horizontal gene transfer through Stx2k-converting phages could result in the emergence of new and highly virulent pathogens. This study provides useful information and tools for early detection and control of Stx2k-producing E. coli, which could reduce public risk of infection by less-known STECs.
Collapse
|
4
|
Fagerquist CK, Zaragoza WJ. Bacteriophage cell lysis of Shiga toxin-producing Escherichia coli for top-down proteomic identification of Shiga toxins 1 & 2 using matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30:671-680. [PMID: 26864518 DOI: 10.1002/rcm.7507] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 01/05/2016] [Accepted: 01/09/2016] [Indexed: 06/05/2023]
Abstract
RATIONAL Analysis of bacteria by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) often relies upon sample preparation methods that result in cell lysis, e.g. bead-beating. However, Shiga toxin-producing Escherichia coli (STEC) can undergo bacteriophage-induced cell lysis triggered by antibiotic exposure that may allow greater selectivity of the proteins extracted. METHODS We have developed a sample preparation method for selective extraction of bacteriophage-encoded proteins and specifically Shiga toxins 1 and 2 (Stx1 & 2) expressed from STEC strains induced by DNA-damaging antibiotics. STEC strains were cultured overnight on agar supplemented with ciprofloxacin, mitomycin-C or an iron chelator to induce the bacteriophage lytic cycle with concomitant expression and release of Stx1 and/or Stx2. Sample preparation relied exclusively on bacteriophage lysis for release Stx into the extraction solution. RESULTS Three clinical STEC strains were analyzed by matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry (MALDI-TOF-TOF-MS/MS) and top-down proteomics analysis: E. coli O157:H7 strain EDL933, E. coli O91:H21 strain B2F1 and E. coli O26:H11 strain ECRC #05.2217. The B-subunit of Stx1a of EDL933 was detected and identified even though it was ~100-fold less abundant than the B-subunit of Stx2a that had been identified previously for this strain. Two bacteriophage-encoded proteins were also identified: L0117 and L0136. The B-subunits of Stx2d of strain B2F1 and Stx1a of strain ECRC #05.2217 were also detected and identified. CONCLUSIONS Bacteriophage lysis appeared to enhance the detection sensitivity of Stx for these STEC strains compared to previous work using mechanical lysis. Detection/identification of other bacteriophage-encoded proteins (beyond Stx) tends to support the hypothesis of Stx release by bacteriophage cell lysis.
Collapse
Affiliation(s)
- Clifton K Fagerquist
- Produce Safety & Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, 800 Buchanan Street, Albany, CA, 94710, USA
| | - William J Zaragoza
- Produce Safety & Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, 800 Buchanan Street, Albany, CA, 94710, USA
| |
Collapse
|
5
|
He X, Kong Q, Patfield S, Skinner C, Rasooly R. A New Immunoassay for Detecting All Subtypes of Shiga Toxins Produced by Shiga Toxin-Producing E. coli in Ground Beef. PLoS One 2016; 11:e0148092. [PMID: 26824247 PMCID: PMC4732753 DOI: 10.1371/journal.pone.0148092] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 01/12/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Shiga toxin (Stx) is a common virulence factor of all Shiga toxin producing E. coli (STEC) that cause a wide spectrum of disease, including hemorrhagic colitis and hemolytic uremic syndrome (HUS). Although several commercial kits are available for detection of Stx produced by STEC, none of them are capable of recognizing all subtypes of Stxs, which include three subtypes of Stx1 and seven subtypes of Stx2. METHODS AND FINDINGS New monoclonal and polyclonal antibodies against Stx1 and Stx2 were developed. A universal sandwich ELISA capable of detecting all known subtypes of Stx1 and Stx2 was established using a pool of newly developed antibodies. To precisely monitor the sensitivity of the assay for each subtype of Stxs, recombinant toxoids were created and used as standards in ELISAs. Because of the high affinity of the antibodies incorporated, the ELISA assay is highly sensitive with a limit of detection for the different subtypes of Stx1a and Stx2a between 10 and 50 pg/mL in phosphate buffered saline (PBS). The assay was also able to identify STEC based on the production of Stxs using the supernatants of culture fluids or even single colonies on agar plates without lengthy enrichment in liquid medium. When applied to ground beef samples, this newly developed ELISA was capable of distinguishing beef samples spiked with a single bacterial cell. CONCLUSIONS A highly sensitive and universal assay for all subtypes of Stx1 and Stx2 was developed. It has significantly improved upon the current technologies by avoiding false negative results due to the narrow detection range of the assay. The assay developed in this study can be useful for prompt detection of new and emerging serotypes and screening ground beef samples for contamination of STEC at an early stage in the food supply chain, thus avoiding the need for possible recall.
Collapse
Affiliation(s)
- Xiaohua He
- Western Regional Research Center, U.S. Department of Agriculture, Agricultural Research Service, Albany, California, United States of America
| | - Qiulian Kong
- Shanghai Shuneng Irradiation Technology Co., Ltd, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Stephanie Patfield
- Western Regional Research Center, U.S. Department of Agriculture, Agricultural Research Service, Albany, California, United States of America
| | - Craig Skinner
- Western Regional Research Center, U.S. Department of Agriculture, Agricultural Research Service, Albany, California, United States of America
| | - Reuven Rasooly
- Western Regional Research Center, U.S. Department of Agriculture, Agricultural Research Service, Albany, California, United States of America
| |
Collapse
|
6
|
Silva CJ, Erickson-Beltran ML, Skinner CB, Patfield SA, He X. Mass Spectrometry-Based Method of Detecting and Distinguishing Type 1 and Type 2 Shiga-Like Toxins in Human Serum. Toxins (Basel) 2015; 7:5236-53. [PMID: 26633510 PMCID: PMC4690125 DOI: 10.3390/toxins7124875] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 10/28/2015] [Accepted: 11/09/2015] [Indexed: 01/18/2023] Open
Abstract
Shiga-like toxins (verotoxins) are responsible for the virulence associated with a variety of foodborne bacterial pathogens. Direct detection of toxins requires a specific and sensitive technique. In this study, we describe a mass spectrometry-based method of analyzing the tryptic decapeptides derived from the non-toxic B subunits. A gene encoding a single protein that yields a set of relevant peptides upon digestion with trypsin was designed. The (15)N-labeled protein was prepared by growing the expressing bacteria in minimal medium supplemented with (15)NH₄Cl. Trypsin digestion of the (15)N-labeled protein yields a set of (15)N-labeled peptides for use as internal standards to identify and quantify Shiga or Shiga-like toxins. We determined that this approach can be used to detect, quantify and distinguish among the known Shiga toxins (Stx) and Shiga-like toxins (Stx1 and Stx2) in the low attomole range (per injection) in complex media, including human serum. Furthermore, Stx1a could be detected and distinguished from the newly identified Stx1e in complex media. As new Shiga-like toxins are identified, this approach can be readily modified to detect them. Since intact toxins are digested with trypsin prior to analysis, the handling of intact Shiga toxins is minimized. The analysis can be accomplished within 5 h.
Collapse
Affiliation(s)
- Christopher J Silva
- Western Regional Research Center, United States Department of Agriculture, Albany, CA 94710, USA.
| | | | - Craig B Skinner
- Western Regional Research Center, United States Department of Agriculture, Albany, CA 94710, USA.
| | - Stephanie A Patfield
- Western Regional Research Center, United States Department of Agriculture, Albany, CA 94710, USA.
| | - Xiaohua He
- Western Regional Research Center, United States Department of Agriculture, Albany, CA 94710, USA.
| |
Collapse
|