1
|
Ábrahám Á, Dér L, Csákvári E, Vizsnyiczai G, Pap I, Lukács R, Varga-Zsíros V, Nagy K, Galajda P. Single-cell level LasR-mediated quorum sensing response of Pseudomonas aeruginosa to pulses of signal molecules. Sci Rep 2024; 14:16181. [PMID: 39003361 PMCID: PMC11246452 DOI: 10.1038/s41598-024-66706-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 07/03/2024] [Indexed: 07/15/2024] Open
Abstract
Quorum sensing (QS) is a communication form between bacteria via small signal molecules that enables global gene regulation as a function of cell density. We applied a microfluidic mother machine to study the kinetics of the QS response of Pseudomonas aeruginosa bacteria to additions and withdrawals of signal molecules. We traced the fast buildup and the subsequent considerably slower decay of a population-level and single-cell-level QS response. We applied a mathematical model to explain the results quantitatively. We found significant heterogeneity in QS on the single-cell level, which may result from variations in quorum-controlled gene expression and protein degradation. Heterogeneity correlates with cell lineage history, too. We used single-cell data to define and quantitatively characterize the population-level quorum state. We found that the population-level QS response is well-defined. The buildup of the quorum is fast upon signal molecule addition. At the same time, its decay is much slower following signal withdrawal, and the quorum may be maintained for several hours in the absence of the signal. Furthermore, the quorum sensing response of the population was largely repeatable in subsequent pulses of signal molecules.
Collapse
Affiliation(s)
- Ágnes Ábrahám
- HUN-REN Biological Research Centre, Institute of Biophysics, Temesvári Krt. 62, Szeged, 6726, Hungary
- Doctoral School of Multidisciplinary Medical Sciences, University of Szeged, Dóm Tér 9, Szeged, 6720, Hungary
| | - László Dér
- HUN-REN Biological Research Centre, Institute of Biophysics, Temesvári Krt. 62, Szeged, 6726, Hungary
| | - Eszter Csákvári
- HUN-REN Biological Research Centre, Institute of Biophysics, Temesvári Krt. 62, Szeged, 6726, Hungary
- Division for Biotechnology, Bay Zoltán Nonprofit Ltd. for Applied Research, Derkovits Fasor 2., Szeged, 6726, Hungary
| | - Gaszton Vizsnyiczai
- HUN-REN Biological Research Centre, Institute of Biophysics, Temesvári Krt. 62, Szeged, 6726, Hungary
| | - Imre Pap
- HUN-REN Biological Research Centre, Institute of Biophysics, Temesvári Krt. 62, Szeged, 6726, Hungary
- Doctoral School of Multidisciplinary Medical Sciences, University of Szeged, Dóm Tér 9, Szeged, 6720, Hungary
| | - Rebeka Lukács
- HUN-REN Biological Research Centre, Institute of Biophysics, Temesvári Krt. 62, Szeged, 6726, Hungary
| | - Vanda Varga-Zsíros
- HUN-REN Biological Research Centre, Institute of Biophysics, Temesvári Krt. 62, Szeged, 6726, Hungary
- HUN-REN Biological Research Centre, Institute of Biochemistry, Temesvári Krt. 62, Szeged, 6726, Hungary
| | - Krisztina Nagy
- HUN-REN Biological Research Centre, Institute of Biophysics, Temesvári Krt. 62, Szeged, 6726, Hungary.
| | - Péter Galajda
- HUN-REN Biological Research Centre, Institute of Biophysics, Temesvári Krt. 62, Szeged, 6726, Hungary.
| |
Collapse
|
2
|
Jautzus T, van Gestel J, Kovács ÁT. Complex extracellular biology drives surface competition during colony expansion in Bacillus subtilis. THE ISME JOURNAL 2022; 16:2320-2328. [PMID: 35790818 PMCID: PMC9477810 DOI: 10.1038/s41396-022-01279-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/13/2022] [Accepted: 06/20/2022] [Indexed: 04/29/2023]
Abstract
Many bacteria grow on surfaces in nature, where they form cell collectives that compete for space. Within these collectives, cells often secrete molecules that benefit surface spreading by, for example, reducing surface tension or promoting filamentous growth. Although we have a detailed understanding of how these molecules are produced, much remains unknown about their role in surface competition. Here we examine sliding motility in Bacillus subtilis and compare how secreted molecules, essential for sliding, affect intraspecific cooperation and competition on a surface. We specifically examine (i) the lipopeptide surfactin, (ii) the hydrophobin protein BslA, and (iii) exopolysaccharides (EPS). We find that these molecules have a distinct effect on surface competition. Whereas surfactin acts like a common good, which is costly to produce and benefits cells throughout the surface, BslA and EPS are cost-free and act locally. Accordingly, surfactin deficient mutants can exploit the wild-type strain in competition for space, while BslA and EPS mutants cannot. Supported by a mathematical model, we show that three factors are important in predicting the outcome of surface competition: the costs of molecule synthesis, the private benefits of molecule production, and the diffusion rate. Our results underscore the intricate extracellular biology that can drive bacterial surface competition.
Collapse
Affiliation(s)
- Theresa Jautzus
- Terrestrial Biofilms Group, Institute of Microbiology, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Jordi van Gestel
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Ákos T Kovács
- Terrestrial Biofilms Group, Institute of Microbiology, Friedrich Schiller University Jena, 07743, Jena, Germany.
- Bacterial Interactions and Evolution Group, Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
3
|
Mohsin MZ, Omer R, Huang J, Mohsin A, Guo M, Qian J, Zhuang Y. Advances in engineered Bacillus subtilis biofilms and spores, and their applications in bioremediation, biocatalysis, and biomaterials. Synth Syst Biotechnol 2021; 6:180-191. [PMID: 34401544 PMCID: PMC8332661 DOI: 10.1016/j.synbio.2021.07.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/24/2021] [Accepted: 07/23/2021] [Indexed: 01/23/2023] Open
Abstract
Bacillus subtilis is a commonly used commercial specie with broad applications in the fields of bioengineering and biotechnology. B. subtilis is capable of producing both biofilms and spores. Biofilms are matrix-encased multicellular communities that comprise various components including exopolysaccharides, proteins, extracellular DNA, and poly-γ-glutamic acid. These biofilms resist environmental conditions such as oxidative stress and hence have applications in bioremediation technologies. Furthermore, biofilms and spores can be engineered through biotechnological techniques for environmentally-friendly and safe production of bio-products such as enzymes. The ability to withstand with harsh conditions and producing spores makes Bacillus a suitable candidate for surface display technology. In recent years, the spores of such specie are widely used as it is generally regarded as safe to use. Advances in synthetic biology have enabled the reprogramming of biofilms to improve their functions and enhance the production of value-added products. Globally, there is increased interest in the production of engineered biosensors, biocatalysts, and biomaterials. The elastic modulus and gel properties of B. subtilis biofilms have been utilized to develop living materials. This review outlines the formation of B. subtilis biofilms and spores. Biotechnological engineering processes and their increasing application in bioremediation and biocatalysis, as well as the future directions of B. subtilis biofilm engineering, are discussed. Furthermore, the ability of B. subtilis biofilms and spores to fabricate functional living materials with self-regenerating, self-regulating and environmentally responsive characteristics has been summarized. This review aims to resume advances in biological engineering of B. subtilis biofilms and spores and their applications.
Collapse
Key Words
- Bacillus subtilis
- Biocatalysis
- Biofilms
- Biomaterials
- Bioremediation
- Extracellular DNA, (eDNA)
- Extracellular Polymeric Substance/ Exopolysaccharide, (EPS)
- Gold nanoparticles, (AuNPs)
- Green fluorescent protein, (GFP)
- Isopropylthio-β-d-galactoside, (IPTG)
- Menaquinoe-7, (MK-7)
- Microbial fuel cell, (MFC)
- Mono (2-hydroxyethyl) terephthalic acid, (MHET)
- N-Acetyl-d-neuraminic Acid, (Neu5Ac)
- N-acetylglucosamine, (GlcNAc)
- Nanoparticles, (NPs)
- Nickel nitriloacetic acid, (Ni-NTA)
- Organophosphorus hydrolase, (OPH)
- Paranitrophenol, (PNP)
- Paraoxon, (PAR)
- Quantum dots, (QDs)
- Spores
- Synthetic biology
- d-psicose 3-epimerase, (DPEase)
- l-Arabinose Isomerase, (L-AI)
- p-aminophenol, (PAP)
- β-Galactosidase, (β-Gal)
Collapse
Affiliation(s)
- Muhammad Zubair Mohsin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Rabia Omer
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Jiaofang Huang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Ali Mohsin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Meijin Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Jiangchao Qian
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| |
Collapse
|
4
|
Blake C, Nordgaard M, Maróti G, Kovács ÁT. Diversification of Bacillus subtilis during experimental evolution on Arabidopsis thaliana and the complementarity in root colonization of evolved subpopulations. Environ Microbiol 2021; 23:6122-6136. [PMID: 34296794 DOI: 10.1111/1462-2920.15680] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 12/17/2022]
Abstract
The soil bacterium Bacillus subtilis is known to suppress pathogens as well as promote plant growth. However, in order to fully exploit the potential as natural fertilizer, we need a better understanding of the interactions between B. subtilis and plants. Here, B. subtilis was examined for root colonization through experimental evolution on Arabidopsis thaliana. The populations evolved rapidly, improved in root colonization and diversified into three distinct morphotypes. In order to better understand the adaptation that had taken place, single evolved isolates from the final transfer were randomly selected for further characterization, revealing changes in growth and pellicle formation in medium supplemented with plant polysaccharides. Intriguingly, certain evolved isolates showed improved root colonization only on the plant species they evolved on, but not on another plant species, namely tomato, suggesting A. thaliana specific adaption paths. Finally, the mix performed better than the sum of its constituents in monoculture, which was demonstrated to be caused by complementarity effects. Our results suggest that genetic diversification occurs in an ecological relevant setting on plant roots and proves to be a stable strategy for root colonization.
Collapse
Affiliation(s)
- Christopher Blake
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Mathilde Nordgaard
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Gergely Maróti
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, 6726, Hungary
| | - Ákos T Kovács
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| |
Collapse
|
5
|
De Natale A, Mele BH, Cennamo P, Del Mondo A, Petraretti M, Pollio A. Microbial biofilm community structure and composition on the lithic substrates of Herculaneum Suburban Baths. PLoS One 2020; 15:e0232512. [PMID: 32365130 PMCID: PMC7197799 DOI: 10.1371/journal.pone.0232512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 04/16/2020] [Indexed: 12/02/2022] Open
Abstract
In this work, we want to investigate the impact of different substrates and different environmental condition on the biofilm communities growing on plaster, marble, and mortar substrates inside the Herculaneum Suburban Baths. To do so, we measured environmental conditions and sampled biofilm communities along the walls of the baths and used culture-dependent and -independent molecular techniques (DGGE) to identify the species at each sampling sites. We used the species pool to infer structure and richness of communities within each site in each substrate, and confocal light scanning microscopy to assess the three-dimensional structure of the sampled biofilms. To gather further insights, we built a meta-community network and used its local realizations to analyze co-occurrence patterns of species. We found that light is a limiting factor in the baths environment, that moving along sites equals moving along an irradiation gradient, and that such gradient shapes the community structure, de facto separating a dark community, rich in Bacteria, Fungi and cyanobacteria, from two dim communities, rich in Chlorophyta. Almost all sites are dominated by photoautotrophs, with Fungi and Bacteria relegated to the role of rare species., and structural properties of biofilms are not consistent within the same substrate. We conclude that the Herculaneum suburban baths are an environment-shaped community, where one dark community (plaster) and one dim community (mortar) provides species to a “midway” community (marble).
Collapse
Affiliation(s)
- Antonino De Natale
- Dipartimento di Biologia, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Bruno Hay Mele
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Paola Cennamo
- Facoltà di Lettere, University Suor Orsola Benincasa of Naples, Naples, Italy
| | - Angelo Del Mondo
- Dipartimento di Biologia, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Naples, Italy
- * E-mail:
| | - Mariagioia Petraretti
- Dipartimento di Biologia, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Antonino Pollio
- Dipartimento di Biologia, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Naples, Italy
- Metodologie Analitiche per la Salvaguardia dei Beni Culturali (Masbc), Task Force d’Ateneo Federico II di Napoli, Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| |
Collapse
|
6
|
Rap Protein Paralogs of Bacillus thuringiensis: a Multifunctional and Redundant Regulatory Repertoire for the Control of Collective Functions. J Bacteriol 2020; 202:JB.00747-19. [PMID: 31871034 DOI: 10.1128/jb.00747-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 12/20/2019] [Indexed: 01/01/2023] Open
Abstract
Quorum sensing (QS) is a mechanism of synthesis and detection of signaling molecules to regulate gene expression and coordinate behaviors in bacterial populations. In Bacillus subtilis, multiple paralog Rap-Phr QS systems (receptor-signaling peptides) are highly redundant and multifunctional, interconnecting the regulation of differentiation processes such as sporulation and competence. However, their functions in the Bacillus cereus group are largely unknown. We evaluated the functions of Rap proteins in Bacillus thuringiensis Bt8741, which codes for eight Rap-Phr systems; these were individually overexpressed to study their participation in sporulation, biofilm formation, spreading, and extracellular proteolytic activity. Our results show that four Rap-Phr systems (RapC, RapK, RapF, and RapLike) inhibit sporulation, two of which (RapK and RapF) probably dephosphorylate Spo0F from the Spo0A phosphorelay; these two Rap proteins also inhibit biofilm formation. Four systems (RapC, RacF1, RacF2, and RapLike) participate in spreading inhibition; finally, six systems (RapC, -F, -F2, -I, and -I1 and RapLike) decrease extracellular proteolytic activity. We foresee that functions performed by Rap proteins of Bt8741 could also be carried out by Rap homologs in other strains within the B. cereus group. These results indicate that Rap-Phr systems constitute a highly multifunctional and redundant regulatory repertoire that enables B. thuringiensis and other species from the B. cereus group to efficiently regulate collective functions during their life cycle in the face of changing environments.IMPORTANCE The Bacillus cereus group of bacteria includes species of high economic, clinical, biological warfare, and biotechnological interest, e.g., B. anthracis in bioterrorism, B. cereus in food intoxications, and B. thuringiensis in biocontrol. Knowledge about the ecology of these bacteria is hindered by our limited understanding of the regulatory circuits that control differentiation and specialization processes. Here, we uncover the participation of eight Rap quorum-sensing receptors in collective functions of B. thuringiensis These proteins are highly multifunctional and redundant in their functions, linking ecologically relevant processes such as sporulation, biofilm formation, spreading, extracellular proteolytic activity, and probably other functions in species from the B. cereus group.
Collapse
|
7
|
Teren M, Turonova Michova H, Vondrakova L, Demnerova K. Molecules Autoinducer 2 and cjA and Their Impact on Gene Expression in Campylobacter jejuni. J Mol Microbiol Biotechnol 2019; 28:207-215. [DOI: 10.1159/000495411] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 11/14/2018] [Indexed: 11/19/2022] Open
Abstract
Quorum sensing is a widespread form of cell-to-cell communication, which is based on the production of signaling molecules known as autoinducers (AIs). The first group contains highly species-specific N-acyl homoserine lactones (N-AHLs), generally known as AI-1, which are produced by AHL synthase. The second group, possessing the characteristic structure of a furanone ring, are known as AI-2. The enzyme responsible for their production is S-ribosylhomocysteine lyase (LuxS). In <i>Campylobacter jejuni</i>, AI-2 and LuxS play a role in many important processes, including biofilm formation, stress response, motility, expression of virulence factors, and colonization. However, neither the receptor protein nor the exact structure of the AI-2 molecule have been identified to date. Similarly, little is known about the possible existence of AHL-synthase producing AI-1 and its impact on gene expression. Recently, an analogue of homoserine lactone, called cjA, was isolated from a cell-free supernatant of <i>C. jejuni</i> strain<i></i> 81–176 and from the food isolate c11. The molecule cjA particularly impacted the expression of virulence factors and biofilm formation. This review summarizes the role of AI-2 and cjA in the context of biofilm formation, motility, stress responses, and expression of virulence factors.
Collapse
|
8
|
Eavesdropping and crosstalk between secreted quorum sensing peptide signals that regulate bacteriocin production in Streptococcus pneumoniae. ISME JOURNAL 2018; 12:2363-2375. [PMID: 29899510 DOI: 10.1038/s41396-018-0178-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 03/25/2018] [Accepted: 03/28/2018] [Indexed: 11/08/2022]
Abstract
Quorum sensing (QS), where bacteria secrete and respond to chemical signals to coordinate population-wide behaviors, has revealed that bacteria are highly social. Here, we investigate how diversity in QS signals and receptors can modify social interactions controlled by the QS system regulating bacteriocin secretion in Streptococcus pneumoniae, encoded by the blp operon (bacteriocin-like peptide). Analysis of 4096 pneumococcal genomes detected nine blp QS signals (BlpC) and five QS receptor groups (BlpH). Imperfect concordance between signals and receptors suggested widespread social interactions between cells, specifically eavesdropping (where cells respond to signals that they do not produce) and crosstalk (where cells produce signals that non-clones detect). This was confirmed in vitro by measuring the response of reporter strains containing six different blp QS receptors to cognate and non-cognate peptides. Assays between pneumococcal colonies grown adjacent to one another provided further evidence that crosstalk and eavesdropping occur at endogenous levels of signal secretion. Finally, simulations of QS strains producing bacteriocins revealed that eavesdropping can be evolutionarily beneficial even when the affinity for non-cognate signals is very weak. Our results highlight that social interactions can mediate intraspecific competition among bacteria and reveal that competitive interactions can be modified by polymorphic QS systems.
Collapse
|
9
|
Tiwari V, Patel V, Tiwari M. In-silico screening and experimental validation reveal L-Adrenaline as anti-biofilm molecule against biofilm-associated protein (Bap) producing Acinetobacter baumannii. Int J Biol Macromol 2017; 107:1242-1252. [PMID: 28964839 DOI: 10.1016/j.ijbiomac.2017.09.105] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/25/2017] [Accepted: 09/26/2017] [Indexed: 12/15/2022]
Abstract
Acinetobacter baumannii, an ESKAPE pathogen, causes various nosocomial infections and has capacity to produce biofilm. Biofilm produced by this bacterium is highly tolerant to environmental factors and different antibiotics. Biofilm-associated protein (Bap) plays a significant role in the biofilm formation by A. baumannii and found in the extra cellular matrix of the biofilm. Therefore, it becomes essential to find a potential drug against Bap that has capacity to inhibit biofilm formation by A. baumannii. In-silico screening, molecular mechanics and molecular dynamics studies identified ZINC00039089 (L-Adrenaline) as an inhibitor for Bap of A. baumannii. Recently, it is reported that Bap can form amyloid like structure; hence we have created dimer of Bap protein. This inhibitor can bind to dimeric Bap with good affinity. It confirms that ZINC00039089 (L-Adrenaline) can bind with Bap monomer as well as oligomeric Bap, responsible for amyloid formation and biofilm formation. Hence, we have tested Adrenaline as an anti-biofilm molecule and determined its IC50 value against biofilm. The result showed Adrenaline has anti-biofilm activity with IC50 value of 75μg/ml. Therefore; our finding suggests that L-Adrenaline can be developed to inhibit biofilm formation by carbapenem resistant strain of Acinetobacter baumannii.
Collapse
Affiliation(s)
- Vishvanath Tiwari
- Department of Biochemistry, Central University of Rajasthan, Bandarsindri, Ajmer, 305817, India.
| | - Varsha Patel
- Department of Biochemistry, Central University of Rajasthan, Bandarsindri, Ajmer, 305817, India
| | - Monalisa Tiwari
- Department of Biochemistry, Central University of Rajasthan, Bandarsindri, Ajmer, 305817, India
| |
Collapse
|
10
|
García-Betancur JC, Goñi-Moreno A, Horger T, Schott M, Sharan M, Eikmeier J, Wohlmuth B, Zernecke A, Ohlsen K, Kuttler C, Lopez D. Cell differentiation defines acute and chronic infection cell types in Staphylococcus aureus. eLife 2017; 6. [PMID: 28893374 PMCID: PMC5595439 DOI: 10.7554/elife.28023] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 08/09/2017] [Indexed: 12/13/2022] Open
Abstract
A central question to biology is how pathogenic bacteria initiate acute or chronic infections. Here we describe a genetic program for cell-fate decision in the opportunistic human pathogen Staphylococcus aureus, which generates the phenotypic bifurcation of the cells into two genetically identical but different cell types during the course of an infection. Whereas one cell type promotes the formation of biofilms that contribute to chronic infections, the second type is planktonic and produces the toxins that contribute to acute bacteremia. We identified a bimodal switch in the agr quorum sensing system that antagonistically regulates the differentiation of these two physiologically distinct cell types. We found that extracellular signals affect the behavior of the agr bimodal switch and modify the size of the specialized subpopulations in specific colonization niches. For instance, magnesium-enriched colonization niches causes magnesium binding to S. aureusteichoic acids and increases bacterial cell wall rigidity. This signal triggers a genetic program that ultimately downregulates the agr bimodal switch. Colonization niches with different magnesium concentrations influence the bimodal system activity, which defines a distinct ratio between these subpopulations; this in turn leads to distinct infection outcomes in vitro and in an in vivo murine infection model. Cell differentiation generates physiological heterogeneity in clonal bacterial infections and helps to determine the distinct infection types. While in hospital, patients can be unwittingly exposed to bacteria that can cause disease. These hospital-associated bacteria can lead to potentially life-threatening infections that may also complicate the treatment of the patients’ existing medical conditions. Staphylococcus aureus is one such bacterium, and it can cause several types of infection including pneumonia, blood infections and long-term infections of prosthetic devices. It is thought that S. aureus is able to cause so many different types of infection because it is capable of colonizing distinct tissues and organs in various parts of the body. Understanding the biological processes that drive the different infections is crucial to improving how these infections are treated. S. aureus lives either as an independent, free-swimming cell or as part of a community known as a biofilm. These different lifestyles dictate the type of infection the bacterium can cause, with free-swimming cells producing toxins that contribute to intense, usually short-lived, infections and biofilms promoting longer-term infections that are difficult to eradicate. However, it is not clear how a population of S. aureus cells chooses to adopt a particular lifestyle and whether there are any environmental signals that influence this decision. Here, Garcia-Betancur et al. found that S. aureus populations contain small groups of cells that have already specialized into a particular lifestyle. These groups of cells collectively influence the choice made by other cells in the population. While both lifestyles will be represented in the population, environmental factors influence the numbers of cells that initially adopt each type of lifestyle, which ultimately affects the choice made by the rest of the population. For example, if the bacteria colonize a tissue or organ that contains high levels of magnesium ions, the population is more likely to form biofilms. In the future, the findings of Garcia-Betancur et al. may help us to predict how an infection may develop in a particular patient, which may help to diagnose the infection more quickly and allow it to be treated more effectively.
Collapse
Affiliation(s)
- Juan-Carlos García-Betancur
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany.,Research Center for Infectious Diseases, University of Würzburg, Würzburg, Germany
| | - Angel Goñi-Moreno
- School of Computing Science, Newcastle University, Newcastle, United Kingdom
| | - Thomas Horger
- Department of Mathematics, Technical University of Munich, Garching, Germany
| | - Melanie Schott
- Institute of Clinical Biochemistry and Pathobiochemistry, University Hospital Würzburg, Würzburg, Germany
| | - Malvika Sharan
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Julian Eikmeier
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany.,Research Center for Infectious Diseases, University of Würzburg, Würzburg, Germany
| | - Barbara Wohlmuth
- Department of Mathematics, Technical University of Munich, Garching, Germany
| | - Alma Zernecke
- Institute of Clinical Biochemistry and Pathobiochemistry, University Hospital Würzburg, Würzburg, Germany
| | - Knut Ohlsen
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Christina Kuttler
- Department of Mathematics, Technical University of Munich, Garching, Germany
| | - Daniel Lopez
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany.,Research Center for Infectious Diseases, University of Würzburg, Würzburg, Germany.,National Center for Biotechnology, Madrid, Spain
| |
Collapse
|
11
|
Tiwari V, Tiwari D, Patel V, Tiwari M. Effect of secondary metabolite of Actinidia deliciosa on the biofilm and extra-cellular matrix components of Acinetobacter baumannii. Microb Pathog 2017; 110:345-351. [DOI: 10.1016/j.micpath.2017.07.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/20/2017] [Accepted: 07/10/2017] [Indexed: 12/31/2022]
|
12
|
Silva KP, Chellamuthu P, Boedicker JQ. Signal Destruction Tunes the Zone of Activation in Spatially Distributed Signaling Networks. Biophys J 2017; 112:1037-1044. [PMID: 28297640 DOI: 10.1016/j.bpj.2017.01.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 01/03/2017] [Accepted: 01/10/2017] [Indexed: 12/12/2022] Open
Abstract
Diverse microbial communities coordinate group behaviors through signal exchange, such as the exchange of acyl-homoserine lactones (AHLs) by Gram-negative bacteria. Cellular communication is prone to interference by neighboring microbes. One mechanism of interference is signal destruction through the production of an enzyme that cleaves the signaling molecule. Here we examine the ability of one such interference enzyme, AiiA, to modulate signal propagation in a spatially distributed system of bacteria. We have developed an experimental assay to measure signal transduction and implement a theoretical model of signaling dynamics to predict how the system responds to interference. We show that titration of an interfering strain into a signaling network tunes the spatial range of activation over the centimeter length scale, quantifying the robustness of the signaling network to signal destruction and demonstrating the ability to program systems-level responses of spatially heterogeneous cellular networks.
Collapse
Affiliation(s)
- Kalinga Pavan Silva
- Department of Physics, University of Southern California, Los Angeles, California
| | - Prithiviraj Chellamuthu
- Department of Physics, University of Southern California, Los Angeles, California; Department of Biological Sciences, University of Southern California, Los Angeles, California
| | - James Q Boedicker
- Department of Physics, University of Southern California, Los Angeles, California; Department of Biological Sciences, University of Southern California, Los Angeles, California.
| |
Collapse
|
13
|
Wilson CE, Lopatkin AJ, Craddock TJA, Driscoll WW, Eldakar OT, Lopez JV, Smith RP. Cooperation and competition shape ecological resistance during periodic spatial disturbance of engineered bacteria. Sci Rep 2017; 7:440. [PMID: 28348396 PMCID: PMC5428654 DOI: 10.1038/s41598-017-00588-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 03/06/2017] [Indexed: 12/17/2022] Open
Abstract
Cooperation is fundamental to the survival of many bacterial species. Previous studies have shown that spatial structure can both promote and suppress cooperation. Most environments where bacteria are found are periodically disturbed, which can affect the spatial structure of the population. Despite the important role that spatial disturbances play in maintaining ecological relationships, it remains unclear as to how periodic spatial disturbances affect bacteria dependent on cooperation for survival. Here, we use bacteria engineered with a strong Allee effect to investigate how the frequency of periodic spatial disturbances affects cooperation. We show that at intermediate frequencies of spatial disturbance, the ability of the bacterial population to cooperate is perturbed. A mathematical model demonstrates that periodic spatial disturbance leads to a tradeoff between accessing an autoinducer and accessing nutrients, which determines the ability of the bacteria to cooperate. Based on this relationship, we alter the ability of the bacteria to access an autoinducer. We show that increased access to an autoinducer can enhance cooperation, but can also reduce ecological resistance, defined as the ability of a population to resist changes due to disturbance. Our results may have implications in maintaining stability of microbial communities and in the treatment of infectious diseases.
Collapse
Affiliation(s)
- Cortney E Wilson
- Department of Biological Sciences, Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, 3301 College Ave, Fort Lauderdale, Florida, 33314, USA.,Guy Harvey Oceanographic Center, Nova Southeastern University, 8000 North Ocean Dr, Dania Beach, Florida, 33004, USA
| | - Allison J Lopatkin
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, North Carolina, USA
| | - Travis J A Craddock
- Clinical Systems Biology Group, Institute for Neuro-Immune Medicine, Nova Southeastern University, 3301 College Ave, Fort Lauderdale, Florida, 33314, USA.,Department of Psychology & Neuroscience, College of Psychology, Nova Southeastern University, 3301 College Ave, Fort Lauderdale, Florida, 33314, USA.,Department of Computer Science, College of Engineering and Computing, Nova Southeastern University, 3301 College Ave, Fort Lauderdale, Florida, 33314, USA.,Department of Clinical Immunology, College of Osteopathic Medicine, Nova Southeastern University, 3301 College Ave, Fort Lauderdale, Florida, 33314, USA
| | - William W Driscoll
- Department of Ecology, Evolution, and Behavior, University of Minnesota, 100 Ecology, 1987 Upper Buford Circle, St. Paul, Minnesota, 55108, USA
| | - Omar Tonsi Eldakar
- Department of Biological Sciences, Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, 3301 College Ave, Fort Lauderdale, Florida, 33314, USA
| | - Jose V Lopez
- Department of Biological Sciences, Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, 3301 College Ave, Fort Lauderdale, Florida, 33314, USA.,Guy Harvey Oceanographic Center, Nova Southeastern University, 8000 North Ocean Dr, Dania Beach, Florida, 33004, USA
| | - Robert P Smith
- Department of Biological Sciences, Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, 3301 College Ave, Fort Lauderdale, Florida, 33314, USA.
| |
Collapse
|
14
|
|
15
|
Dragoš A, Kovács ÁT. The Peculiar Functions of the Bacterial Extracellular Matrix. Trends Microbiol 2017; 25:257-266. [PMID: 28089324 DOI: 10.1016/j.tim.2016.12.010] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/02/2016] [Accepted: 12/15/2016] [Indexed: 11/26/2022]
Abstract
A biofilm is a common life form where bacterial cells crowd together surrounded by an extracellular matrix (ECM). Traditionally, the ECM is considered as a structural material that glues and shields the biofilm cells. Here we describe alternative functions of the ECM, highlighting how it benefits microbes beyond the biofilms. Next to protecting free-living cells, the ECM participates in signaling, migration, and genetic exchange either being freely shared with other species or being exclusive to siblings. Considering the structural and recently discovered functions of the ECM, we also attempt to revise its role in sociomicrobiology. In the light of recent findings, the canonical view on ECM as a passive structural material of biofilms should be revisited.
Collapse
Affiliation(s)
- Anna Dragoš
- Terrestrial Biofilms Group, Institute of Microbiology, Friedrich Schiller University Jena, Neugasse 23, 07743 Jena, Germany
| | - Ákos T Kovács
- Terrestrial Biofilms Group, Institute of Microbiology, Friedrich Schiller University Jena, Neugasse 23, 07743 Jena, Germany.
| |
Collapse
|
16
|
Weathering of a Roman Mosaic-A Biological and Quantitative Study on In Vitro Colonization of Calcareous Tesserae by Phototrophic Microorganisms. PLoS One 2016; 11:e0164487. [PMID: 27783631 PMCID: PMC5082677 DOI: 10.1371/journal.pone.0164487] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 09/26/2016] [Indexed: 11/19/2022] Open
Abstract
The potential impact of cyanobacteria and microalgae on the weathering of calcareous tesserae from a Roman mosaic of the II Century CE has been followed through in vitro experiments. Laboratory tests were carried out by inoculating mosaic tiles with single strains of Cyanobacteria or Chlorophyta to evaluate the roles of pioneer phototrophic microrganism on the resulting architecture of biofilms. The interaction between tesserae and strains was assessed at the whole substratum and micrometer scales, by image analysis and Confocal Laser Scanning (CLS) microscopy, respectively. The biofilm surface coverage on each tessera varied from 19% (Fischerella ambigua) to 97% (Microcoleus autumnalis). Cyanobacteria showed a better growth on calcareous tesserae, whereas the only green alga attaining a superficial coverage higher than 50% was Coelastrella rubescens. CLS microscopy evidenced two different types of spatial arrangement of the phototrophic organisms on the tesserae, that were defined as compact or porous, respectively. In the first one was measured a reduced number of empty spaces between cells or filaments, whereas in the second type, a reticulate texture allowed the presence of numerous empty volumes. The colonization processes observed are an intrinsic characteristic of each strain. We have proposed a colonization indexIC as a sensible tool to describe, in a quantitative way, the pioneering attitude of each photosynthetic microorganism to colonize lithic substrates under laboratory conditions.
Collapse
|
17
|
Prajapat MK, Shroff I, Brajesh RG, Saini S. Analysis of a strategy for cooperating cells to survive the presence of cheaters. MOLECULAR BIOSYSTEMS 2016; 12:3338-3346. [PMID: 27754502 DOI: 10.1039/c6mb00427j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cooperation benefits individual cells in a microbial population by helping accomplish tasks which are difficult or non-beneficial for individuals in the population to carry out by themselves. Hence, numerous examples exist of bacteria cooperating and working towards a common objective. The sharing of a common public good via quorum sensing is one of the ways of cooperation among individuals of many microbial populations. However, cheaters exploit cooperators in a population by not contributing to the production of the common goods but enjoy benefits from goods secreted by cooperating individuals. Thus, compared to cooperators, cheaters exhibit a fitness advantage. This suggests that in a population of cooperators invaded by cheaters, the cheaters should be naturally selected for. Instead, however, cooperation is ubiquitous and occurs in many species at various levels of biological organization. So, the question thus arises that what sort of strategies do these microorganisms employ to survive in the presence of cheaters? We try to answer this question here by mathematical analysis of a strategy used in microbial populations where public benefit received by cheaters is restrained to limit cheater invasion. Our results suggest that individuals exhibiting a little selfishness while still contributing to the population are best suited to resist cheater invasion.
Collapse
Affiliation(s)
- Mahendra Kumar Prajapat
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai - 400 076, India.
| | - Isha Shroff
- School of Biotechnology and Bioinformatics, D. Y. Patil University, Navi, Mumbai - 400614, India
| | - R G Brajesh
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai - 400 076, India.
| | - Supreet Saini
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai - 400 076, India.
| |
Collapse
|
18
|
Narula J, Kuchina A, Zhang F, Fujita M, Süel GM, Igoshin OA. Slowdown of growth controls cellular differentiation. Mol Syst Biol 2016; 12:871. [PMID: 27216630 PMCID: PMC5289222 DOI: 10.15252/msb.20156691] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
How can changes in growth rate affect the regulatory networks behavior and the outcomes of cellular differentiation? We address this question by focusing on starvation response in sporulating Bacillus subtilis We show that the activity of sporulation master regulator Spo0A increases with decreasing cellular growth rate. Using a mathematical model of the phosphorelay-the network controlling Spo0A-we predict that this increase in Spo0A activity can be explained by the phosphorelay protein accumulation and lengthening of the period between chromosomal replication events caused by growth slowdown. As a result, only cells growing slower than a certain rate reach threshold Spo0A activity necessary for sporulation. This growth threshold model accurately predicts cell fates and explains the distribution of sporulation deferral times. We confirm our predictions experimentally and show that the concentration rather than activity of phosphorelay proteins is affected by the growth slowdown. We conclude that sensing the growth rates enables cells to indirectly detect starvation without the need for evaluating specific stress signals.
Collapse
Affiliation(s)
- Jatin Narula
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Anna Kuchina
- Division of Biological Sciences, UCSD, San Diego, CA, USA
| | - Fang Zhang
- Division of Biological Sciences, UCSD, San Diego, CA, USA
| | - Masaya Fujita
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Gürol M Süel
- Division of Biological Sciences, UCSD, San Diego, CA, USA
| | - Oleg A Igoshin
- Department of Bioengineering, Rice University, Houston, TX, USA
| |
Collapse
|