1
|
Du H, Zhang S, Yuan K, Yang Z, Wu M. Integrated Metabolomics and Network Pharmacology Study on the Mechanism of Rehmanniae radix Extract for Treating Thrombosis. Drug Des Devel Ther 2024; 18:4859-4875. [PMID: 39497835 PMCID: PMC11533886 DOI: 10.2147/dddt.s475838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/17/2024] [Indexed: 11/07/2024] Open
Abstract
Background Rehmanniae Radix (RR) has received attention for its antithrombotic effect. However, few studies have independently explored the bioactive components responsible for its antithrombotic bioactivity and the potential mechanism. We aimed to reveal the antithrombotic mechanisms of RR by using metabolomics integrated with network pharmacology. Methods A thrombosis model was established by intraperitoneal injection of type I carrageenan in rats, and antithrombotic function was evaluated at different doses of RR. Metabolomics was used to identify the differential metabolites in the serum. Network pharmacology was then applied to identify the potential targets for the antithrombotic activity of the RR. An integrated network of metabolomics and network pharmacology was constructed using Cytoscape. Finally, key targets were verified using molecular docking. Results RR at 5.4 g/kg significantly alleviated the thrombosis. Thirteen potentially significant metabolites were involved in the therapeutic effects of RR against thrombosis, most of which were regulated for recovery after RR treatment. An integrated analysis of metabolomics and network pharmacology showed that the antithrombosis effect of RR was closely associated with the regulation of PLA2G2A, PTGS1, ALOX5, and CYP2C9. Molecular docking showed high affinity between the key targets and components of RR. We speculated that the components of RR, such as catalpol, ferulic acid methyl ester, and methyl 4-hydroxycinnamate, might act on key proteins, including PLA2G2A, PTGS1, and ALOX5, to exert antithrombosis effects. Conclusion This study confirmed the antithrombotic effect of high-dose RR, revealed the antithrombotic mechanism and potential material basis, and laid the foundation for the antithrombotic clinical application of RR. Furthermore, it provides a successful case reference for screening natural herbal components and exploring their potential pharmacological mechanisms.
Collapse
Affiliation(s)
- Hongling Du
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
- Department of Pharmacy, Sichuan Public Health Clinical Center, Chengdu, Sichuan, People’s Republic of China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People’s Republic of China
| | - Shunjie Zhang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Kezhu Yuan
- Department of Pharmacy, Sichuan Orthopedic Hospital, Chengdu, Sichuan, People’s Republic of China
| | - Zhirui Yang
- Department of Nuclear Medicine, Chengdu Second People’s Hospital, Chengdu, Sichuan, People’s Republic of China
| | - Mingquan Wu
- Department of Pharmacy, Sichuan Orthopedic Hospital, Chengdu, Sichuan, People’s Republic of China
| |
Collapse
|
2
|
Tao Q, Ma N, Fan L, Ge W, Zhang Z, Liu X, Li J, Yang Y. Multi-Omics Approaches for Liver Reveal the Thromboprophylaxis Mechanism of Aspirin Eugenol Ester in Rat Thrombosis Model. Int J Mol Sci 2024; 25:2141. [PMID: 38396823 PMCID: PMC10889733 DOI: 10.3390/ijms25042141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Aspirin eugenol ester (AEE) is a novel medicinal compound synthesized by esterifying aspirin with eugenol using the pro-drug principle. Pharmacological and pharmacodynamic experiments showed that AEE had excellent thromboprophylaxis and inhibition of platelet aggregation. This study aimed to investigate the effect of AEE on the liver of thrombosed rats to reveal its mechanism of thromboprophylaxis. Therefore, a multi-omics approach was used to analyze the liver. Transcriptome results showed 132 differentially expressed genes (DEGs) in the AEE group compared to the model group. Proteome results showed that 159 differentially expressed proteins (DEPs) were identified in the AEE group compared to the model group. Six proteins including fibrinogen alpha chain (Fga), fibrinogen gamma chain (Fgg), fibrinogen beta chain (Fgb), orosomucoid 1 (Orm1), hemopexin (Hpx), and kininogen-2 (Kng2) were selected for parallel reaction monitoring (PRM) analysis. The results showed that the expression of all six proteins was upregulated in the model group compared with the control group. In turn, AEE reversed the upregulation trend of these proteins to some degree. Metabolome results showed that 17 metabolites were upregulated and 38 were downregulated in the model group compared to the control group. AEE could reverse the expression of these metabolites to some degree and make them back to normal levels. The metabolites were mainly involved in metabolic pathways, including linoleic acid metabolism, arachidonic acid metabolism, and the tricarboxylic acid (TCA) cycle. Comprehensive analyses showed that AEE could prevent thrombosis by inhibiting platelet activation, decreasing inflammation, and regulating amino acid and energy metabolism. In conclusion, AEE can have a positive effect on thrombosis-related diseases.
Collapse
Affiliation(s)
- Qi Tao
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China; (Q.T.); (L.F.); (W.G.); (Z.Z.); (X.L.)
| | - Ning Ma
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China;
| | - Liping Fan
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China; (Q.T.); (L.F.); (W.G.); (Z.Z.); (X.L.)
| | - Wenbo Ge
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China; (Q.T.); (L.F.); (W.G.); (Z.Z.); (X.L.)
| | - Zhendong Zhang
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China; (Q.T.); (L.F.); (W.G.); (Z.Z.); (X.L.)
| | - Xiwang Liu
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China; (Q.T.); (L.F.); (W.G.); (Z.Z.); (X.L.)
| | - Jianyong Li
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China; (Q.T.); (L.F.); (W.G.); (Z.Z.); (X.L.)
| | - Yajun Yang
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China; (Q.T.); (L.F.); (W.G.); (Z.Z.); (X.L.)
| |
Collapse
|
3
|
Shokuhi Rad A. A new strategy for making a sensitive sensor for aspirin drug: first-principles investigations by using pure and metal-doped BN nano-heterostructures. J Biomol Struct Dyn 2024; 42:766-778. [PMID: 36995294 DOI: 10.1080/07391102.2023.2194995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/19/2023] [Indexed: 03/31/2023]
Abstract
The present study used the DFT method to investigate aspirin's intermolecular interactions with boron nitride (BN) nanotubes modified with aluminum, gallium, and zinc. Our experiments obtained adsorption energy of -40.4 kJ/mol for aspirin on BN nanotubes. By doping each of the above metals on the surface of the BN nanotube, the aspirin adsorption energy increased dramatically. For BN nanotubes doped with Al, Ga, and Zn, this energy was -255, -251, and -250 kJ/mol. Thermodynamic analyses proved that all surface adsorptions are exothermic and spontaneous. Nanotubes' electronic structures and dipole moments have been examined following aspirin adsorption. In addition, AIM analysis has been performed for all systems in order to understand how the links were formed. According to the obtained results, BN nanotubes doped with metals, as mentioned previously, have a very high electron sensitivity to aspirin. These nanotubes can therefore be used to manufacture aspirin-sensitive electrochemical sensors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ali Shokuhi Rad
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| |
Collapse
|
4
|
Yokomori R, Shirai T, Tsukiji N, Oishi S, Sasaki T, Takano K, Suzuki-Inoue K. C-type lectin-like receptor-2 (CLEC-2) is a key regulator of kappa-carrageenan-induced tail thrombosis model in mice. Platelets 2023; 34:2281941. [PMID: 38010137 DOI: 10.1080/09537104.2023.2281941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 11/03/2023] [Indexed: 11/29/2023]
Abstract
Kappa-carrageenan (KCG), which is used to induce thrombosis in laboratory animals for antithrombotic drug screening, can trigger platelet aggregation. However, the cell-surface receptor and related signaling pathways remain unclear. In this study, we investigated the molecular basis of KCG-induced platelet activation using light-transmittance aggregometry, flow cytometry, western blotting, and surface plasmon resonance assays using platelets from platelet receptor-deficient mice and recombinant proteins. KCG-induced tail thrombosis was also evaluated in mice lacking the platelet receptor. We found that KCG induces platelet aggregation with α-granule secretion, activated integrin αIIbβ3, and phosphatidylserine exposure. As this aggregation was significantly inhibited by the Src family kinase inhibitor and spleen tyrosine kinase (Syk) inhibitor, a tyrosine kinase-dependent pathway is required. Platelets exposed to KCG exhibited intracellular tyrosine phosphorylation of Syk, linker activated T cells, and phospholipase C gamma 2. KCG-induced platelet aggregation was abolished in platelets from C-type lectin-like receptor-2 (CLEC-2)-deficient mice, but not in platelets pre-treated with glycoprotein VI-blocking antibody, JAQ1. Surface plasmon resonance assays showed a direct association between murine/human recombinant CLEC-2 and KCG. KCG-induced thrombosis and thrombocytopenia were significantly inhibited in CLEC-2-deficient mice. Our findings show that KCG induces platelet activation via CLEC-2.
Collapse
Affiliation(s)
- Ryohei Yokomori
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Kofu, Japan
| | - Toshiaki Shirai
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Kofu, Japan
| | - Nagaharu Tsukiji
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Kofu, Japan
| | - Saori Oishi
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Kofu, Japan
| | - Tomoyuki Sasaki
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Kofu, Japan
| | - Katsuhiro Takano
- Department of Transfusion and Cell Therapy, University of Yamanashi Hospital, Chuo, Japan
| | - Katsue Suzuki-Inoue
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Kofu, Japan
- Department of Transfusion and Cell Therapy, University of Yamanashi Hospital, Chuo, Japan
| |
Collapse
|
5
|
But VM, Bulboacă AE, Rus V, Ilyés T, Gherman ML, Bolboacă SD. Anti-inflammatory and antioxidant efficacy of lavender oil in experimentally induced thrombosis. Thromb J 2023; 21:85. [PMID: 37559057 PMCID: PMC10410829 DOI: 10.1186/s12959-023-00516-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/19/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND Lavender oil (LO) possesses anti-inflammatory, antioxidant, antifungal, antibacterial, sedative, cardio-protective, and antinociceptive properties. Thrombosis and inflammation are interplayed processes that interact and influence one another. Our research compared three routes of administration to assess the efficacy of pretreatment with LO on carrageenan-induced thrombosis in rat tail. MATERIALS AND METHODS Wistar-Bratislava white rats were randomly divided into five groups of ten rats each and pretreated 3 consecutive days prior the inducement of thrombosis to with one dose of LO (150 mg/kg body weight (b.w.)): per os by gavage (TLOPO group), intraperitoneal (TIPLO group) and subcutaneous (TSCLO group). We also have a control (C, received saline solution 0.9% and DMSO (vehicle) 1 ml intraperitoneal (i.p.)) group and a group with thrombosis (T group, received saline solution 0.9% plus vehicle 1 ml i.p.). Histopathological examinations were conducted together with measurements of the circulating levels of three oxidative stress markers, antioxidant effect (TAC and THIOL), and three proinflammatory cytokines (TNF- α, RANTES, and MCP-1). RESULTS When administered intraperitoneally, lavender oil has the best efficacy on circulating levels of oxidative stress parameters (MDA, NOx, TOS), one oxidative stress marker (THIOL), and all studied proinflammatory cytokines (p-values < 0.02). Moreover, TIPLO displayed the closest values for bleeding and clotting time to the C group, as well as the lowest length of the thrombus than the T, TPOLO, and TSCLO groups (p-values < 0.001). The TIPLO group has histological appearance comparable to the C group, with the exception of the presence of oedema. CONCLUSIONS Lavender oil pretreatment with intraperitoneal administration as three days, one-dose per day, showed anti-inflammatory and antioxidant efficacy in experimentally induced thrombosis.
Collapse
Affiliation(s)
- Valeriu Mihai But
- Department of Medical Informatics and Biostatistics, “Iuliu Haţieganu” University of Medicine and Pharmacy, Louis Pasteur Street, No. 6, Cluj-Napoca, 400349 Romania
| | - Adriana Elena Bulboacă
- Department of Pathophysiology, “Iuliu Haţieganu” University of Medicine and Pharmacy, Victor Babeş Street, No. 2-4, Cluj-Napoca, 400012 Romania
| | - Vasile Rus
- Department of Cell Biology, Histology and Embryology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, 400374 Romania
| | - Tamás Ilyés
- Department of Medical Biochemistry, “Iuliu Haţieganu” University of Medicine and Pharmacy, Louis Pasteur Street, No. 6, Cluj-Napoca, 400349 Romania
| | - Mădălina Luciana Gherman
- Experimental Center, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, 400012 Romania
| | - Sorana D. Bolboacă
- Department of Medical Informatics and Biostatistics, “Iuliu Haţieganu” University of Medicine and Pharmacy, Louis Pasteur Street, No. 6, Cluj-Napoca, 400349 Romania
| |
Collapse
|
6
|
Liu L, Xiao S, Wang Y, Wang Y, Liu L, Sun Z, Zhang Q, Yin X, Liao F, You Y, Zhang X. Water-soluble tomato concentrate modulates shear-induced platelet aggregation and blood flow in vitro and in vivo. Front Nutr 2022; 9:961301. [PMID: 36118749 PMCID: PMC9478107 DOI: 10.3389/fnut.2022.961301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Water-soluble tomato concentrate (WSTC), extracted from mature tomatoes, is the first health product in Europe that has been approved “to help maintain normal platelet activity to maintain healthy blood flow.” We hypothesized that WSTC might exert an influence on blood flow shear stress-induced platelet aggregation (SIPA) and in turn maintains healthy blood flow. We used a microfluidic system to measure the effects of WSTC on SIPA in vitro. We also used the strenuous exercise rat model and the κ-carrageenan-induced rat tail thrombosis model to demonstrate the effects of WSTC on blood flow. WSTC significantly inhibited platelet aggregation at pathological high shear rate of 4,000 s–1 and 8,000 s–1in vitro (P < 0.05 or P < 0.01). WSTC reduced the platelet adhesion rate and increased the rolling speed of platelets by inhibiting binding to Von Willebrand Factor (vWF) (P < 0.05 or P < 0.01). The oral administration of WSTC for 4 weeks in strenuous exercise rats alleviated hyper-reactivity of the platelets and led to a significant reduction in the plasma levels of catecholamine and IL-6. WSTC treatment also led to a reduction in black tail length, reduced blood flow pulse index (PI) and vascular resistance index (RI), and ameliorated local microcirculation perfusion in a rat model of thrombosis. WSTC exerted obvious inhibitory effects on the platelet aggregation induced by shear flow and alleviated the blood flow and microcirculation abnormities induced by an inflammatory reaction.
Collapse
Affiliation(s)
- Lu Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shunli Xiao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yilin Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yufang Wang
- Byhealth Institute of Nutrition and Health, Guangzhou, China
| | - Lei Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhengxiao Sun
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qian Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaojie Yin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fulong Liao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yun You
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Yun You,
| | - Xuguang Zhang
- Byhealth Institute of Nutrition and Health, Guangzhou, China
- Xuguang Zhang,
| |
Collapse
|
7
|
Zhou H, Zhu J, Wan H, Shao C, Chen T, Yang J, He Y, Wan H. The combination of danhong injection plus tissue plasminogen activator ameliorates mouse tail thrombosis-induced by κ-carrageenan. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154320. [PMID: 35830758 DOI: 10.1016/j.phymed.2022.154320] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 06/22/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND After thrombosis, t-PA thrombolysis is the first choice, but the use of t-PA can easily lead to hemorrhagic injury and neurotoxicity. The combination of Danhong injection (DHI) and tissue plasminogen activator (t-PA) therapy may be a new strategy to find high-efficiency anti-thrombosis and low bleeding risk. However, nothing is about the effect of DHI plus t-PA on platelet activation. PURPOSE The present research was to explore the optimal dose of DHI and t-PA in vivo and mechanisms involved with the treatment of combining DHI and t-PA for thrombotic disease and determined whether DHI plus t-PA affects thrombotic processes related to platelet activation. METHODS Mice were induced by administering κ-carrageenan intraperitoneally, the ratio of different doses of DHI and t-PA in vivo, and the optimal dose effects on platelet aggregation, platelet adhesion, thrombosis formation, and platelet activation were determined. The effects of the αIIbβ3 signaling pathway were analyzed in mice. RESULTS In vitro, DHI (62% v/v), t-PA (1 mg/ml), and DHI + t-PA (62% v/v + 1 mg/ml) decreased rat platelet aggregation and adhesion, with a stronger effect from the combination as compared to t-PA monotherapy. In vivo, injections of κ-carrageenan were used to induce BALB/c mice. The optimal dose of DHI, t-PA, and DHI + t-PA is 12 ml/kg, 10 mg/kg, and 12 ml/kg + 7.5 mg/kg. The administration of DHI (12 ml/kg), t-PA (10 mg/kg), and DHI + t-PA (12 ml/kg + 7.5 mg/kg) decreased thrombi in mouse tissue vessels. Furthermore, the reduction of thrombosis formation by DHI, t-PA, and DHI + t-PA was related to lower collagen deposition, and lowered expressions of collagen I, matrix metalloproteinase 2 (MMP-2), and metalloproteinase 9 (MMP-9) in mouse tails, with increased efficacy in combination as compared to t-PA alone. The anti-thrombosis actions of DHI, t-PA, and their combination regulated the expression of CD41, purinergic receptor (P2Y12), guanine nucleotide-binding protein G (q) subunit alpha (GNAQ), phosphatidylinositol phospholipase c beta (PLCβ), Ras-related protein 1 (Rap1), RIAM, talin1, fibrinogen alpha chain (FG), kindlin-3, and RAS guany1-releasing protein 1 (RasGRP1). CONCLUSIONS Based on expression, the mechanism responsible for thrombosis may be attributed to platelet activation via the αIIbβ3 signaling pathway. Combination therapy with DHI and t-PA exerted potent thrombolytic effects. Thus, our data can be used as a foundation for further clinical studies examining the efficacy of traditional Chinese medicines for the treatment of thrombosis.
Collapse
Affiliation(s)
- Huifen Zhou
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Jiaqi Zhu
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Haofang Wan
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Chongyu Shao
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Tianhang Chen
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Jiehong Yang
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, PR China.
| | - Yu He
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, PR China.
| | - Haitong Wan
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, PR China; Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, PR China.
| |
Collapse
|
8
|
Purification, biochemical characterization and fibrinolytic potential of proteases produced by bacteria of the genus Bacillus: a systematic literature review. Arch Microbiol 2022; 204:503. [PMID: 35852634 DOI: 10.1007/s00203-022-03134-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/03/2022] [Accepted: 07/10/2022] [Indexed: 11/02/2022]
Abstract
Thrombosis is a hematological disorder characterized by the formation of intravascular thrombi, which contributes to the development of cardiovascular diseases. Fibrinolytic enzymes are proteases that promote the hydrolysis of fibrin, promoting the dissolution of thrombi, contributing to the maintenance of adequate blood flow. The characterization of new effective, safe and low-cost fibrinolytic agents is an important strategy for the prevention and treatment of thrombosis. However, the development of new fibrinolytics requires the use of complex methodologies for purification, physicochemical characterization and evaluation of the action potential and toxicity of these enzymes. In this context, microbial enzymes produced by bacteria of the Bacillus genus are promising and widely researched sources to produce new fibrinolytics, with high thrombolytic potential and reduced toxicity. Thus, this review aims to provide a current and comprehensive understanding of the different Bacillus species used for the production of fibrinolytic proteases, highlighting the purification techniques, biochemical characteristics, enzymatic activity and toxicological evaluations used.
Collapse
|
9
|
Wei X, Zhang B, Wei F, Ding M, Luo Z, Han X, Tan X. Gegen Qinlian pills alleviate carrageenan-induced thrombosis in mice model by regulating the HMGB1/NF-κB/NLRP3 signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 100:154083. [PMID: 35413645 PMCID: PMC9759718 DOI: 10.1016/j.phymed.2022.154083] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/19/2022] [Accepted: 03/26/2022] [Indexed: 05/05/2023]
Abstract
BACKGROUND The high incidence of thrombotic events is one of the clinical characteristics of coronavirus disease of 2019 (COVID-19), due to a hyperinflammatory response caused by the virus. Gegen Qinlian Pills (GQP) is a Traditional Chinese Medicine that is included in the Chinese Pharmacopoeia and played an important role in the clinical fight against COVID-19. Although GQP has shown the potential to treat thrombosis, there is no relevant research on its treatment of thrombosis so far. HYPOTHESIS We hypothesized that GQP may be capable inhibit inflammation-induced thrombosis. STUDY DESIGN We tested our hypothesis in a carrageenan-induced thrombosis mouse model in vivo and lipopolysaccharide (LPS)-induced human endothelial cells (HUVECs) in vitro. METHODS We used a carrageenan-induced mouse thrombus model to confirm the inhibitory effect of GQP on inflammation-induced thrombus. In vitro, studies in human umbilical vein endothelial cells (HUVECs) and in silico network pharmacology analyses were performed to reveal the underlying mechanisms of GQP and determine the main components, targets, and pathways of GQP, respectively. RESULTS Oral administration of 227.5 mg/kg, 445 mg/kg and 910 mg/kg of GQP significantly inhibited thrombi in the lung, liver, and tail and augmented tail blood flow of carrageenan-induced mice with reduced plasma tumor necrosis factor α (TNF-α) and diminished expression of high mobility group box 1 (HMGB1) in lung tissues. GQP ethanol extract (1, 2, or 5 μg/ml) also reduced the adhesion of platelets to LPS stimulated HUVECs. The TNF-α and the expression of HMGB1, nuclear factor kappa B (NF-κB), and NLR family pyrin domain containing 3 (NLRP3) in LPS stimulated HUVECs were also attenuated. Moreover, we analyzed the components of GQP and inferred the main targets, biological processes, and pathways of GQP in the treatment of inflammation-induced thrombosis through network pharmacology. CONCLUSION Overall, we demonstrated that GQP could reduce inflammation-induced thrombosis by inhibiting HMGB1/NFκB/NLRP3 signaling and provided an accurate explanation for the multi-target, multi-function mechanism of GQP in the treatment of thromboinflammation, and provides a reference for the clinical usage of GQP.
Collapse
Affiliation(s)
- Xiaohan Wei
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China; Guangzhou Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou 510515, China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou 510515, China
| | - Baoping Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China; Guangzhou Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou 510515, China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou 510515, China
| | - Feiyan Wei
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China; Guangzhou Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou 510515, China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou 510515, China
| | - Mengze Ding
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China; Guangzhou Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou 510515, China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou 510515, China
| | - Zhenye Luo
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China; Guangzhou Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou 510515, China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou 510515, China
| | - Xinlong Han
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China; Guangzhou Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou 510515, China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou 510515, China
| | - Xiaomei Tan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China; Guangzhou Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou 510515, China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou 510515, China.
| |
Collapse
|
10
|
Purification and Characterization of a Fibrinolytic Enzyme from Marine Bacillus velezensis Z01 and Assessment of Its Therapeutic Efficacy In Vivo. Microorganisms 2022; 10:microorganisms10050843. [PMID: 35630289 PMCID: PMC9145925 DOI: 10.3390/microorganisms10050843] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 11/17/2022] Open
Abstract
Fibrinolytic enzymes are the most effective agents for the treatment of thrombotic diseases. In the present study, we purified and characterized an extracellular fibrinolytic serine metalloprotease (named Velefibrinase) that is produced by marine Bacillus velezensis Z01 and assessed its thrombolysis in vivo. SDS-PAGE and MALDI-TOF-MS analyses showed that the molecular mass of Velefibrinase was 32.3 KDa and belonged to the peptidase S8 family. The optimal fibrinolytic activity conditions of Velefibrinase were 40 °C and pH 7.0. Moreover, Velefibrinase exhibited high substrate specificity to fibrin, and a higher ratio of fibrinolytic/caseinolytic (1.48) values, which indicated that Velefibrinase had excellent fibrinolytic properties. Based on the degradation pattern of fibrin and fibrinogen, Velefibrinase could be classified as α/β-fibrinogenase. In vitro, Velefibrinase demonstrated efficient thrombolytic ability, anti-platelet aggregation, and amelioration of blood coagulation (APTT, PT, TT, and FIB), which were superior to those of commercial anticoagulant urokinase. Velefibrinase showed no hemolysis for erythrocyte in vitro and no hemorrhagic activity in vivo. Finally, Velefibrinase effectively prevented mouse tail thrombosis in a dose-dependent (0.22–0.88 mg/kg) manner. These findings suggested that Velefibrinase has the potential to becoming a new thrombolytic agent.
Collapse
|
11
|
Tang Y, Yang Y, Lu X, Liu Q, Li Q, Song X, Wang M, Hu H, Zhou L, Wang Y. Oral therapy of recombinant Subtilisin QK-2 potentiates thrombolytic effect in a carrageenan-induced thrombosis animal model. J Funct Foods 2022. [DOI: 10.1016/j.jff.2021.104896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
12
|
Madruga LYC, Popat KC, Balaban RC, Kipper MJ. Enhanced blood coagulation and antibacterial activities of carboxymethyl-kappa-carrageenan-containing nanofibers. Carbohydr Polym 2021; 273:118541. [PMID: 34560953 DOI: 10.1016/j.carbpol.2021.118541] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 01/10/2023]
Abstract
Ideal wound dressings should be biocompatible, exhibit high antibacterial activity, and promote blood coagulation. To impart these imperative functions, carboxymethyl-kappa-carrageenan was incorporated into poly(vinyl alcohol) nanofibers (PVA-CMKC). The antibacterial activity of the nanofibers was evaluated. Adsorption of two important blood proteins, fibrinogen and albumin, was also assessed. The adhesion and activation of platelets, and the clotting of whole blood were evaluated to characterize the ability of the nanofibers to promote hemostasis. Adhesion and morphology of both Staphylococcus aureus and Pseudomonas aeruginosa were evaluated using fluorescence microscopy and scanning electron microscopy. CMKC-containing nanofibers demonstrated significant increases in platelet adhesion and activation, percentage of coagulation in whole blood clotting test and fibrinogen adsorption, compared to PVA nanofibers, showing blood coagulation activity. Incorporating CMKC also reduces adhesion and viability of S. aureus and P. aeruginosa bacteria after 24 h of incubation. PVA-CMKC nanofibers show potential application as dressings for wound healing applications.
Collapse
Affiliation(s)
- Liszt Y C Madruga
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO, United States; Institute of Chemistry, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Ketul C Popat
- School of Advanced Materials Discovery, Colorado State University, Fort Collins, CO, United States; Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, United States; School of Biomedical Engineering, Colorado State University, Fort Collins, CO, United States
| | - Rosangela C Balaban
- Institute of Chemistry, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Matt J Kipper
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO, United States; School of Advanced Materials Discovery, Colorado State University, Fort Collins, CO, United States; School of Biomedical Engineering, Colorado State University, Fort Collins, CO, United States.
| |
Collapse
|
13
|
Nyansah WB, Koffuor GA, Ben IO, Gyanfosu L, Ehigiator BE. Antithrombotic property of an aqueous extract from Pseudocedrela kotschyi and Adenia cissampeloides. Res Pharm Sci 2021; 16:436-446. [PMID: 34447451 PMCID: PMC8356714 DOI: 10.4103/1735-5362.319581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 12/07/2020] [Accepted: 05/25/2021] [Indexed: 11/24/2022] Open
Abstract
Background and purpose: An aqueous extract from the root bark of Pseudocedrela kotschyi and aerial parts of Adenia cissampeloides has been proven in previous research to elicit significant anticoagulant property in vitro. This, therefore, indicates the potential usefulness of this extract in managing thromboembolic disease, a major global health risk. The aim of the present work was to establish the antithrombotic effect of a product made from extracts of the root bark of P. kotschyi and the aerial parts of A. cissampeloides (PAE). Experimental approach: The effect of PAE at 500-2000 mg/kg in inhibiting tail infarction and inflammation, as well as its effect on the microthrombi count, hematological, and coagulation profiles in a carrageenan-induced thrombosis model in Sprague-Dawley rats, was studied. Findings/Results: PAE significantly (P ≤ 0.01-0.001) reduced length of tail infarction and inflammation (redness, swelling, pain, and temperature). Histopathological studies revealed a significant reduction (P ≤ 0.0001) in microthrombi count in the liver and the lungs with PAE treatment. PAE treatment caused a marginal (P ≤ 0.01) increase in prothrombin time but resulted in a significant (P ≤ 0.01-0.0001) dose-dependent increase in activated partial thromboplastin time, with the hematological profile being normal. Conclusion and implications: PAE showed anticoagulant and antithrombotic effects in vivo, indicative of its potential benefit as a natural product, and cost-effective therapeutic option, and hence could be helpful in thromboembolic therapies.
Collapse
Affiliation(s)
- Wilson Bright Nyansah
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - George Asumeng Koffuor
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Inemesit Okon Ben
- Department of Pharmacology, School of Pharmacy, University of Health and Allied Science, Ho, Ghana
| | - Linda Gyanfosu
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Ben Enoluomen Ehigiator
- Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, Madonna University, River State, Nigeria
| |
Collapse
|
14
|
Protective Activity of Aspirin Eugenol Ester on Paraquat-Induced Cell Damage in SH-SY5Y Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6697872. [PMID: 34394831 PMCID: PMC8360752 DOI: 10.1155/2021/6697872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 07/23/2021] [Indexed: 11/28/2022]
Abstract
Aspirin eugenol ester (AEE) is a new pharmaceutical compound esterified by aspirin and eugenol, which has anti-inflammatory, antioxidant, and other pharmacological activities. The aim of this study was to investigate the protective effect of AEE on paraquat- (PQ-) induced cell damage of SH-SY5Y human neuroblastoma cells and its potential molecular mechanism. There was no significant change in cell viability when AEE was used alone. PQ treatment reduced cell viability in a concentration-dependent manner. However, AEE reduced the PQ-induced loss of cell viability. Flow cytometry, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), and 4′6-diamidino-2-phenylindole (DAPI) staining were used to evaluate cell apoptosis. Compared with the PQ group, AEE pretreatment could significantly inhibit PQ-induced cell damage. AEE pretreatment could reduce the cell damage of SH-SY5Y cells induced by PQ via reducing superoxide anion, intracellular reactive oxygen species (ROS), and mitochondrial ROS (mtROS) and increasing the levels of mitochondrial membrane potential (ΔΨm). At the same time, AEE could increase the activity of glutathione peroxidase (GSH-Px), catalase (CAT), and superoxide dismutase (SOD) and decrease the activity of malondialdehyde (MDA). The results showed that compared with the control group, the expression of p-PI3K, p-Akt, and Bcl-2 was significantly decreased, while the expression of caspase-3 and Bax was significantly increased in the PQ group. In the AEE group, AEE pretreatment could upregulate the expression of p-PI3K, p-Akt, and Bcl-2 and downregulate the expression of caspase-3 and Bax in SH-SY5Y cells. PI3K inhibitor LY294002 and the silencing of PI3K by shRNA could weaken the protective effect of AEE on PQ-induced SH-SY5Y cells. Therefore, AEE has a protective effect on PQ-induced SH-SY5Y cells by regulating the PI3K/Akt signal pathway to inhibit oxidative stress.
Collapse
|
15
|
The Protective Effect of Aspirin Eugenol Ester on Oxidative Stress to PC12 Cells Stimulated with H 2O 2 through Regulating PI3K/Akt Signal Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5527475. [PMID: 34257805 PMCID: PMC8249132 DOI: 10.1155/2021/5527475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/28/2021] [Indexed: 02/07/2023]
Abstract
Aspirin eugenol ester (AEE) is a new pharmaceutical compound esterified by aspirin and eugenol, which has anti-inflammatory, antioxidant, and other pharmacological activities. This study is aimed at identifying the protective effect of AEE against H2O2-induced apoptosis in rat adrenal pheochromocytoma PC12 cells and the possible mechanisms. The results of cell viability assay showed that AEE could increase the viability of PC12 cells stimulated by H2O2, while AEE alone had no significant effect on the viability of PC12 cells. Compared with the control group, the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) were significantly decreased, and the content of malondialdehyde (MDA) was significantly increased in the H2O2 group. By AEE pretreatment, the level of MDA was reduced and the levels of SOD, CAT, and GSH-Px were increased in H2O2-stimulated PC12 cells. In addition, AEE could reduce the apoptosis of PC12 cells induced by H2O2 via reducing superoxide anion, intracellular ROS, and mitochondrial ROS (mtROS) and increasing the levels of mitochondrial membrane potential (ΔΨm). Furthermore, the results of western blotting showed that compared with the control group, the expression of p-PI3K, p-Akt, and Bcl-2 was significantly decreased, while the expression of Caspase-3 and Bax was significantly increased in the H2O2 group. In the AEE group, AEE pretreatment could upregulate the expression of p-PI3K, p-Akt, and Bcl-2 and downregulate the expression of Caspase-3 and Bax in PC12 cells stimulated with H2O2. The silencing of PI3K with shRNA and its inhibitor-LY294002 could abrogate the protective effect of AEE in PC12 cells. Therefore, AEE has a protective effect on H2O2-induced PC12 cells by regulating the PI3K/Akt signal pathway to inhibit oxidative stress.
Collapse
|
16
|
da Silva Calixto P, de Almeida RN, Stiebbe Salvadori MGS, Dos Santos Maia M, Filho JMB, Scotti MT, Scotti L. In Silico Study Examining New Phenylpropanoids Targets with Antidepressant Activity. Curr Drug Targets 2021; 22:539-554. [PMID: 32881667 DOI: 10.2174/1389450121666200902171838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/09/2020] [Accepted: 05/18/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Natural products, such as phenylpropanoids, which are found in essential oils derived from aromatic plants, have been explored during non-clinical psychopharmacology studies, to discover new molecules with relevant pharmacological activities in the central nervous system, especially antidepressant and anxiolytic activities. Major depressive disorder is a highly debilitating psychiatric disorder and is considered to be a disabling public health problem, worldwide, as a primary factor associated with suicide. Current clinically administered antidepressants have late-onset therapeutic actions, are associated with several side effects, and clinical studies have reported that some patients do not respond well to treatment or reach complete remission. OBJECTIVE To review important new targets for antidepressant activity and to select phenylpropanoids with antidepressant activity, using Molegro Virtual Docker and Ossis Data Warris, and to verify substances with more promising antidepressant activity. RESULTS AND CONCLUSION An in silico molecular modeling study, based on homology, was conducted to determine the three-dimensional structure of the 5-hydroxytryptamine 2A receptor (5- HT2AR), then molecular docking studies were performed and the predisposition for cytotoxicity risk among identified molecules was examined. A model for 5-HT2AR homology, with satisfactory results, was obtained indicating the good stereochemical quality of the model. The phenylpropanoid 4-allyl-2,6-dimethoxyphenol showed the lowest binding energy for 5-HT2AR, with results relevant to the L-arginine/nitric oxide (NO)/cGMP pathway, and showed no toxicity within the parameters of mutagenicity, carcinogenicity, reproductive system toxicity, and skin-tissue irritability, when evaluated in silico; therefore, this molecule can be considered promising for the investigation of antidepressant activity.
Collapse
Affiliation(s)
| | - Reinaldo Nóbrega de Almeida
- Department of Physiology and Pathology, Laboratory of Psychopharmacology, Federal University of Paraiba, Joao Pessoa, Brazil
| | | | | | - José Maria Barbosa Filho
- Department of Pharmaceutical Sciences, Pharmaceutical Technology Laboratory, Federal University of Paraiba, Joao Pessoa, Brazil
| | | | - Luciana Scotti
- Laboratory of Chemoinformatics, Federal University of Paraiba, Joao Pessoa, Brazil
| |
Collapse
|
17
|
Zhang ZD, Yang YJ, Liu XW, Qin Z, Li SH, Li JY. Aspirin eugenol ester ameliorates paraquat-induced oxidative damage through ROS/p38-MAPK-mediated mitochondrial apoptosis pathway. Toxicology 2021; 453:152721. [PMID: 33592258 DOI: 10.1016/j.tox.2021.152721] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 02/02/2021] [Accepted: 02/08/2021] [Indexed: 01/06/2023]
Abstract
Paraquat (PQ) is an effective and commercially important herbicide that is widely used worldwide. However, PQ is highly toxic and can cause various complications and acute organ damage. Aspirin eugenol ester (AEE) is a potential new compound with anti-inflammatory and antioxidant stress pharmacological activity. The present study was to reveal the therapeutic effects and the protective effect of AEE against PQ-induced acute lung injury (ALI) with the help of PQ-induced oxidative damage in A549 cells and PQ-induced lung injury in rats. AEE might have no significant therapeutic effect on PQ-induced lung injury in rats. However, AEE had a significant protective effect on PQ-induced lung injury in rats. AEE pretreatment significantly reduced the stimulatory effect of PQ on malondialdehyde (MDA), the inhibitory effect of PQ on catalase (CAT) activity, superoxide dismutase (SOD) activity, glutathione peroxidase (GPx) activity, the ratio of GSH/GSSH, the activity of caspase-3 and the overexpression of p38 mitogen-activated protein kinase (MAPK) phosphorylation in vivo. In vitro, A549 cells were treated with 250 μM PQ for 24 h. Incubation of A549 cells with PQ led to apoptosis, and increased the level of superoxide anions, reactive oxygen species (ROS), malondialdehyde and the activity of caspase-3 and up-regulation of phosphorylated p38-MAPK, reduced mitochondrial membrane potential (ΔΨm) and the activity of SOD. However, after 24 h on AEE pretreatment of A549 cells, the above-mentioned adverse reactions caused by PQ were significantly alleviated. In addition, AEE pretreatment reduced p38-MAPK phosphorylation in PQ-treated A549 cells. SB203580, the specific p38-MAPK inhibitor, and p38-MAPK shRNA attenuated the activation of the p38-MAPK signaling pathway. N-acetylcysteine (NAC) reduced the level of phosphorylated p38-MAPK and the production of intracellular ROS and inhibited apoptosis. The results showed that AEE may inhibit PQ-induced cell damage through ROS/p38-MAPK-mediated mitochondrial apoptosis pathway.
Collapse
Affiliation(s)
- Zhen-Dong Zhang
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, 730050, China.
| | - Ya-Jun Yang
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, 730050, China.
| | - Xi-Wang Liu
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, 730050, China.
| | - Zhe Qin
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, 730050, China.
| | - Shi-Hong Li
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, 730050, China.
| | - Jian-Yong Li
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, 730050, China.
| |
Collapse
|
18
|
Zhang ZD, Yang YJ, Liu XW, Qin Z, Li SH, Li JY. The Protective Effect of Aspirin Eugenol Ester on Paraquat-Induced Acute Liver Injury Rats. Front Med (Lausanne) 2020; 7:589011. [PMID: 33392217 PMCID: PMC7773779 DOI: 10.3389/fmed.2020.589011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/30/2020] [Indexed: 11/21/2022] Open
Abstract
Aspirin eugenol ester (AEE) possesses anti-inflammatory and anti-oxidative effects. The study was conducted to evaluate the protective effect of AEE on paraquat-induced acute liver injury (ALI) in rats. AEE was against ALI by decreasing alanine transaminase and aspartate transaminase levels in blood, increasing superoxide dismutase, catalase, and glutathione peroxidase levels, and decreasing malondialdehyde levels in blood and liver. A total of 32 metabolites were identified as biomarkers by using metabolite analysis of liver homogenate based on ultra-performance liquid chromatography-tandem mass spectrometry, which belonged to purine metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, glycerophospholipid metabolism, primary bile acid biosynthesis, aminoacyl-tRNA biosynthesis, phenylalanine metabolism, histidine metabolism, pantothenate, and CoA biosynthesis, ether lipid metabolism, beta-Alanine metabolism, lysine degradation, cysteine, and methionine metabolism. Western blotting analyses showed that Bax, cytochrome C, caspase-3, caspase-9, and apoptosis-inducing factor expression levels were obviously decreased, whereas Bcl-2 expression levels obviously increased after AEE treatment. AEE exhibited protective effects on PQ-induced ALI, and the underlying mechanism is correlated with antioxidants that regulate amino acid, phospholipid and energy metabolism metabolic pathway disorders and alleviate liver mitochondria apoptosis.
Collapse
Affiliation(s)
- Zhen-Dong Zhang
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Ya-Jun Yang
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Xi-Wang Liu
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Zhe Qin
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Shi-Hong Li
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Jian-Yong Li
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| |
Collapse
|
19
|
Zhang Y, Hong Z, Yuan Z, Wang T, Wu X, Liu B, Ai Z, Wu H, Yang Y. Extract from Rostellularia procumbens (L.) Nees Inhibits Thrombosis and Platelet Aggregation by Regulating Integrin β 3 and MAPK Pathways. ACS OMEGA 2020; 5:32123-32130. [PMID: 33344867 PMCID: PMC7745434 DOI: 10.1021/acsomega.0c05227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
AIM OF STUDY The main objective of this study was to investigate the antithrombotic and antiplatelet effect of the extract from Rostellularia procumbenss (L.) Nees and understand the mechanisms by which it exerts its antithrombotic and antiplatelet mechanisms. MATERIALS AND METHODS The antithrombotic effective parts (RPE) were isolated using D101 macroporous adsorption resin and potential active ingredients (JAC) were isolated using the preparative liquid-phase method. The lactate dehydrogenase kit was used to determine the toxicity of RPE and JAC to platelets. The antiadhesion effect of RPE and JAC on platelets was observed by fluorescence microscopy with rhodamine phalloidin. Antithrombotic efficacy of RPE and JAC in vivo was evaluated by establishing a rat tail thrombosis model. Contents of p-selectin, TXB2, and 6-keto-PGF1α in rat serum were measured using an enzyme-linked immunosorbent (ELISA) assay, and the rat black tail rate was measured to prove the protective effect of RPE and JAC on the tail thrombus rat model. Western blot was used for detection of serum-related proteins in the tail thrombus rat model. RESULTS The results showed that RPE had antithrombotic and antiplatelet effects. RPE and JAC have no toxicity to platelets. In vitro experiments showed that RPE and JAC had antiadhesion effects on platelets. In vivo experiments showed that RPE significantly inhibited the increase of p-selectin and TXB2 and significantly increased the content of 6-keto-PGF1α in the serum of rats. Western blot results demonstrated that RPE and JDB significantly inhibited the phosphorylation of the MAPK protein family in the platelets of rats, and RPE also significantly inhibited the phosphorylation of β3 protein. CONCLUSIONS RPE has antithrombotic and antiplatelet activity in vivo and vitro. Its mechanism may be via preventing integrin αIIbβ3 activation, which in turn leads to the inhibition of the phosphorylation of the MAPK family and further suppresses TXA2, which leads to the antithrombotic and antiplatelet effects.
Collapse
Affiliation(s)
- Ying Zhang
- Faculty of Pharmacy, Hubei University of
Chinese Medicine, Wuhan 430065, China
| | - Zongchao Hong
- Faculty of Pharmacy, Hubei University of
Chinese Medicine, Wuhan 430065, China
| | - Zixin Yuan
- Faculty of Pharmacy, Hubei University of
Chinese Medicine, Wuhan 430065, China
| | - Tianshun Wang
- Faculty of Pharmacy, Hubei University of
Chinese Medicine, Wuhan 430065, China
| | - Xingpan Wu
- Faculty of Pharmacy, Hubei University of
Chinese Medicine, Wuhan 430065, China
| | - Bo Liu
- Faculty of Pharmacy, Hubei University of
Chinese Medicine, Wuhan 430065, China
| | - Zhongzhu Ai
- Faculty of Pharmacy, Hubei University of
Chinese Medicine, Wuhan 430065, China
| | - Hezhen Wu
- Faculty of Pharmacy, Hubei University of
Chinese Medicine, Wuhan 430065, China
- Key Laboratory
of Traditional Chinese Medicine Resources and Chemistry of Hubei Province, Hubei University of Chinese Medicine, Wuhan 430065, China
- Collaborative Innovation Center of Traditional
Chinese Medicine of New Products for Geriatrics Hubei Province, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Yanfang Yang
- Faculty of Pharmacy, Hubei University of
Chinese Medicine, Wuhan 430065, China
- Key Laboratory
of Traditional Chinese Medicine Resources and Chemistry of Hubei Province, Hubei University of Chinese Medicine, Wuhan 430065, China
- Collaborative Innovation Center of Traditional
Chinese Medicine of New Products for Geriatrics Hubei Province, Hubei University of Chinese Medicine, Wuhan 430065, China
| |
Collapse
|
20
|
Abstract
Supplemental Digital Content is available in the text. Rationale: Current thrombolytic agents activate plasminogen to plasmin which triggers fibrinolysis to dissolve thrombi. Since plasmin is a nonspecific proteolytic enzyme, all of the current plasmin-dependent thrombolytics lead to serious hemorrhagic complications, demanding a new class of fibrinolytic enzymes independent from plasmin activation and undesirable side effects. We speculated that the mammalian version of bacterial heat-shock proteins could selectively degrade intravascular thrombi, a typical example of a highly aggregated protein mixture. Objective: The objective of this study is to identify enzymes that can dissolve intravascular thrombi specifically without affecting fibrinogen and fibronectin so that the wound healing processes remain uninterrupted and tissues are not damaged. In this study, HtrA (high-temperature requirement A) proteins were tested for its specific proteolytic activity on intravascular thrombi independently from plasmin activation. Methods and Results: HtrA1 and HtrA2/Omi proteins, collectively called as HtrAs, lysed ex vivo blood thrombi by degrading fibrin polymers. The thrombolysis by HtrAs was plasmin-independent and specific to vascular thrombi without causing the systemic activation of plasminogen and preventing nonspecific proteolysis of other proteins including fibrinogen and fibronectin. As expected, HtrAs did not disturb clotting and wound healing of excised wounds from mouse skin. It was further confirmed in a tail bleeding and a rebleeding assay that HtrAs allowed normal clotting and maintenance of clot stability in wounds, unlike other thrombolytics. Most importantly, HtrAs completely dissolved blood thrombi in tail thrombosis mice, and the intravenous injection of HtrAs to mice with pulmonary embolism completely dissolved intravascular thrombi and thus rescued thromboembolism. Conclusions: Here, we identified HtrA1 and HtrA2/Omi as plasmin-independent and highly specific thrombolytics that can dissolve intravascular thrombi specifically without bleeding risk. This work is the first report of a plasmin-independent thrombolytic pathway, providing HtrA1 and HtrA2/Omi as ideal therapeutic candidates for various thrombotic diseases without hemorrhagic complications.
Collapse
Affiliation(s)
- Md Mehedi Hassan
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, South Korea (M.M.H., S.S., S.-T.H.).,JINIS BDRD institute, JINIS Biopharmaceuticals, Inc, 224 Wanjusandan 6-Ro, Bongdong, Wanju, Jeonbuk, South Korea (M.M.H., H.-J.K.)
| | - Shirina Sharmin
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, South Korea (M.M.H., S.S., S.-T.H.)
| | - Hyeon-Jin Kim
- JINIS BDRD institute, JINIS Biopharmaceuticals, Inc, 224 Wanjusandan 6-Ro, Bongdong, Wanju, Jeonbuk, South Korea (M.M.H., H.-J.K.).,SNJ Pharma, Inc, BioLabs LA in the Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA (H.-J.K.)
| | - Seong-Tshool Hong
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, South Korea (M.M.H., S.S., S.-T.H.)
| |
Collapse
|
21
|
Huang MZ, Zhang ZD, Yang YJ, Liu XW, Qin Z, Li JY. Aspirin Eugenol Ester Protects Vascular Endothelium From Oxidative Injury by the Apoptosis Signal Regulating Kinase-1 Pathway. Front Pharmacol 2020; 11:588755. [PMID: 33658932 PMCID: PMC7919194 DOI: 10.3389/fphar.2020.588755] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/09/2020] [Indexed: 11/29/2022] Open
Abstract
Aspirin eugenol ester (AEE) is a new potential pharmaceutical compound possessing anti-inflammatory, anti-cardiovascular disease, and antioxidative stress activity. The pharmacological activities of AEE are partly dependent on its regulation of cell apoptosis. However, it is still unclear how AEE inhibits cell apoptosis on the basis of its antioxidative stress effect. This study aimed to reveal the vascular antioxidative mechanism of AEE in response to H2O2-induced oxidative stress in HUVECs and paraquat-induced oxidative stress in rats. In the different intervention groups of HUVECs and rats, the expression of ASK1, ERK1/2, SAPK/JNK, and p38 and the phosphorylation levels of ERK1/2, SAPK/JNK, and p38 were measured. The effects of ASK1 and ERK1/2 on the anti-apoptotic activity of AEE in the oxidative stress model were probed using the corresponding inhibitors ASK1 and ERK1/2. The results showed that in the HUVECs, 200 μM H2O2 treatment significantly increased the phosphorylation of SAPK/JNK and the level of ASK1 but decreased the phosphorylation of ERK1/2, while in the HUVECs pretreated with AEE, the H2O2-induced changes were significantly ameliorated. The findings were observed in vitro and in vivo. Moreover, inhibition of ASK1 and ERK1/2 showed that ASK1 plays a vital role in the protective effect of AEE on H2O2-induced apoptosis. All findings suggested that AEE protects the vascular endothelium from oxidative injury by mediating the ASK1 pathway.
Collapse
Affiliation(s)
- Mei-Zhou Huang
- Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China.,Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zhen-Dong Zhang
- Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Ya-Jun Yang
- Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Xi-Wang Liu
- Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Zhe Qin
- Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Jian-Yong Li
- Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| |
Collapse
|
22
|
Zhang ZD, Huang MZ, Yang YJ, Liu XW, Qin Z, Li SH, Li JY. Aspirin Eugenol Ester Attenuates Paraquat-Induced Hepatotoxicity by Inhibiting Oxidative Stress. Front Physiol 2020; 11:582801. [PMID: 33192594 PMCID: PMC7642976 DOI: 10.3389/fphys.2020.582801] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/05/2020] [Indexed: 12/22/2022] Open
Abstract
Aspirin eugenol ester (AEE) is a new potential drug with anti-inflammatory and antioxidant stress pharmacological activity. Paraquat (PQ) is an effective and commercially important herbicide that is widely used worldwide. However, paraquat is highly toxic and can cause various complications and acute organ damage, such as liver, kidney and lung damage. The purpose of this study was to investigate whether AEE has a protective effect on hepatotoxicity induced by PQ in vivo and in vitro. Cell viability, apoptosis rate, mitochondrial function and intracellular oxidative stress were detected to evaluate the protective effect of AEE on PQ-induced BRL-3A (normal rat hepatocytes) cytotoxicity in vitro. In vivo, AEE pretreatment could attenuate oxidative stress and histopathological changes in rat liver induced by PQ. The results showed that AEE could reduce the hepatotoxicity induced by PQ in vivo and in vitro. AEE reduced PQ-induced hepatotoxicity by inhibitingoxidative stress and maintaining mitochondrial function. This study proved that AEE is an effective antioxidant and can reduce the hepatotoxicity of PQ.
Collapse
Affiliation(s)
- Zhen-Dong Zhang
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Mei-Zhou Huang
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Ya-Jun Yang
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Xi-Wang Liu
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Zhe Qin
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Shi-Hong Li
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Jian-Yong Li
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| |
Collapse
|
23
|
Lim DS, Park JE, Park JW, Cho YH, Park JK, Lee JS. Cloning, purification and characterization of a recombinant protease with novel thrombolytic activity in human plasma and rat thrombosis models. Thromb Res 2020; 191:57-65. [PMID: 32388190 DOI: 10.1016/j.thromres.2020.04.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND There is a need to identify and develop novel thrombolytic agents that can directly digest fibrin clots from various biological resources. OBJECTIVE To clone, express, purify, and characterize a recombinant protease named rvFMP capable of cleaving fibrinogen, fibrin polymer, and cross-linked fibrin in human plasma milieu and rat thrombosis model systems. RESULTS We cloned a vFMP-encoding gene from the genomic DNA of V. furnissii KCCM41679 using polymerase chain reaction (PCR), expressed in Escherichia coli, and purified rvFMP (stands for recombinant vibrio furnissii metalloprotease). The proteolytic activity of purified rvFMP enzyme could be clearly inhibited by 1,10-phenanthroline and ethylene glycol tetraacetic acid, but not by diisopropyl fluorophosphate, suggesting that it can be a typical metalloprotease. rvFMP showed an effective proteolytic activity in cleaving cross-linked fibrins in human plasma milieu. Remarkably, rvFMP exhibited a clear thrombolytic activity in rat thrombosis models such as ferric chloride-exposed rat carotid artery and carrageenan-treated rat tail. However, rvFMP (1.5 mg/kg) evoked no internal bleeding and also showed no lethal effect in mice. The recombinant enzyme also showed no cytotoxicity and had an inability to induce tumour necrosis factor-α (TNF-α) in Raw264.7 cells. CONCLUSION rvFMP can be a candidate enzyme capable of being developed as a novel direct-acting thrombolytic agent.
Collapse
Affiliation(s)
- Do Sung Lim
- Department of Biomedical Science, BK21-plus Research Team for Bioactive Control Technology, National Research Center for Dementia, College of Natural Sciences, Chosun University, Gwangju 61452, Republic of Korea
| | - Jung Eun Park
- Department of Biomedical Science, BK21-plus Research Team for Bioactive Control Technology, National Research Center for Dementia, College of Natural Sciences, Chosun University, Gwangju 61452, Republic of Korea
| | - Jong Woo Park
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun 55365, Republic of Korea
| | - Yeong Hee Cho
- Department of Biomedical Science, BK21-plus Research Team for Bioactive Control Technology, National Research Center for Dementia, College of Natural Sciences, Chosun University, Gwangju 61452, Republic of Korea
| | - Jong Kun Park
- Research Institute for Basic Science and Division of Biological Science, Wonkwang University, Iksan 54538, Republic of Korea
| | - Jung Sup Lee
- Department of Biomedical Science, BK21-plus Research Team for Bioactive Control Technology, National Research Center for Dementia, College of Natural Sciences, Chosun University, Gwangju 61452, Republic of Korea.
| |
Collapse
|
24
|
Ma N, Yang Y, Liu X, Li S, Qin Z, Li J. Plasma metabonomics and proteomics studies on the anti-thrombosis mechanism of aspirin eugenol ester in rat tail thrombosis model. J Proteomics 2019; 215:103631. [PMID: 31891783 DOI: 10.1016/j.jprot.2019.103631] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/10/2019] [Accepted: 12/27/2019] [Indexed: 01/09/2023]
Abstract
Aspirin eugenol eater (AEE), a new drug compound, was synthesized through the combination of aspirin and eugenol. Antithrombotic effects of AEE have been confirmed in carrageenan-induced rat tail thrombosis model. However, its mechanism is unclear. With the application of integrated approach combining proteomics and metabolomics, the profilings of protein and metabolite in plasma were examined in thrombosis rat pretreated with AEE, aspirin and eugenol, respectively. A clear separation of the plasma metabolic profiles from different groups was found in score plots. 15 metabolites related with the metabolism of fatty acid, energy and amino acid were found. A total of 144, 38, 41 and 54 differentially abundant proteins (DAPs) were identified in control, AEE, aspirin and eugenol group, respectively. Proteomic results showed that aspirin modulated 7 proteins in amino acid metabolism and 4 proteins in complement system; eugenol regulated the 8 proteins related with coagulation cascades and fibrinogen; AEE improved 3 proteins in TCA cycle and 3 in lipid metabolism. Integrated analysis suggested that AEE improved fatty acid, energy and lipid metabolism to against thrombosis. Results of this study indicated AEE had different action mechanism on thrombosis from aspirin and eugenol, and contribute to understanding the mechanisms of AEE on thrombosis. SIGNIFICANCE: Thrombosis is a threat to human health, and there is an urgent need for new drug. In this study, compared with the model group, plasma metabolic profiles in AEE-treated rats were clearly separated; 15 metabolites and 38 proteins were picked out. These metabolites and proteins may assist in understanding the action mechanism of AEE on thrombosis. The results of plasma metabonomics and proteomics also revealed the different action mechanism among AEE, aspirin and eugenol on thrombosis. This study established the foundation to further evaluate the druggability of AEE on thrombosis treatment.
Collapse
Affiliation(s)
- Ning Ma
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China; College of Veterinary Medicine, Agricultural University of Hebei, Baoding, Hebei 071000, PR China
| | - Yajun Yang
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Xiwang Liu
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Shihong Li
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Zhe Qin
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Jianyong Li
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China.
| |
Collapse
|
25
|
da Fonsêca DV, da Silva Maia Bezerra Filho C, Lima TC, de Almeida RN, de Sousa DP. Anticonvulsant Essential Oils and Their Relationship with Oxidative Stress in Epilepsy. Biomolecules 2019; 9:E835. [PMID: 31817682 PMCID: PMC6995584 DOI: 10.3390/biom9120835] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 11/23/2019] [Accepted: 11/26/2019] [Indexed: 12/16/2022] Open
Abstract
Epilepsy is a most disabling neurological disorder affecting all age groups. Among the various mechanisms that may result in epilepsy, neuronal hyperexcitability and oxidative injury produced by an excessive formation of free radicals may play a role in the development of this pathology. Therefore, new treatment approaches are needed to address resistant conditions that do not respond fully to current antiepileptic drugs. This paper reviews studies on the anticonvulsant activities of essential oils and their chemical constituents. Data from studies published from January 2011 to December 2018 was selected from the PubMed database for examination. The bioactivity of 19 essential oils and 16 constituents is described. Apiaceae and Lamiaceae were the most promising botanical families due to the largest number of reports about plant species from these families that produce anticonvulsant essential oils. Among the evaluated compounds, β-caryophyllene, borneol, eugenol and nerolidol were the constituents that presented antioxidant properties related to anticonvulsant action. These data show the potential of these natural products as health promoting agents and use against various types of seizure disorders. Their properties on oxidative stress may contribute to the control of this neurological condition. However, further studies on the toxicological profile and mechanism of action of essential oils are needed.
Collapse
Affiliation(s)
- Diogo Vilar da Fonsêca
- College of Medicine, Federal University of the Vale do São Francisco, Paulo Afonso, BA, CEP 48607-190, Brazil;
| | | | - Tamires Cardoso Lima
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, SE, CEP 49100-000, Brazil;
| | - Reinaldo Nóbrega de Almeida
- Department of Physiology and Pathology, Universidade Federal da Paraíba, João Pessoa, PB, CEP 58051-970, Brazil;
| | - Damião Pergentino de Sousa
- Department of Pharmaceutical Sciences, Universidade Federal da Paraíba, João Pessoa, PB, CEP 58051-970, Brazil;
| |
Collapse
|
26
|
Liu Z, Gao T, Yang Y, Meng F, Zhan F, Jiang Q, Sun X. Anti-Cancer Activity of Porphyran and Carrageenan from Red Seaweeds. Molecules 2019; 24:molecules24234286. [PMID: 31775255 PMCID: PMC6930528 DOI: 10.3390/molecules24234286] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 11/21/2019] [Accepted: 11/24/2019] [Indexed: 12/28/2022] Open
Abstract
Seaweeds are some of the largest producers of biomass in the marine environment and are rich in bioactive compounds that are often used for human and animal health. Porphyran and carrageenan are natural compounds derived from red seaweeds. The former is a characteristic polysaccharide of Porphyra, while the latter is well known from Chondrus, Gigartina, and various Eucheuma species, all in Rhodophyceae. The two polysaccharides have been found to have anti-cancer activity by improving immunity and targeting key apoptotic molecules and therefore deemed as potential chemotherapeutic or chemopreventive agents. This review attempts to review the current study of anti-cancer activity and the possible mechanisms of porphyran and carrageenan derived from red seaweeds to various cancers, and their cooperative actions with other anti-cancer chemotherapeutic agents is also discussed.
Collapse
Affiliation(s)
- Zhiwei Liu
- School of Pharmacy and Food Sciences, Zhuhai College of Jilin University, Zhuhai 519041, China; (Z.L.); (F.M.); (F.Z.)
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Tianheng Gao
- Institute of Marine Biology, College of Oceanography, Hohai University, Nanjing 210017, China;
| | - Ying Yang
- Freshwater Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing 210017, China;
| | - Fanxin Meng
- School of Pharmacy and Food Sciences, Zhuhai College of Jilin University, Zhuhai 519041, China; (Z.L.); (F.M.); (F.Z.)
| | - Fengping Zhan
- School of Pharmacy and Food Sciences, Zhuhai College of Jilin University, Zhuhai 519041, China; (Z.L.); (F.M.); (F.Z.)
| | - Qichen Jiang
- Freshwater Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing 210017, China;
- Correspondence: (Q.J.); (X.S.); Tel.: +86-25-86618250 (Q.J.); +86-756-7626350 (X.S.)
| | - Xian Sun
- School of Pharmacy and Food Sciences, Zhuhai College of Jilin University, Zhuhai 519041, China; (Z.L.); (F.M.); (F.Z.)
- School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China
- Correspondence: (Q.J.); (X.S.); Tel.: +86-25-86618250 (Q.J.); +86-756-7626350 (X.S.)
| |
Collapse
|
27
|
Huang MZ, Lu XR, Yang YJ, Liu XW, Qin Z, Li JY. Cellular Metabolomics Reveal the Mechanism Underlying the Anti-Atherosclerotic Effects of Aspirin Eugenol Ester on Vascular Endothelial Dysfunction. Int J Mol Sci 2019; 20:E3165. [PMID: 31261711 PMCID: PMC6651823 DOI: 10.3390/ijms20133165] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 06/26/2019] [Indexed: 01/29/2023] Open
Abstract
Aspirin eugenol ester (AEE) possesses anti-thrombotic, anti-atherosclerotic and anti-oxidative effects. The study aims to clarify the mechanism underlying the anti-atherosclerotic effects of AEE on vascular endothelial dysfunction. Both the high-fat diet (HFD)-induced atherosclerotic rat model and the H2O2-induced human umbilical vein endothelial cells (HUVECs) model were used to investigate the effects of AEE on vascular endothelial dysfunction. UPLC/QTOF-MS coupled with a multivariate data analysis method were used to profile the variations in the metabolites of HUVECs in response to different treatments. Pretreatment of HUVECs with AEE significantly ameliorated H2O2-induced apoptosis, the overexpression of E-selectin and VCAM-1, and the adhesion of THP-1 cells. Putative endogenous biomarkers associated with the inhibition of endothelial dysfunction were identified in HUVECs pretreated with AEE in the absence or presence of H2O2, and these biomarkers were involved in important metabolic pathways, including amino acid metabolism, carbohydrate metabolism, and glutathione metabolism. Moreover, in vivo, AEE also significantly reduced vascular endothelial dysfunction and decreased the overexpression of VCAM-1 and E-selectin. Based on our findings, the mechanism underlying the anti-atherosclerotic effects of AEE might be related to a reduction in vascular endothelial dysfunction mediated by ameliorating alterations in metabolism, inhibiting oxidative stress, and decreasing the expression of adhesion molecules.
Collapse
Affiliation(s)
- Mei-Zhou Huang
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Xiao-Rong Lu
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Ya-Jun Yang
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Xi-Wang Liu
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Zhe Qin
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Jian-Yong Li
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China.
| |
Collapse
|
28
|
UPLC-Q-TOF/MS-Based Plasma Metabolomics to Evaluate the Effects of Aspirin Eugenol Ester on Blood Stasis in Rats. Molecules 2019; 24:molecules24132380. [PMID: 31252591 PMCID: PMC6651160 DOI: 10.3390/molecules24132380] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 06/23/2019] [Accepted: 06/25/2019] [Indexed: 11/17/2022] Open
Abstract
Aspirin eugenol ester (AEE) is a novel compound that is formed from the esterification of aspirin (acetylsalicylic acid (ASA)) and eugenol. This study aimed to investigate the effects of AEE on blood stasis in rats and to characterize the underlying mechanisms using a plasma metabolomic study. The results indicate that AEE and ASA could modulate whole blood viscosity (WBV), plasma viscosity (PV), blood coagulation parameters, platelet count, platelet aggregation, lactate dehydrogenase (LDH), creatinine (CR) and the levels of thromboxane A2 (TXA2) and 6-keto prostaglandin F1α (6-keto-PGF1α). The metabolic profiles of the plasma samples from all groups were clearly separated in the score plots. Nineteen potential metabolites were selected and identified, and disordered levels of these metabolites could be regulated by AEE and ASA. Pathway analysis showed that the mechanism of action of AEE on blood stasis might be principally related to the metabolism of amino acid, fatty acid, energy and glycerophospholipid. The above results indicate that AEE protected the rats against blood stasis, and that this effect might have been caused by the anticoagulation activity of AEE and its abilities to maintain a balance between TXA2 and PGI2, reduce blood viscosity, inhibit platelet aggregation and normalize the plasma metabolic profile.
Collapse
|
29
|
Li H, Liu B, Wu J, Yu H, Huang H, Chen X, Chen B, Wu S, Ma J, Liu W, Chen X, Lan L, He Z, Zhang H. The inhibitory effect of tachyplesin I on thrombosis and its mechanisms. Chem Biol Drug Des 2019; 94:1672-1679. [PMID: 31108023 DOI: 10.1111/cbdd.13570] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/07/2019] [Accepted: 05/13/2019] [Indexed: 12/31/2022]
Abstract
Thrombotic diseases are major cause of cardiovascular diseases. This study was designed to investigate the effect of tachyplesin I on platelet aggregation and thrombosis. Platelet aggregation was analysed with a whole blood aggregometer. The mice were employed to investigate the effect of tachyplesin I on thrombosis in vivo. Tachyplesin I inhibited thrombin-induced platelet aggregation in a dose-dependent manner. Furthermore, tachyplesin I significantly reduced thrombosis in carrageenan-induced tail thrombosis model by intraperitoneal injection (0.1, 0.2 or 0.4 mg/kg) or intragastric administration (15, 30 or 60 mg/kg). Tachyplesin I also prolonged the bleeding time (BT) and clotting time (CT). The results revealed that tachyplesin I inhibited platelet aggregation and thrombosis by interfering the PI3K/AKT pathway. Tachyplesin I did not show significantly toxicity to mice under 300 mg/kg via intravenous injection. The results show that tachyplesin I inhibits thrombosis and has low toxicity. It is suggested that tachyplesin I has the potential to develop a new anti-thrombotic drug.
Collapse
Affiliation(s)
- Huimin Li
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, China.,Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, China
| | - Bin Liu
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, China
| | - Jun Wu
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Huajun Yu
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, China.,Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, China
| | - Hui Huang
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, China
| | - Xi Chen
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, China
| | - Baoan Chen
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Shang Wu
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, China
| | - Jingyao Ma
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Wen Liu
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, China
| | - Xiaoyi Chen
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, China
| | - Liubo Lan
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, China
| | - Zhan He
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Haitao Zhang
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, China.,Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
30
|
Huang MZ, Yang YJ, Liu XW, Qin Z, Li JY. Aspirin eugenol ester attenuates oxidative injury of vascular endothelial cells by regulating NOS and Nrf2 signalling pathways. Br J Pharmacol 2019; 176:906-918. [PMID: 30706438 DOI: 10.1111/bph.14592] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/03/2019] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND AND PURPOSE Aspirin eugenol ester (AEE) is a new drug compound synthesized by combining aspirin with eugenol. It was reported to possess anti-thrombotic, anti-atherosclerotic, and anti-oxidative effects. However, its molecular mechanism against oxidative injury is unclear. This study investigated how AEE affected the oxidative injury of vascular endothelial cells in vivo and in vitro. EXPERIMENTAL APPROACH A hamster model of atherosclerosis induced by a high fat diet (HFD) and an in vitro model of oxidative stress, H2 O2 -induced apoptosis of HUVECs, were used to investigate the anti-oxidative effects of AEE. KEY RESULTS AEE significantly reduced the stimulatory effect of HFD on malondialdehyde, the inhibitory effect of HFD on SOD activity and GSH/GSSG ratio, and the overexpression of inducible NOS (iNOS) in the aorta. In vitro, incubation of HUVECs with H2 O2 led their apoptosis, dysfunctions of the NO systems (including increased iNOS activity, decreased endothelial NOS activity, and increased production of NO), an imbalance in calcium homeostasis and energy metabolism with an increase in intracellular free calcium and decrease in ATP, and a down-regulation of Nrf2. In contrast, in the HUVECs pretreated with 1 μM AEE for 24 hr, the above adverse effects induced by H2 O2 were significantly ameliorated. Moreover, the decrease in NO production and activity of iNOS induced by AEE was significantly attenuated in Nrf2-inhibited HUVECs. CONCLUSION AND IMPLICATION AEE protects vascular endothelial cells from oxidative injury by regulating NOS and Nrf2 signalling pathways. This suggests that AEE is a novel potential agent for the prevention of atherosclerosis.
Collapse
Affiliation(s)
- Mei-Zhou Huang
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Ya-Jun Yang
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Xi-Wang Liu
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Zhe Qin
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Jian-Yong Li
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| |
Collapse
|
31
|
Shen DS, Yang YJ, Kong XJ, Ma N, Liu XW, Li SH, Jiao ZH, Qin Z, Huang MZ, Li JY. Aspirin eugenol ester inhibits agonist-induced platelet aggregation in vitro by regulating PI3K/Akt, MAPK and Sirt 1/CD40L pathways. Eur J Pharmacol 2019; 852:1-13. [PMID: 30797789 DOI: 10.1016/j.ejphar.2019.02.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 02/15/2019] [Accepted: 02/20/2019] [Indexed: 11/30/2022]
Abstract
Aspirin eugenol ester (AEE) was a promising drug candidate for treating inflammation, pain and fever and preventing cardiovascular diseases with fewer side effects than its precursors. Previous researches indicated that AEE could markedly inhibit agonist-induced platelet aggregation in vitro and ex vivo, however, the anti-platelet aggregation mechanisms of AEE remain to be defined. Here, AEE in vitro effects on agonist-induced granule-secretion, intercellular Ca2+ mobilization and thromboxane A2 (TXA2) generation were examined. Vasodilator-stimulated phosphoprotein (VASP), mitogen-activated protein kinase (MAPK), Akt, Sirt 1 and CD40L expressions were also studied. In agonist-activated platelets in vitro, AEE markedly attenuated granule secretion markers (P-selectin expression and ATP release), intercellular Ca2+ mobilization and thromboxane B2 (TXB2) formation. AEE also attenuated CD40L activation, suppressed extracellular-signal-regulated protein kinase 2 (ERK2), c-Jun N-terminal kinase 1 (JNK1) and Akt phosphorylation, and recovered Sirt1 expression, but the activation of p38, VASPSer157 and VASPSer239, and the levels of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) were not affected by AEE. Overall, this study demonstrates that AEE inhibits agonist-induced platelet aggregation in vitro by regulating PI3K/Akt, MAPK and Sirt 1/CD40L pathways.
Collapse
Affiliation(s)
- Dong-Shuai Shen
- Key Lab of New Animal Drug Project, Gansu Province; Key Lab of Veterinary Pharmaceutical Development, Ministry of Agriculture; Lanzhou Institute of Husbandry and Pharmaceutical Science of CAAS, No.335, jiangouyan, qilihe district, Lanzhou 730050, China
| | - Ya-Jun Yang
- Key Lab of New Animal Drug Project, Gansu Province; Key Lab of Veterinary Pharmaceutical Development, Ministry of Agriculture; Lanzhou Institute of Husbandry and Pharmaceutical Science of CAAS, No.335, jiangouyan, qilihe district, Lanzhou 730050, China
| | - Xiao-Jun Kong
- Key Lab of New Animal Drug Project, Gansu Province; Key Lab of Veterinary Pharmaceutical Development, Ministry of Agriculture; Lanzhou Institute of Husbandry and Pharmaceutical Science of CAAS, No.335, jiangouyan, qilihe district, Lanzhou 730050, China
| | - Ning Ma
- Key Lab of New Animal Drug Project, Gansu Province; Key Lab of Veterinary Pharmaceutical Development, Ministry of Agriculture; Lanzhou Institute of Husbandry and Pharmaceutical Science of CAAS, No.335, jiangouyan, qilihe district, Lanzhou 730050, China
| | - Xi-Wang Liu
- Key Lab of New Animal Drug Project, Gansu Province; Key Lab of Veterinary Pharmaceutical Development, Ministry of Agriculture; Lanzhou Institute of Husbandry and Pharmaceutical Science of CAAS, No.335, jiangouyan, qilihe district, Lanzhou 730050, China
| | - Shi-Hong Li
- Key Lab of New Animal Drug Project, Gansu Province; Key Lab of Veterinary Pharmaceutical Development, Ministry of Agriculture; Lanzhou Institute of Husbandry and Pharmaceutical Science of CAAS, No.335, jiangouyan, qilihe district, Lanzhou 730050, China
| | - Zeng-Hua Jiao
- Key Lab of New Animal Drug Project, Gansu Province; Key Lab of Veterinary Pharmaceutical Development, Ministry of Agriculture; Lanzhou Institute of Husbandry and Pharmaceutical Science of CAAS, No.335, jiangouyan, qilihe district, Lanzhou 730050, China
| | - Zhe Qin
- Key Lab of New Animal Drug Project, Gansu Province; Key Lab of Veterinary Pharmaceutical Development, Ministry of Agriculture; Lanzhou Institute of Husbandry and Pharmaceutical Science of CAAS, No.335, jiangouyan, qilihe district, Lanzhou 730050, China
| | - Mei-Zhou Huang
- Key Lab of New Animal Drug Project, Gansu Province; Key Lab of Veterinary Pharmaceutical Development, Ministry of Agriculture; Lanzhou Institute of Husbandry and Pharmaceutical Science of CAAS, No.335, jiangouyan, qilihe district, Lanzhou 730050, China
| | - Jian-Yong Li
- Key Lab of New Animal Drug Project, Gansu Province; Key Lab of Veterinary Pharmaceutical Development, Ministry of Agriculture; Lanzhou Institute of Husbandry and Pharmaceutical Science of CAAS, No.335, jiangouyan, qilihe district, Lanzhou 730050, China.
| |
Collapse
|
32
|
da Silva FFM, Monte FJQ, de Lemos TLG, do Nascimento PGG, de Medeiros Costa AK, de Paiva LMM. Eugenol derivatives: synthesis, characterization, and evaluation of antibacterial and antioxidant activities. Chem Cent J 2018; 12:34. [PMID: 29611004 PMCID: PMC5880794 DOI: 10.1186/s13065-018-0407-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 03/27/2018] [Indexed: 01/06/2023] Open
Abstract
Eugenol is the major component of clove essential oil and has demonstrated relevant biological potential with well-known antimicrobial and antioxidant action. Therefore, this work carried out the synthesis, purification, characterization, and evaluation of the antioxidant and antibacterial potential of 19 eugenol derivatives. The derivatives were produced by esterification reactions in the hydroxyl group (−OH) of eugenol with different carboxylic acids and also by addition reactions in the double bond of the allyl group. The derivatives had a promising antibacterial potential, including a lower minimum inhibitory concentration of 500 μg/mL than eugenol (1000 μg/mL). In addition, the derivatives were active against bacterial strains (Escherichia coli, Staphylococcus aureus) that eugenol itself showed no activity, thus increasing the spectrum of antibacterial action. As for the antioxidant activity, it was observed that the derivatives that involved esterification reactions in the hydroxyl group (−OH) of the eugenol molecule’s phenol resulted in a significant reduction of the antioxidant action (IC50 > 100 μg/mL) when compared with the eugenol precursor molecule (IC50 = 4.38 μg/mL). On the other hand, the structural changes located in the double bond affected much more smoothly the capacity of capturing radicals than the starting molecule, also being obtained derivatives with proximal antioxidant capacity (IC50 = 19.30 μg/mL) to commercial standards such as Trolox (IC50 = 16.00 μg/mL).
Collapse
Affiliation(s)
- Francisco Felipe Maia da Silva
- Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte (IFRN), RN 233, Km 02 N°999, Chapada do Apodi, Apodi, RN, 59700-000, Brazil. .,Programa de Pós-Graduação em Química da Universidade Federal do Ceará (UFC), Avenida Humberto Monte, S/N, Campus do pici, Fortaleza, CE, 60455-900, Brazil.
| | - Francisco José Queiroz Monte
- Programa de Pós-Graduação em Química da Universidade Federal do Ceará (UFC), Avenida Humberto Monte, S/N, Campus do pici, Fortaleza, CE, 60455-900, Brazil
| | - Telma Leda Gomes de Lemos
- Programa de Pós-Graduação em Química da Universidade Federal do Ceará (UFC), Avenida Humberto Monte, S/N, Campus do pici, Fortaleza, CE, 60455-900, Brazil
| | - Patrícia Georgina Garcia do Nascimento
- Programa de Pós-Graduação em Química da Universidade Federal do Ceará (UFC), Avenida Humberto Monte, S/N, Campus do pici, Fortaleza, CE, 60455-900, Brazil
| | - Alana Kelly de Medeiros Costa
- Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte (IFRN), RN 233, Km 02 N°999, Chapada do Apodi, Apodi, RN, 59700-000, Brazil
| | - Luanda Misley Mota de Paiva
- Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte (IFRN), RN 233, Km 02 N°999, Chapada do Apodi, Apodi, RN, 59700-000, Brazil
| |
Collapse
|
33
|
Photocatalytic Performance and Degradation Mechanism of Aspirin by TiO2 through Response Surface Methodology. Catalysts 2018. [DOI: 10.3390/catal8030118] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
34
|
Mohammadghasemi F, Mahmoudi-Lafout F. Effect of graded doses of acetylsalicylic acid on sperm chromatin integrity and maturity of germinal epithelium in adult male mouse. ASIAN PACIFIC JOURNAL OF REPRODUCTION 2018. [DOI: 10.4103/2305-0500.241179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
35
|
Ma N, Liu X, Kong X, Li S, Jiao Z, Qin Z, Dong P, Yang Y, Li J. Feces and liver tissue metabonomics studies on the regulatory effect of aspirin eugenol eater in hyperlipidemic rats. Lipids Health Dis 2017; 16:240. [PMID: 29228968 PMCID: PMC5725792 DOI: 10.1186/s12944-017-0633-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 12/03/2017] [Indexed: 12/30/2022] Open
Abstract
Background Based on the pro-drug principle, aspirin and eugenol were esterified to synthesize aspirin eugenol ester (AEE). The anti-hyperlipidemia effect of aspirin eugenol ester has been confirmed in hyperlipidemic rat induced by high fat diet (HFD). However, its effect on liver and feces metabonomic profiles remains unknown. Methods Suspension of AEE was prepared in 5% carboxymethyl cellulose sodium (CMC-Na). Thirty rats were divided into control, model and AEE groups. The control and model rats were fed with normal diet or HFD for 13 weeks, respectively. Rats in AEE-treated group were fed with HFD for 8 weeks to induce hyperlipidemia, and then given AEE once daily by oral gavage for 5 weeks at the dosage of 54 mg/kg body weight. After drug intervention, lipid profile analysis and oil red O staining were carried out to confirm the lipid accumulation in liver tissue. UPLC-Q-TOF/MS-based liver and feces metabonomics coupled with pathway analysis were conducted to evaluate the changes of metabolic profile and endogenous metabolites. Results In liver tissue, oral administration of AEE significantly reduced lipid droplets and the levels of triglyceride (TG) and low-density lipoprotein (LDL). Using principal component analysis (PCA) and partial least squares-discriminate analysis (PLS-DA), distinct changes in metabolite patterns in feces and liver were observed. Liver and feces samples in control, model and AEE groups were scattered in PLS-DA score plots. 28 metabolites in liver and 22 in feces were identified as potential biomarkers related to hyperlipidemia. As possible drug targets, the perturbations of those biomarkers can be regulated by administration of AEE. Conclusion Anti-hyperlipidemia effect of AEE was confirmed by lipid analysis, oil red O staining and metabolomics analysis. The mechanism of AEE might be associated with the changes in the metabolism of glycerophospholipid, amino acid, fatty acid, sphingolipid, purine, bile acid and glutathione. Electronic supplementary material The online version of this article (10.1186/s12944-017-0633-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ning Ma
- Key Lab of New Animal Drug Project of Gansu Province; Key Lab of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, No.335, Jiangouyan, Qilihe district, Lanzhou, 730050, People's Republic of China
| | - Xiwang Liu
- Key Lab of New Animal Drug Project of Gansu Province; Key Lab of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, No.335, Jiangouyan, Qilihe district, Lanzhou, 730050, People's Republic of China
| | - Xiaojun Kong
- Key Lab of New Animal Drug Project of Gansu Province; Key Lab of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, No.335, Jiangouyan, Qilihe district, Lanzhou, 730050, People's Republic of China
| | - Shihong Li
- Key Lab of New Animal Drug Project of Gansu Province; Key Lab of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, No.335, Jiangouyan, Qilihe district, Lanzhou, 730050, People's Republic of China
| | - Zenghua Jiao
- Key Lab of New Animal Drug Project of Gansu Province; Key Lab of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, No.335, Jiangouyan, Qilihe district, Lanzhou, 730050, People's Republic of China
| | - Zhe Qin
- Key Lab of New Animal Drug Project of Gansu Province; Key Lab of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, No.335, Jiangouyan, Qilihe district, Lanzhou, 730050, People's Republic of China
| | - Pengcheng Dong
- Key Lab of New Animal Drug Project of Gansu Province; Key Lab of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, No.335, Jiangouyan, Qilihe district, Lanzhou, 730050, People's Republic of China
| | - Yajun Yang
- Key Lab of New Animal Drug Project of Gansu Province; Key Lab of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, No.335, Jiangouyan, Qilihe district, Lanzhou, 730050, People's Republic of China.
| | - Jianyong Li
- Key Lab of New Animal Drug Project of Gansu Province; Key Lab of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, No.335, Jiangouyan, Qilihe district, Lanzhou, 730050, People's Republic of China.
| |
Collapse
|
36
|
Ma N, Yang Y, Liu X, Kong X, Li S, Qin Z, Jiao Z, Li J. UPLC-Q-TOF/MS-based metabonomic studies on the intervention effects of aspirin eugenol ester in atherosclerosis hamsters. Sci Rep 2017; 7:10544. [PMID: 28874840 PMCID: PMC5585262 DOI: 10.1038/s41598-017-11422-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/24/2017] [Indexed: 11/09/2022] Open
Abstract
Based on the pro-drug principle, aspirin and eugenol were used to synthesize aspirin eugenol ester (AEE) by esterification reaction. In present study, the anti-atherosclerosis effects of AEE were investigated in hamsters with the utilization of metabonomic approach based on UPLC-Q-TOF/MS. Biochemical parameters and histopathological injures in stomach, liver and aorta were evaluated. In atherosclerotic hamster, oral administration of AEE normalized biochemical profile such as reducing TG, TCH and LDL, and significantly reduced body weight gain, alleviated hepatic steatosis and improved pathological lesions in aorta. Slight damages in stomach mucous were found in AEE group. Plasma and urine samples in control, model and AEE groups were scattered in the partial least squares-discriminate analysis (PLS-DA) score plots. Thirteen endogenous metabolites in plasma such as lysophosphatidylcholine (LysoPC), leucine and valine, and seventeen endogenous metabolites in urine such as citric acid, phenol sulphate and phenylacetylglycine were selected as potential biomarkers associated with atherosclerosis. They were considered to be in response to anti-atherosclerosis effects of AEE, mainly involved in glycerophospholipid metabolism, amino acid metabolism and energy metabolism. This study extended the understanding of endogenous alterations of atherosclerosis and offered insights into the pharmacodynamic activity of AEE.
Collapse
Affiliation(s)
- Ning Ma
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yajun Yang
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiwang Liu
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiaojun Kong
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Shihong Li
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zhe Qin
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zenghua Jiao
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jianyong Li
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou, China.
| |
Collapse
|
37
|
Karam I, Ma N, Liu XW, Kong XJ, Zhao XL, Yang YJ, Li JY. Lowering effects of aspirin eugenol ester on blood lipids in rats with high fat diet. Lipids Health Dis 2016; 15:196. [PMID: 27855711 PMCID: PMC5114728 DOI: 10.1186/s12944-016-0369-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 11/10/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Aspirin and eugenol were esterified to synthesize aspirin eugenol ester (AEE). As a pale yellow and odourless crystal, AEE reduced the gastrointestinal damage of aspirin and vulnerability of eugenol. The study was conducted to evaluate the preventive effects of AEE on blood lipids in rats with high fat diet (HFD). METHODS Suspensions of AEE and simvastatin were prepared in 5% carboxymethyl cellulose sodium (CMC-Na). In order to observe the intervention effects, the drugs and HFD were administrated at the same time. Based on individual weekly body weight (BW), AEE was intragastrically administrated at the dosage of 18, 36 and 54 mg/kg. Simvastatin (10 mg/kg) and CMC-Na (20 mg/kg) were used as control drug. After 6 weeks of administration, the changes of BW and blood lipid indices including triglyceride (TG), low density lipoprotein (LDL), high density lipoprotein (HDL) and total cholesterol (TCH) were determined in the experiment. RESULTS The rat blood lipids profile in model group was remarkably different after feeding 6-weeks HFD. TG, TCH and LDL indexes in model group were increased significantly compared with those in control group (p < 0.01). AEE at the dosage of 54 mg/kg significantly decreased levels of TG, TCH and LDL (p < 0.01), and slowed the rate of BW gain in comparison with model group (p < 0.05). Moreover, high dose AEE showed better effects than simvastatin on reducing TCH level and similar effects on TG, HDL and LDL. CONCLUSION AEE could remarkably reduce levels of TG, TCH and LDL in rats with high fat diet, and slow the rate of body weight gain. It was conducted that AEE was a potential candidate on reducing blood lipids level. The mechanism of action of AEE should be investigated in further studies.
Collapse
Affiliation(s)
- Isam Karam
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Science of CAAS, No.335, jiangouyan, qilihe district, Lanzhou, 730050, China
| | - Ning Ma
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Science of CAAS, No.335, jiangouyan, qilihe district, Lanzhou, 730050, China
| | - Xi-Wang Liu
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Science of CAAS, No.335, jiangouyan, qilihe district, Lanzhou, 730050, China
| | - Xiao-Jun Kong
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Science of CAAS, No.335, jiangouyan, qilihe district, Lanzhou, 730050, China
| | - Xiao-Le Zhao
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Science of CAAS, No.335, jiangouyan, qilihe district, Lanzhou, 730050, China
| | - Ya-Jun Yang
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Science of CAAS, No.335, jiangouyan, qilihe district, Lanzhou, 730050, China.
| | - Jian-Yong Li
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Science of CAAS, No.335, jiangouyan, qilihe district, Lanzhou, 730050, China.
| |
Collapse
|
38
|
Preventive effect of a novel diosgenin derivative on arterial and venous thrombosis in vivo. Bioorg Med Chem Lett 2016; 26:3364-3369. [DOI: 10.1016/j.bmcl.2016.05.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/30/2016] [Accepted: 05/11/2016] [Indexed: 12/31/2022]
|
39
|
Ma N, Liu XW, Yang YJ, Shen DS, Zhao XL, Mohamed I, Kong XJ, Li JY. Evaluation on antithrombotic effect of aspirin eugenol ester from the view of platelet aggregation, hemorheology, TXB2/6-keto-PGF1α and blood biochemistry in rat model. BMC Vet Res 2016; 12:108. [PMID: 27296110 PMCID: PMC4907079 DOI: 10.1186/s12917-016-0738-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 06/07/2016] [Indexed: 12/28/2022] Open
Abstract
Background Based on the prodrug principle, aspirin and eugenol, as starting precursors, were esterified to synthesize aspirin eugenol ester (AEE). The aim of the present study was to evaluate the antithrombotic effect of AEE in an animal disease model. In order to compare the therapeutic effects of AEE and its precursors, aspirin, eugenol and a combination of aspirin and eugenol were designed at the same molar quantities as the AEE medium dose in the control group. Methods After oral administration of AEE (dosed at 18, 36 and 72 mg/kg) for seven days, rats were treated with k-carrageenan to induce tail thrombosis. Following the same method, aspirin (20 mg/kg), eugenol (18 mg/kg) and 0.5 % CMC-Na (30 mg/kg) were administered as control drug. Different drug effects on platelet aggregation, hemorheology, TXB2/6-keto-PGF1α ratio and blood biochemistry were studied. Results AEE significantly inhibited ADP and AA-induced platelet aggregation in vivo. AEE also significantly reduced blood and plasma viscosity. Moreover, AEE down-regulated TXB2 and up-regulated 6-keto-PGF1α, normalizing the TXB2/6-keto-PGF1α ratio and blood biochemical profile. In comparison with aspirin and eugenol, AEE produced more positive therapeutic effects than its precursors under the same molar quantity. Conclusion It may be concluded that AEE was a good candidate for new antithrombotic and antiplatelet medicine. Additionally, this study may help to understand how AEE works on antithrombosis in different ways.
Collapse
Affiliation(s)
- Ning Ma
- Key Lab of New Animal Drug Project, Gansu Province, Lanzhou, 730050, People's Republic of China.,Key Lab of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, 730050, People's Republic of China.,Lanzhou Institute of Husbandry and Pharmaceutical Science of CAAS, Lanzhou, 730050, People's Republic of China
| | - Xi-Wang Liu
- Key Lab of New Animal Drug Project, Gansu Province, Lanzhou, 730050, People's Republic of China.,Key Lab of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, 730050, People's Republic of China.,Lanzhou Institute of Husbandry and Pharmaceutical Science of CAAS, Lanzhou, 730050, People's Republic of China
| | - Ya-Jun Yang
- Key Lab of New Animal Drug Project, Gansu Province, Lanzhou, 730050, People's Republic of China.,Key Lab of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, 730050, People's Republic of China.,Lanzhou Institute of Husbandry and Pharmaceutical Science of CAAS, Lanzhou, 730050, People's Republic of China
| | - Dong-Shuai Shen
- Key Lab of New Animal Drug Project, Gansu Province, Lanzhou, 730050, People's Republic of China.,Key Lab of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, 730050, People's Republic of China.,Lanzhou Institute of Husbandry and Pharmaceutical Science of CAAS, Lanzhou, 730050, People's Republic of China
| | - Xiao-Le Zhao
- Key Lab of New Animal Drug Project, Gansu Province, Lanzhou, 730050, People's Republic of China.,Key Lab of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, 730050, People's Republic of China.,Lanzhou Institute of Husbandry and Pharmaceutical Science of CAAS, Lanzhou, 730050, People's Republic of China
| | - Isam Mohamed
- Key Lab of New Animal Drug Project, Gansu Province, Lanzhou, 730050, People's Republic of China.,Key Lab of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, 730050, People's Republic of China.,Lanzhou Institute of Husbandry and Pharmaceutical Science of CAAS, Lanzhou, 730050, People's Republic of China
| | - Xiao-Jun Kong
- Key Lab of New Animal Drug Project, Gansu Province, Lanzhou, 730050, People's Republic of China.,Key Lab of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, 730050, People's Republic of China.,Lanzhou Institute of Husbandry and Pharmaceutical Science of CAAS, Lanzhou, 730050, People's Republic of China
| | - Jian-Yong Li
- Key Lab of New Animal Drug Project, Gansu Province, Lanzhou, 730050, People's Republic of China. .,Key Lab of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, 730050, People's Republic of China. .,Lanzhou Institute of Husbandry and Pharmaceutical Science of CAAS, Lanzhou, 730050, People's Republic of China. .,No.335, Jiangouyan, Qilihe District, Lanzhou, 730050, China.
| |
Collapse
|