1
|
Li XL, Li DD, Cai XY, Cheng DF, Lu YY. Reproductive behavior of fruit flies: courtship, mating, and oviposition. PEST MANAGEMENT SCIENCE 2024; 80:935-952. [PMID: 37794312 DOI: 10.1002/ps.7816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/09/2023] [Accepted: 10/01/2023] [Indexed: 10/06/2023]
Abstract
Many species of the Tephritidae family are invasive and cause huge damage to agriculture and horticulture, owing to their reproductive characteristics. In this review, we have summarized the existing studies on the reproductive behavior of Tephritidae, particularly those regarding the genes and external factors that are associated with courtship, mating, and oviposition. Furthermore, we outline the issues that still need to be addressed in fruit fly reproduction research. The review highlights the implications for understanding the reproductive behavior of fruit flies and discusses methods for their integrated management and biological control. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xin-Lian Li
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Dou-Dou Li
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Xin-Yan Cai
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Dai-Feng Cheng
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Yong-Yue Lu
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| |
Collapse
|
2
|
Malod K, Archer CR, Hunt J, Nicolson SW, Weldon CW. Selection on female reproductive schedules in the marula fly, Ceratitis cosyra (Diptera: Tephritidae) affects dietary optima for female reproductive traits but not lifespan. FRONTIERS IN INSECT SCIENCE 2023; 3:1166753. [PMID: 38469485 PMCID: PMC10926420 DOI: 10.3389/finsc.2023.1166753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/28/2023] [Indexed: 03/13/2024]
Abstract
Introduction A changing environment can select on life-history traits and trade-offs in a myriad of ways. For example, global warming may shift phenology and thus the availability of host-plants. This may alter selection on survival and fertility schedules in herbivorous insects. If selection on life-histories changes, this may in turn select for altered nutrient intake, because the blend of nutrients organisms consume helps determine the expression of life-history traits. However, we lack empirical work testing whether shifts in the timing of oviposition alter nutrient intake and life-history strategies. Methods We tested in the marula fruit fly, Ceratitis cosyra, how upward-selection on the age of female oviposition, in comparison with laboratory adapted control flies, affects the sex-specific relationship between protein and carbohydrate intake and life-history traits including lifespan, female lifetime egg production and daily egg production. We then determined the macronutrient ratio consumed when flies from each selection line and sex were allowed to self-regulate their intake. Results Lifespan, lifetime egg production and daily egg production were optimised at similar protein to carbohydrate (P:C) ratios in flies from both selection lines. Likewise, females and males of both lines actively defended similar nutrient intake ratios (control =1:3.6 P:C; upward-selected = 1:3.2 P:C). Discussion Our results are comparable to those in non-selected C. cosyra, where the optima for each trait and the self-selected protein to carbohydrate ratio observed were nearly identical. The nutrient blend that needs to be ingested for optimal expression of a given trait appeared to be well conserved across laboratory adapted and experimentally selected populations. These results suggest that in C. cosyra, nutritional requirements do not respond to a temporal change in oviposition substrate availability.
Collapse
Affiliation(s)
- Kevin Malod
- Department of Zoology and Entomology, University of Pretoria, Hatfield, South Africa
| | - C. Ruth Archer
- Institute for Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| | - John Hunt
- School of Science, Western Sydney University, Penrith, NSW, Australia
| | - Susan W. Nicolson
- Department of Zoology and Entomology, University of Pretoria, Hatfield, South Africa
| | - Christopher W. Weldon
- Department of Zoology and Entomology, University of Pretoria, Hatfield, South Africa
| |
Collapse
|
3
|
Clarke AR, Leach P, Measham PF. The Fallacy of Year-Round Breeding in Polyphagous Tropical Fruit Flies (Diptera: Tephritidae): Evidence for a Seasonal Reproductive Arrestment in Bactrocera Species. INSECTS 2022; 13:882. [PMID: 36292829 PMCID: PMC9604198 DOI: 10.3390/insects13100882] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/19/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
The genus Bactrocera (Diptera: Tephritidae) is endemic to the monsoonal rainforests of South-east Asia and the western Pacific where the larvae breed in ripe, fleshy fruits. While most Bactrocera remain rainforest restricted, species such as Bactrocera dorsalis, Bactrocera zonata and Bactrocera tryoni are internationally significant pests of horticulture, being both highly invasive and highly polyphagous. Almost universally in the literature it is assumed that Bactrocera breed continuously if temperature and hosts are not limiting. However, despite that, these flies show distinct seasonality. If discussed, seasonality is generally attributed to the fruiting of a particular breeding host (almost invariably mango or guava), but the question appears not to have been asked why flies do not breed at other times of the year despite other hosts being available. Focusing initially on B. tryoni, for which more literature is available, we demonstrate that the seasonality exhibited by that species is closely correlated with the seasons of its endemic rainforest environment as recognised by traditional Aboriginal owners. Evidence suggests the presence of a seasonal reproductive arrest which helps the fly survive the first two-thirds of the dry season, when ripe fruits are scarce, followed by a rapid increase in breeding at the end of the dry season as humidity and the availability of ripe fruit increases. This seasonal phenology continues to be expressed in human-modified landscapes and, while suppressed, it also partially expresses in long-term cultures. We subsequently demonstrate that B. dorsalis, across both its endemic and invasive ranges, shows a very similar seasonality although reversed in the northern hemisphere. While high variability in the timing of B. dorsalis population peaks is exhibited across sites, a four-month period when flies are rare in traps (Dec-Mar) is highly consistent, as is the fact that nearly all sites only have one, generally very sharp, population peak per year. While literature to support or deny a reproductive arrest in B. dorsalis is not available, available data is clear that continuous breeding does not occur in this species and that there are seasonal differences in reproductive investment. Throughout the paper we reinforce the point that our argument for a complex reproductive physiology in Bactrocera is based on inductive reasoning and requires specific, hypothesis-testing experiments to confirm or deny, but we do believe there is ample evidence to prioritise such research. If it is found that species in the genus undergo a true reproductive diapause then there are very significant implications for within-field management, market access, and biosecurity risk planning which are discussed. Arguably the most important of these is that insects in diapause have greater stress resistance and cold tolerance, which could explain how tropical Bactrocera species have managed to successfully invade cool temperate regions.
Collapse
Affiliation(s)
- Anthony R. Clarke
- School of Biology and Environmental Science, Queensland University of Technology (QUT), P.O. Box 2434, Brisbane, QLD 4001, Australia
| | - Peter Leach
- Horticulture and Forestry Science, Department of Agriculture and Fisheries, P.O. Box 652, Cairns, QLD 4870, Australia
| | - Penelope F. Measham
- Horticulture and Forestry Science, Department of Agriculture and Fisheries, Ecosciences Precinct Dutton Park, P.O. Box 267, Dutton Park, QLD 4102, Australia
| |
Collapse
|
4
|
Goane L, Salgueiro J, Medina Pereyra P, Arce OEA, Ruiz MJ, Nussenbaum AL, Segura DF, Vera MT. Antibiotic treatment reduces fecundity and nutrient content in females of Anastrepha fraterculus (Diptera: Tephritidae) in a diet dependent way. JOURNAL OF INSECT PHYSIOLOGY 2022; 139:104396. [PMID: 35447135 DOI: 10.1016/j.jinsphys.2022.104396] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 03/11/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
Insect microbiota, particularly, gut bacteria has recently gained especial attention in Tephritidae fruit flies, being Enterobacteriaceae the predominant bacterial group. This bacterial group has been postulated to contribute to the fitness of fruit flies through several life-history traits. Particularly in Anastrepha fraterculus, removal of Enterobacteria from male gut via antibiotic treatment impaired their mating behavior. Because the impact of gut bacteria on female reproduction was not yet addressed, we here analysed the effect of antibiotic treatment on female fecundity and nutritional status, and further explored the role of bacteria under different dietary regimes. The removal of culturable Enterobacteria from the gut of females was associated to a reduction in fecundity as well as in the protein and lipid reserves. However, fecundity reduction depended on the dietary regime; being more pronounced when females fed a poor diet. Our results suggest that nutrient reserves of females are determined, at least to some extent, by intestinal bacteria (particularly Enterobacteria). The effect of antibiotics on fecundity could be explained, thus, as a consequence of a poorer nutritional status in antibiotic-treated females compared to control females. Our results contribute to understand the interaction between gut bacteria and Tephritidae fruit flies. Considering the relevance of this insect as fruit pest and the widespread use of the sterile insect technique to control them, these findings may lead to practical applications, such as development of efficient mass rearing protocols of A. fraterculus that supplement the adult diet with probiotics.
Collapse
Affiliation(s)
- Lucía Goane
- Facultad de Agronomía y Zootecnia, Universidad Nacional de Tucumán, Tucumán, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| | - Julieta Salgueiro
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Laboratorio de Insectos de Importancia Agronómica, Instituto de Genética "E.A. Favret" (IGEAF), Centro de Investigación en Ciencias Veterinarias y Agronómicas- Instituto Nacional de Tecnología Agropecuaria, Instituto de Agrobiotecnología y Biología Molecular - Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | | | - Osvaldo E A Arce
- Facultad de Agronomía y Zootecnia, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - M Josefina Ruiz
- Facultad de Agronomía y Zootecnia, Universidad Nacional de Tucumán, Tucumán, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Ana L Nussenbaum
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Laboratorio de Insectos de Importancia Agronómica, Instituto de Genética "E.A. Favret" (IGEAF), Centro de Investigación en Ciencias Veterinarias y Agronómicas- Instituto Nacional de Tecnología Agropecuaria, Instituto de Agrobiotecnología y Biología Molecular - Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Diego F Segura
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Laboratorio de Insectos de Importancia Agronómica, Instituto de Genética "E.A. Favret" (IGEAF), Centro de Investigación en Ciencias Veterinarias y Agronómicas- Instituto Nacional de Tecnología Agropecuaria, Instituto de Agrobiotecnología y Biología Molecular - Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - M Teresa Vera
- Facultad de Agronomía y Zootecnia, Universidad Nacional de Tucumán, Tucumán, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| |
Collapse
|
5
|
Malod K, Roets PD, Bosua H, Archer CR, Weldon CW. Selecting on age of female reproduction affects lifespan in both sexes and age-dependent reproductive effort in female (but not male) Ceratitis cosyra. Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-021-03063-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
6
|
Climate stress resistance in male Queensland fruit fly varies among populations of diverse geographic origins and changes during domestication. BMC Genet 2020; 21:135. [PMID: 33339509 PMCID: PMC7747409 DOI: 10.1186/s12863-020-00935-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background The highly polyphagous Queensland fruit fly (Bactrocera tryoni Froggatt) expanded its range substantially during the twentieth century and is now the most economically important insect pest of Australian horticulture, prompting intensive efforts to develop a Sterile Insect Technique (SIT) control program. Using a “common garden” approach, we have screened for natural genetic variation in key environmental fitness traits among populations from across the geographic range of this species and monitored changes in those traits induced during domestication. Results Significant variation was detected between the populations for heat, desiccation and starvation resistance and wing length (as a measure of body size). Desiccation resistance was correlated with both starvation resistance and wing length. Bioassay data for three resampled populations indicate that much of the variation in desiccation resistance reflects persistent, inherited differences among the populations. No latitudinal cline was detected for any of the traits and only weak correlations were found with climatic variables for heat resistance and wing length. All three stress resistance phenotypes and wing length changed significantly in certain populations with ongoing domestication but there was also a strong population by domestication interaction effect for each trait. Conclusions Ecotypic variation in heat, starvation and desiccation resistance was detected in Australian Qfly populations, and these stress resistances diminished rapidly during domestication. Our results indicate a need to select source populations for SIT strains which have relatively high climatic stress resistance and to minimise loss of that resistance during domestication.
Collapse
|
7
|
Adnan SM, Pérez-Staples D, Taylor PW. Dietary methoprene treatment promotes rapid development of reproductive organs in male Queensland fruit fly. JOURNAL OF INSECT PHYSIOLOGY 2020; 126:104094. [PMID: 32783957 DOI: 10.1016/j.jinsphys.2020.104094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 07/10/2020] [Accepted: 08/06/2020] [Indexed: 06/11/2023]
Abstract
Methoprene supplements added to diets of yeast hydrolysate and sugar promote early expression of sexual behaviour and mating in male Queensland fruit fly (Bactrocera tryoni; 'Q-fly') and show promise as a pre-release treatment for sterile insect technique programs. Currently it is not known whether the early mating behaviour of methoprene-treated male Q-flies is only behavioural or is coupled with accelerated development of reproductive organs. Accordingly, the present study investigates whether incorporation of methoprene into diets of yeast hydrolysate and sugar (1:3) or sugar alone, accelerate development of testes, ejaculatory apodeme, and accessory glands in male Q-flies and ovaries in females. All organs increased in size as the flies aged and matured, and development rate of all organs was far greater when the flies were provided yeast hydrolysate in addition to sugar. Incorporation of methoprene into diets containing yeast hydrolysate was found to strongly accelerate development of testes and ejaculatory apodeme, but not accessory glands, in males. In the absence of yeast hydrolysate, methoprene treatment had only a modest effect on male organ development. In contrast to males, development of ovaries in female Q-flies did not respond to dietary methoprene supplements, regardless of whether they were fed yeast hydrolysate and sugar or sugar alone. These findings of diet-dependent effects of methoprene supplements on reproductive organs are a close match to previous studies investigating effects of methoprene supplements on mating behaviour. Overall, methoprene supplements substantially enhance the positive effects of protein rich adult diet on the early expression of sexual behaviour and accelerate development of reproductive organs in male, but not female, Q-flies. Methoprene supplements added to pre-release diets of yeast hydrolysate and sugar show promise as a means of accelerating reproductive development of Q-flies released in sterile insect technique programs, and may also bias operational sex ratio in favour of males.
Collapse
Affiliation(s)
| | - Diana Pérez-Staples
- Instituto de Biotecnología y Ecología Aplicada (INBIOTECA), Universidad Veracruzana, Mexico
| | | |
Collapse
|
8
|
Malod K, Archer CR, Karsten M, Cruywagen R, Howard A, Nicolson SW, Weldon CW. Exploring the role of host specialisation and oxidative stress in interspecific lifespan variation in subtropical tephritid flies. Sci Rep 2020; 10:5601. [PMID: 32221391 PMCID: PMC7101423 DOI: 10.1038/s41598-020-62538-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/12/2020] [Indexed: 11/28/2022] Open
Abstract
In herbivorous insects, the degree of host specialisation may be one ecological factor that shapes lifespan. Because host specialists can only exploit a limited number of plants, their lifecycle should be synchronised with host phenology to allow reproduction when suitable hosts are available. For species not undergoing diapause or dormancy, one strategy to achieve this could be evolving long lifespans. From a physiological perspective, oxidative stress could explain how lifespan is related to degree of host specialisation. Oxidative stress caused by Reactive Oxygen Species (ROS) might help underpin ageing (the Free Radical Theory of Aging (FRTA)) and mediate differences in lifespan. Here, we investigated how lifespan is shaped by the degree of host specialisation, phylogeny, oxidative damage accumulation and antioxidant protection in eight species of true fruit flies (Diptera: Tephritidae). We found that lifespan was not constrained by species relatedness or oxidative damage (arguing against the FRTA); nevertheless, average lifespan was positively associated with antioxidant protection. There was no lifespan difference between generalist and specialist species, but most of the tephritids studied had long lifespans in comparison with other dipterans. Long lifespan may be a trait under selection in fruit-feeding insects that do not use diapause.
Collapse
Affiliation(s)
- Kévin Malod
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa
| | - C Ruth Archer
- Institute for Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| | - Minette Karsten
- Department of Conservation Ecology & Entomology, Stellenbosch University, Stellenbosch, South Africa
| | - Ruben Cruywagen
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa
| | - Alexandra Howard
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa
| | - Susan W Nicolson
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa
| | - Christopher W Weldon
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa.
| |
Collapse
|
9
|
Tejeda MT, Arredondo J, Liedo P, Pérez-Staples D, Ramos-Morales P, Díaz-Fleischer F. Reasons for success: Rapid evolution for desiccation resistance and life-history changes in the polyphagous flyAnastrepha ludens. Evolution 2016; 70:2583-2594. [DOI: 10.1111/evo.13070] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 08/31/2016] [Accepted: 09/08/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Marco T. Tejeda
- INBIOTECA; Universidad Veracruzana; Xalapa Veracruz 91090 México
- Departamento de Cría; Programa Moscamed acuerdo SAGARPA-IICA; Metapa de Domínguez Chiapas 30860 México
| | - José Arredondo
- Departamento de Biología, Ecología y Comportamiento; Desarrollo de Métodos; Programa Moscafrut acuerdo SAGARPA-IICA Metapa de Domínguez Chiapas 30860 México
| | - Pablo Liedo
- El Colegio de la Frontera Sur; Tapachula Chiapas 30700 México
| | | | - Patricia Ramos-Morales
- UNAM, Facultad de Ciencias; Laboratorio de Genética y Toxicología Ambiental and Drosophila Stock Center México; Distrito Federal 04510 México
| | | |
Collapse
|