1
|
Kroemer G, Montégut L, Kepp O, Zitvogel L. The danger theory of immunity revisited. Nat Rev Immunol 2024; 24:912-928. [PMID: 39511426 DOI: 10.1038/s41577-024-01102-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2024] [Indexed: 11/15/2024]
Abstract
The danger theory of immunity, introduced by Polly Matzinger in 1994, posits that tissue stress, damage or infection has a decisive role in determining immune responses. Since then, a growing body of evidence has supported the idea that the capacity to elicit cognate immune responses (immunogenicity) relies on the combination of antigenicity (the ability to be recognized by T cell receptors or antibodies) and adjuvanticity (additional signals arising owing to tissue damage). Here, we discuss the molecular foundations of the danger theory while focusing on immunologically relevant damage-associated molecular patterns, microorganism-associated molecular patterns, and neuroendocrine stress-associated immunomodulatory molecules, as well as on their receptors. We critically evaluate patient-relevant evidence, examining how cancer cells and pathogenic viruses suppress damage-associated molecular patterns to evade immune recognition, how intestinal dysbiosis can reduce immunostimulatory microorganism-associated molecular patterns and compromise immune responses, and which hereditary immune defects support the validity of the danger theory. Furthermore, we incorporate the danger hypothesis into a close-to-fail-safe hierarchy of immunological tolerance mechanisms that also involve the clonal deletion and inactivation of immune cells.
Collapse
Affiliation(s)
- Guido Kroemer
- Centre de Recherche des Cordeliers, INSERM U1138, Équipe Labellisée - Ligue Nationale contre le Cancer, Université Paris Cité, Sorbonne Université, Paris, France.
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| | - Léa Montégut
- Centre de Recherche des Cordeliers, INSERM U1138, Équipe Labellisée - Ligue Nationale contre le Cancer, Université Paris Cité, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Oliver Kepp
- Centre de Recherche des Cordeliers, INSERM U1138, Équipe Labellisée - Ligue Nationale contre le Cancer, Université Paris Cité, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus, Clinicobiome, Villejuif, France.
- INSERM UMR 1015, ClinicObiome, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France.
- Université Paris-Saclay, Ile-de-France, Paris, France.
- Center of Clinical Investigations in Biotherapies of Cancer (BIOTHERIS), Villejuif, France.
| |
Collapse
|
2
|
Tong R, Li Y, Yu X, Zhang N, Liao Q, Pan L. Mechanisms of neurocentral-eyestalk-intestinal immunotoxicity in whiteleg shrimp Litopenaeus vannamei under ammonia nitrogen exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123956. [PMID: 38626866 DOI: 10.1016/j.envpol.2024.123956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/21/2024] [Accepted: 04/09/2024] [Indexed: 04/21/2024]
Abstract
Ammonia-N, as the most toxic nitrogenous waste, has high toxicity to marine animals. However, the interplay between ammonia-induced neuroendocrine toxicity and intestinal immune homeostasis has been largely overlooked. Here, a significant concordance of metabolome and transcriptome-based "cholinergic synapse" supports that plasma metabolites acetylcholine (ACh) plays an important role during NH4Cl exposure. After blocking the ACh signal transduction, the release of dopamine (DA) and 5-hydroxytryptamine (5-HT) in the cerebral ganglia increased, while the release of NPF in the thoracic ganglia and NE in the abdominal ganglia, and crustacean hyperglycemic hormone (CHH) and neuropeptide F (NPF) in the eyestalk decreased, finally the intestinal immunity was enhanced. After bilateral eyestalk ablation, the neuroendocrine system of shrimp was disturbed, more neuroendocrine factors, such as corticotropin releasing hormone (CRH), adrenocorticotropic-hormone (ACTH), ACh, DA, 5-HT, and norepinephrine (NE) were released into the plasma, and further decreased intestinal immunity. Subsequently, these neuroendocrine factors reach the intestine through endocrine or neural pathways and bind to their receptors to affect downstream signaling pathway factors to regulate intestinal immune homeostasis. Combined with different doses of ammonia-N exposure experiment, these findings suggest that NH4Cl may exert intestinal toxicity on shrimp by disrupting the cerebral ganglion-eyestalk axis and the cerebral ganglion-thoracic ganglion-abdominal ganglion axis, thereby damaging intestinal barrier function and inducing inflammatory response.
Collapse
Affiliation(s)
- Ruixue Tong
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China.
| | - Yaobing Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China.
| | - Xin Yu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China.
| | - Ning Zhang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China.
| | - Qilong Liao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China.
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China.
| |
Collapse
|
3
|
El Baassiri MG, Raouf Z, Badin S, Escobosa A, Sodhi CP, Nasr IW. Dysregulated brain-gut axis in the setting of traumatic brain injury: review of mechanisms and anti-inflammatory pharmacotherapies. J Neuroinflammation 2024; 21:124. [PMID: 38730498 PMCID: PMC11083845 DOI: 10.1186/s12974-024-03118-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Traumatic brain injury (TBI) is a chronic and debilitating disease, associated with a high risk of psychiatric and neurodegenerative diseases. Despite significant advancements in improving outcomes, the lack of effective treatments underscore the urgent need for innovative therapeutic strategies. The brain-gut axis has emerged as a crucial bidirectional pathway connecting the brain and the gastrointestinal (GI) system through an intricate network of neuronal, hormonal, and immunological pathways. Four main pathways are primarily implicated in this crosstalk, including the systemic immune system, autonomic and enteric nervous systems, neuroendocrine system, and microbiome. TBI induces profound changes in the gut, initiating an unrestrained vicious cycle that exacerbates brain injury through the brain-gut axis. Alterations in the gut include mucosal damage associated with the malabsorption of nutrients/electrolytes, disintegration of the intestinal barrier, increased infiltration of systemic immune cells, dysmotility, dysbiosis, enteroendocrine cell (EEC) dysfunction and disruption in the enteric nervous system (ENS) and autonomic nervous system (ANS). Collectively, these changes further contribute to brain neuroinflammation and neurodegeneration via the gut-brain axis. In this review article, we elucidate the roles of various anti-inflammatory pharmacotherapies capable of attenuating the dysregulated inflammatory response along the brain-gut axis in TBI. These agents include hormones such as serotonin, ghrelin, and progesterone, ANS regulators such as beta-blockers, lipid-lowering drugs like statins, and intestinal flora modulators such as probiotics and antibiotics. They attenuate neuroinflammation by targeting distinct inflammatory pathways in both the brain and the gut post-TBI. These therapeutic agents exhibit promising potential in mitigating inflammation along the brain-gut axis and enhancing neurocognitive outcomes for TBI patients.
Collapse
Affiliation(s)
- Mahmoud G El Baassiri
- Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Zachariah Raouf
- Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Sarah Badin
- Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Alejandro Escobosa
- Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Chhinder P Sodhi
- Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Isam W Nasr
- Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| |
Collapse
|
4
|
Kumar KP, Wilson JL, Nguyen H, McKay LD, Wen SW, Sepehrizadeh T, de Veer M, Rajasekhar P, Carbone SE, Hickey MJ, Poole DP, Wong CHY. Stroke Alters the Function of Enteric Neurons to Impair Smooth Muscle Relaxation and Dysregulates Gut Transit. J Am Heart Assoc 2024; 13:e033279. [PMID: 38258657 PMCID: PMC11056134 DOI: 10.1161/jaha.123.033279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/05/2023] [Indexed: 01/24/2024]
Abstract
BACKGROUND Gut dysmotility is common after ischemic stroke, but the mechanism underlying this response is unknown. Under homeostasis, gut motility is regulated by the neurons of the enteric nervous system that control contractile/relaxation activity of muscle cells in the gut wall. More recently, studies of gut inflammation revealed interactions of macrophages with enteric neurons are also involved in modulating gut motility. However, whether poststroke gut dysmotility is mediated by direct signaling to the enteric nervous system or indirectly via inflammatory macrophages is unknown. METHODS AND RESULTS We examined these hypotheses by using a clinically relevant permanent intraluminal midcerebral artery occlusion experimental model of stroke. At 24 hours after stroke, we performed in vivo and ex vivo gut motility assays, flow cytometry, immunofluorescence, and transcriptomic analysis. Stroke-induced gut dysmotility was associated with recruitment of muscularis macrophages into the gastrointestinal tract and redistribution of muscularis macrophages away from myenteric ganglia. The permanent intraluminal midcerebral artery occlusion model caused changes in gene expression in muscularis macrophages consistent with an altered phenotype. While the size of myenteric ganglia after stroke was not altered, myenteric neurons from post-permanent intraluminal midcerebral artery occlusion mice showed a reduction in neuronal nitric oxide synthase expression, and this response was associated with enhanced intestinal smooth muscle contraction ex vivo. Finally, chemical sympathectomy with 6-hydroxydopamine prevented the loss of myenteric neuronal nitric oxide synthase expression and stroke-induced slowed gut transit. CONCLUSIONS Our findings demonstrate that activation of the sympathetic nervous system after stroke is associated with reduced neuronal nitric oxide synthase expression in myenteric neurons, resulting in impaired smooth muscle relaxation and dysregulation of gut transit.
Collapse
Affiliation(s)
- Kathryn Prame Kumar
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences at Monash Health, Monash Medical CentreMonash UniversityClaytonVictoriaAustralia
| | - Jenny L. Wilson
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences at Monash Health, Monash Medical CentreMonash UniversityClaytonVictoriaAustralia
| | - Huynh Nguyen
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences at Monash Health, Monash Medical CentreMonash UniversityClaytonVictoriaAustralia
| | - Liam D. McKay
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences at Monash Health, Monash Medical CentreMonash UniversityClaytonVictoriaAustralia
| | - Shu Wen Wen
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences at Monash Health, Monash Medical CentreMonash UniversityClaytonVictoriaAustralia
| | | | - Michael de Veer
- Monash Biomedical ImagingMonash UniversityClaytonVictoriaAustralia
| | - Pradeep Rajasekhar
- Centre for Dynamic ImagingWalter and Eliza Hall Institute of Medical ResearchParkvilleVictoriaAustralia
| | - Simona E. Carbone
- Drug Discovery Biology, Faculty of Pharmacy and Pharmaceutical SciencesMonash Institute of Pharmaceutical Sciences, Monash UniversityParkvilleVictoriaAustralia
| | - Michael J. Hickey
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences at Monash Health, Monash Medical CentreMonash UniversityClaytonVictoriaAustralia
| | - Daniel P. Poole
- Drug Discovery Biology, Faculty of Pharmacy and Pharmaceutical SciencesMonash Institute of Pharmaceutical Sciences, Monash UniversityParkvilleVictoriaAustralia
| | - Connie H. Y. Wong
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences at Monash Health, Monash Medical CentreMonash UniversityClaytonVictoriaAustralia
| |
Collapse
|
5
|
DeSana AJ, Estus S, Barrett TA, Saatman KE. Acute gastrointestinal permeability after traumatic brain injury in mice precedes a bloom in Akkermansia muciniphila supported by intestinal hypoxia. Sci Rep 2024; 14:2990. [PMID: 38316862 PMCID: PMC10844296 DOI: 10.1038/s41598-024-53430-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/31/2024] [Indexed: 02/07/2024] Open
Abstract
Traumatic brain injury (TBI) increases gastrointestinal morbidity and associated mortality. Clinical and preclinical studies implicate gut dysbiosis as a consequence of TBI and an amplifier of brain damage. However, little is known about the association of gut dysbiosis with structural and functional changes of the gastrointestinal tract after an isolated TBI. To assess gastrointestinal dysfunction, mice received a controlled cortical impact or sham brain injury and intestinal permeability was assessed at 4 h, 8 h, 1 d, and 3 d after injury by oral administration of 4 kDa FITC Dextran prior to euthanasia. Quantification of serum fluorescence revealed an acute, short-lived increase in permeability 4 h after TBI. Despite transient intestinal dysfunction, no overt morphological changes were evident in the ileum or colon across timepoints from 4 h to 4 wks post-injury. To elucidate the timeline of microbiome changes after TBI, 16 s gene sequencing was performed on DNA extracted from fecal samples collected prior to and over the first month after TBI. Differential abundance analysis revealed that the phylum Verrucomicrobiota was increased at 1, 2, and 3 d after TBI. The Verrucomicrobiota species was identified by qPCR as Akkermansia muciniphila, an obligate anaerobe that resides in the intestinal mucus bilayer and produces short chain fatty acids (e.g. butyrate) utilized by intestinal epithelial cells. We postulated that TBI promotes intestinal changes favorable for the bloom of A. muciniphila. Consistent with this premise, the relative area of mucus-producing goblet cells in the medial colon was significantly increased at 1 d after injury, while colon hypoxia was significantly increased at 3 d. Our findings reveal acute gastrointestinal functional changes coupled with an increase of beneficial bacteria suggesting a potential compensatory response to systemic stress after TBI.
Collapse
Affiliation(s)
- Anthony J DeSana
- Department of Physiology, University of Kentucky, Biomedical and Biological Sciences Research Building (BBSRB), B473, 741 South Limestone St., Lexington, KY, 40536, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Biomedical and Biological Sciences Research Building (BBSRB), B473, 741 South Limestone St., Lexington, KY, 40536, USA
| | - Steven Estus
- Department of Physiology, University of Kentucky, Biomedical and Biological Sciences Research Building (BBSRB), B473, 741 South Limestone St., Lexington, KY, 40536, USA
- Sanders Brown Center on Aging, University of Kentucky, Lee T. Todd, Jr. Building, Rm: 537, 789 South Limestone St., Lexington, KY, 40536, USA
| | - Terrence A Barrett
- Division of Digestive Diseases and Nutrition, Department of Internal Medicine - Digestive Health, University of Kentucky, Lexington, KY, 40536, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Medical Science Building, MN649, 780 Rose St., Lexington, KY, 40536, USA
| | - Kathryn E Saatman
- Department of Physiology, University of Kentucky, Biomedical and Biological Sciences Research Building (BBSRB), B473, 741 South Limestone St., Lexington, KY, 40536, USA.
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Biomedical and Biological Sciences Research Building (BBSRB), B473, 741 South Limestone St., Lexington, KY, 40536, USA.
| |
Collapse
|
6
|
Peng Z, Tang J. Intestinal Infection of Candida albicans: Preventing the Formation of Biofilm by C. albicans and Protecting the Intestinal Epithelial Barrier. Front Microbiol 2022; 12:783010. [PMID: 35185813 PMCID: PMC8847744 DOI: 10.3389/fmicb.2021.783010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/30/2021] [Indexed: 12/12/2022] Open
Abstract
The large mortality and morbidity rate of C. albicans infections is a crucial problem in medical mycology. Because the generation of biofilms and drug resistance are growing concerns, the growth of novel antifungal agents and the looking for newer objectives are necessary. In this review, inhibitors of C. albicans biofilm generation and molecular mechanisms of intestinal epithelial barrier protection are elucidated. Recent studies on various transcription elements; quorum-sensing molecules; host responses to adherence; and changes in efflux pumps, enzymes, bud to hyphal transition, and lipid profiles have increased the knowledge of the intricate mechanisms underlying biofilm resistance. In addition, the growth of novel biomaterials with anti-adhesive nature, natural products, drugs, bioactive compounds, proteins, lipids, and carbohydrates are being researched. Recently, more and more attention has been given to various metal nanoparticles that have also appeared as antibiofilm agents in C. albicans. The intestinal epithelial obstacle exerts an crucial effect on keeping intestinal homeostasis and is increasingly associated with various disorders associated with the intestine such as inflammatory bowel disease (IBD), irritable bowel syndrome, metabolic syndrome, allergies, hepatic inflammation, septic shock, etc. However, whether their involvement in the prevention of other intestinal disorders like IBD are useful in C. albicans remains unknown. Further studies must be carried out in order to validate their inhibition functions in intestinal C. albicans. This provides innovates ideas for intestinal C. albicans treatment.
Collapse
Affiliation(s)
- Ziyao Peng
- Department of Trauma-Emergency and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Jianguo Tang
- Department of Trauma-Emergency and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Li W, Cao F, Takase H, Arai K, Lo EH, Lok J. Blood-Brain Barrier Mechanisms in Stroke and Trauma. Handb Exp Pharmacol 2022; 273:267-293. [PMID: 33580391 DOI: 10.1007/164_2020_426] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The brain microenvironment is tightly regulated. The blood-brain barrier (BBB), which is composed of cerebral endothelial cells, astrocytes, and pericytes, plays an important role in maintaining the brain homeostasis by regulating the transport of both beneficial and detrimental substances between circulating blood and brain parenchyma. After brain injury and disease, BBB tightness becomes dysregulated, thus leading to inflammation and secondary brain damage. In this chapter, we overview the fundamental mechanisms of BBB damage and repair after stroke and traumatic brain injury (TBI). Understanding these mechanisms may lead to therapeutic opportunities for brain injury.
Collapse
Affiliation(s)
- Wenlu Li
- Neuroprotection Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Fang Cao
- Neuroprotection Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Hajime Takase
- Neuroprotection Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ken Arai
- Neuroprotection Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Eng H Lo
- Neuroprotection Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Josephine Lok
- Neuroprotection Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Scharenbrock AR, Katzenberger RJ, Fischer MC, Ganetzky B, Wassarman DA. Beta-blockers reduce intestinal permeability and early mortality following traumatic brain injury in Drosophila. MICROPUBLICATION BIOLOGY 2021; 2021:10.17912/micropub.biology.000461. [PMID: 34723144 PMCID: PMC8553408 DOI: 10.17912/micropub.biology.000461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/20/2021] [Accepted: 09/20/2021] [Indexed: 11/17/2022]
Abstract
Traumatic brain injury (TBI) frequently leads to non-neurological consequences such as intestinal permeability. The beta-blocker drug labetalol, which inhibits binding of catecholamine neurotransmitters to adrenergic receptors, reduces intestinal permeability in a rat TBI model. Using a Drosophila melanogaster TBI model, we previously found a strong positive correlation between intestinal permeability and mortality within 24 hours of TBI in a standard laboratory line (w1118 ) and across genetically diverse inbred lines from the Drosophila Genetic Reference Panel (DGRP). Here, we report that feeding injured w1118 flies the beta-blockers labetalol and metoprolol reduced intestinal permeability and mortality. Additionally, metoprolol reduced intestinal permeability when 18 DGRP fly lines were analyzed in aggregate, but neither beta-blocker affected mortality. These data indicate that the mechanism underlying disruption of the intestinal barrier by adrenergic signaling following TBI is conserved between humans and flies and that mortality following TBI in flies is not strictly dependent on disruption of the intestinal barrier. Thus, the fly TBI model is useful for shedding light on the mechanism and consequences of adrenergic signaling between the brain and intestine following TBI in humans.
Collapse
Affiliation(s)
- Amanda R Scharenbrock
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706
| | - Rebeccah J Katzenberger
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706
| | - Megan C Fischer
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706
| | - Barry Ganetzky
- Department of Genetics, College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - David A Wassarman
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706,
Correspondence to: David A Wassarman ()
| |
Collapse
|
9
|
Cong P, Wang T, Tong C, Liu Y, Shi L, Mao S, Shi X, Jin H, Liu Y, Hou M. Resveratrol ameliorates thoracic blast exposure-induced inflammation, endoplasmic reticulum stress and apoptosis in the brain through the Nrf2/Keap1 and NF-κB signaling pathway. Injury 2021; 52:2795-2802. [PMID: 34454721 DOI: 10.1016/j.injury.2021.08.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/04/2021] [Accepted: 08/13/2021] [Indexed: 02/02/2023]
Abstract
Blast injuries include the various types of internal and external trauma caused by the impact force of high-speed blast waves with multiple mechanisms involved. Thoracic blast exposure could induce neurotrauma as well, but effective therapies are lacking. Resveratrol is a polyphenol flavonoid secreted by plants and has been shown to provide cardiovascular protection and play anti-inflammatory, anti-oxidation and anti-cancer roles. However, the effects of resveratrol on thoracic blast exposure-induced brain injury have not been investigated. To explore this, a mouse model of thoracic blast exposure-induced brain injury was established. Sixty C57BL/6 wild type mice were randomly divided equally into four groups (one control group, one model group, and model groups with 25 or 50 mg/kg resveratrol injected intraperitoneally). As traumatic brain injury often accompanied by mental symptoms, cognitive dysfunction and anxious behavior were evaluated by Y maze, elevated plus maze and open field test. We also examined the mice for histopathological changes by hematoxylin-eosin staining; the expressions of inflammatory-related factors by ELISA; endoplasmic reticulum stress in brain tissue via the generation of reactive oxygen species (ROS) and the expressions of inositol-requiring enzyme-α (IRE-α) and C/EBP homologous protein (CHOP); apoptosis by measuring levels of Bax, p53 and Bcl-2. In addition, proteins of related pathways were also studied by western blotting. We found that resveratrol significantly reduced the levels of inflammatory-related factors, including interleukin (IL)-1β, IL-4, and high mobility group box protein 1(HMGB1), and increased the level of anti-inflammatory-related factor, IL-10, under thoracic blast exposure (P < 0.05). Cognitive dysfunction and anxious behavior were also ameliorated by resveratrol. In brain tissue, resveratrol significantly attenuated thoracic blast exposure-induced generation of ROS and expressions of IRE-α and CHOP, lowered the expressions of Bax and p53, and maintained Bcl-2 expression (P < 0.05). Additionally, resveratrol significantly ameliorated thoracic blast exposure-induced increases of Kelch-like ECH-associated protein 1 (Keap1) and nuclear factor (NF)-κB and the decrease in nuclear factor erythroid 2-related factor 2(Nrf2) expression in the brain (P < 0.05). Our results indicate that resveratrol has a protective effect on thoracic blast exposure-induced brain injury that is likely mediated through the Nrf2/Keap1 and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Peifang Cong
- College of Medicine and Biological Information Engineering, Northeastern University, No. 195, Chuangxin Road, Hunnan District, Shenyang, Liaoning Province, 110016, China.
| | - Teng Wang
- Jining No.1 people's Hospital of Shandong Province, No. 6, Jiankang Road, Jining, Shandong Province, 272011, China.
| | - Changci Tong
- Emergency Medicine Department of General Hospital of Northern theatre command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, No.83, Wenhua Road, Shenhe District, Shenyang, Liaoning Province, 110016, China.
| | - Ying Liu
- Emergency Medicine Department of General Hospital of Northern theatre command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, No.83, Wenhua Road, Shenhe District, Shenyang, Liaoning Province, 110016, China.
| | - Lin Shi
- Emergency Medicine Department of General Hospital of Northern theatre command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, No.83, Wenhua Road, Shenhe District, Shenyang, Liaoning Province, 110016, China.
| | - Shun Mao
- Emergency Medicine Department of General Hospital of Northern theatre command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, No.83, Wenhua Road, Shenhe District, Shenyang, Liaoning Province, 110016, China.
| | - Xiuyun Shi
- Emergency Medicine Department of General Hospital of Northern theatre command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, No.83, Wenhua Road, Shenhe District, Shenyang, Liaoning Province, 110016, China.
| | - Hongxu Jin
- Emergency Medicine Department of General Hospital of Northern theatre command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, No.83, Wenhua Road, Shenhe District, Shenyang, Liaoning Province, 110016, China.
| | - Yunen Liu
- Shenyang Medical College, No. 146, Huanghe North Street, Huanggu District, Shenyang, Liaoning Province, 110034, China; Emergency Medicine Department of General Hospital of Northern theatre command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, No.83, Wenhua Road, Shenhe District, Shenyang, Liaoning Province, 110016, China.
| | - Mingxiao Hou
- College of Medicine and Biological Information Engineering, Northeastern University, No. 195, Chuangxin Road, Hunnan District, Shenyang, Liaoning Province, 110016, China; Shenyang Medical College, No. 146, Huanghe North Street, Huanggu District, Shenyang, Liaoning Province, 110034, China; The Second Affiliated Hospital of Shenyang Medical College. The Veterans General Hospital of Liaoning Province, No.20 Beijiu Road, Heping District, Shenyang, Liaoning Province, 110001, China.
| |
Collapse
|
10
|
Jachs M, Hartl L, Schaufler D, Desbalmes C, Simbrunner B, Eigenbauer E, Bauer DJM, Paternostro R, Schwabl P, Scheiner B, Bucsics T, Stättermayer AF, Pinter M, Trauner M, Mandorfer M, Reiberger T. Amelioration of systemic inflammation in advanced chronic liver disease upon beta-blocker therapy translates into improved clinical outcomes. Gut 2021; 70:1758-1767. [PMID: 33199442 DOI: 10.1136/gutjnl-2020-322712] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/18/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Systemic inflammation promotes the development of clinical events in patients with advanced chronic liver disease (ACLD). We assessed whether (1) non-selective beta blocker (NSBB) treatment initiation impacts biomarkers of systemic inflammation and (2) whether these changes in systemic inflammation predict complications and mortality. DESIGN Biomarkers of systemic inflammation, that is, white blood cell count (WBC), C reactive protein (CRP), interleukin-6 (IL-6) and procalcitonin (PCT) were determined at sequential hepatic venous pressure gradient (HVPG) measurements without NSBB and under stable NSBB intake. The influence of NSBB-related changes in systemic inflammation on the risk of decompensation and liver-related death was analysed using competing risk regression. RESULTS Our study comprised 307 stable patients with ACLD (Child-A: 77 (25.1%), Child-B: 161 (52.4%), Child-C: 69 (22.5%), median HVPG: 20 (IQR 17-24) mm Hg) including 231 (75.2%) with decompensated disease.WBC significantly decreased upon NSBB therapy initiation (median: -2 (IQR -19;+13)%, p=0.011) in the overall cohort. NSBB-related reductions of WBC (Child-C: -16 (-30;+3)% vs Child-B: -2 (-16;+16)% vs Child-A: +3 (-7;+13)%, p<0.001) and of CRP (Child-C: -26 (-56,+8)% vs Child-B: -16 (-46;+13)% vs Child-A: ±0 (-33;+33)%, p<0.001) were more pronounced in advanced stages of cirrhosis. The NSBB-associated changes in WBC correlated with changes in CRP (Spearman's ρ=0.228, p<0.001), PCT (ρ=0.470, p=0.002) and IL-6 (ρ=0.501, p=0.001), but not with changes in HVPG (ρ=0.097, p=0.088).An NSBB-related decrease in systemic inflammation (ie, WBC reduction ≥15%) was achieved by n=91 (29.6%) patients and was found to be an independent protective factor of further decompensation (subdistribution HR, sHR: 0.694 (0.49-0.98), p=0.038) in decompensated patients and of liver-related mortality in the overall patient cohort (sHR: 0.561 (0.356-0.883), p=0.013). CONCLUSION NSBB therapy seems to exert systemic anti-inflammatory activity as evidenced by reductions of WBC and CRP levels. Interestingly, this effect was most pronounced in Child-C and independent of HVPG response. An NSBB-related WBC reduction by ≥15% was associated with a decreased risk of further decompensation and death.
Collapse
Affiliation(s)
- Mathias Jachs
- Internal Medicine III, Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria.,Vienna Hepatic Hemodynamic Lab, Medical University of Vienna, Vienna, Austria
| | - Lukas Hartl
- Internal Medicine III, Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria.,Vienna Hepatic Hemodynamic Lab, Medical University of Vienna, Vienna, Austria
| | - Dunja Schaufler
- Internal Medicine III, Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria.,Vienna Hepatic Hemodynamic Lab, Medical University of Vienna, Vienna, Austria
| | - Christopher Desbalmes
- Internal Medicine III, Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria.,Vienna Hepatic Hemodynamic Lab, Medical University of Vienna, Vienna, Austria
| | - Benedikt Simbrunner
- Internal Medicine III, Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria.,Vienna Hepatic Hemodynamic Lab, Medical University of Vienna, Vienna, Austria.,Christian Doppler Laboratory for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna, Austria
| | | | - David Josef Maria Bauer
- Internal Medicine III, Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria.,Vienna Hepatic Hemodynamic Lab, Medical University of Vienna, Vienna, Austria
| | - Rafael Paternostro
- Internal Medicine III, Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria.,Vienna Hepatic Hemodynamic Lab, Medical University of Vienna, Vienna, Austria
| | - Philipp Schwabl
- Internal Medicine III, Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria.,Vienna Hepatic Hemodynamic Lab, Medical University of Vienna, Vienna, Austria.,Christian Doppler Laboratory for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna, Austria
| | - Bernhard Scheiner
- Internal Medicine III, Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria.,Vienna Hepatic Hemodynamic Lab, Medical University of Vienna, Vienna, Austria
| | - Theresa Bucsics
- Internal Medicine III, Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria.,Vienna Hepatic Hemodynamic Lab, Medical University of Vienna, Vienna, Austria
| | | | - Matthias Pinter
- Internal Medicine III, Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria
| | - Michael Trauner
- Internal Medicine III, Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria
| | - Mattias Mandorfer
- Internal Medicine III, Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria.,Vienna Hepatic Hemodynamic Lab, Medical University of Vienna, Vienna, Austria
| | - Thomas Reiberger
- Internal Medicine III, Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria .,Vienna Hepatic Hemodynamic Lab, Medical University of Vienna, Vienna, Austria.,Christian Doppler Laboratory for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
11
|
Mikaelyan KA, Krylov KY, Petrova MV, Shestopalov AE. [Intestine morphology and microbiocenosis changes in critically ill patients in neurosurgery]. ZHURNAL VOPROSY NEĬROKHIRURGII IMENI N. N. BURDENKO 2021; 85:104-110. [PMID: 33560626 DOI: 10.17116/neiro202185011104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In recent years, the effect of critical conditions on intestine and the role of such changes in maintenance and progression of systemic disorders are of particular attention. This issue is relevant in critically ill neurosurgical patients too. Intestine morphology and microbiome changes in these patients represent a wide field for researches in intensive care and prevention of secondary damage to other organs and systems. This review ensures a current approach to the problem of intestine morphology and microbiome changes in critically ill neurosurgical patients. We reviewed the data from clinical studies and experiments reproducing a critical condition in animals. Most publications are indexed in the PubMed, e-library, Google Scholar databases. We also analyzed the data from NEJM, JAMA, Lancet, Critical Care and other issues. The manuscript contains an overview of 44 foreign and 13 domestic references; over 50% of researches were published within the past 5 years. Searching depth was over 50 years.
Collapse
Affiliation(s)
- K A Mikaelyan
- Russian Peoples' Friendship University, Moscow, Russia
| | - K Yu Krylov
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - M V Petrova
- Russian Peoples' Friendship University, Moscow, Russia
| | - A E Shestopalov
- Federal Research Clinical Center of Intensive Care and Rehabilitation, Lytkino, Russia
| |
Collapse
|
12
|
Weaver JL. The brain-gut axis: A prime therapeutic target in traumatic brain injury. Brain Res 2020; 1753:147225. [PMID: 33359374 DOI: 10.1016/j.brainres.2020.147225] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 01/10/2023]
Abstract
Traumatic brain injury (TBI) is a significant cause of morbidity and mortality in trauma patients. The primary focus of treating TBI is to prevent additional injury to the damaged brain tissue, known as secondary brain injury. This treatment can include treating the body's inflammatory response. Despite promise in animal models, anti-inflammatory therapy has failed to improve outcomes in human patients, suggesting a more targeted and precise approach may be needed. There is a bidirectional axis between the intestine and the brain that contributes to this inflammation in acute and chronic injury. The mechanisms for this interaction are not completely understood, but there is evidence that neural, inflammatory, endocrine, and microbiome signals all participate in this process. Therapies that target the intestine as a source of inflammation have potential to lessen secondary brain injury and improve outcomes in TBI patients, but to develop these treatments we need to better understand the mechanisms behind this intestinal inflammatory response.
Collapse
Affiliation(s)
- Jessica L Weaver
- Division of Trauma, Surgical Critical Care, Burns, and Acute Care Surgery, Department of Surgery, University of California, San Diego School of Medicine, 200 W Arbor Drive #8896, San Diego, CA 92103-8896, United States.
| |
Collapse
|
13
|
Weaver JL. The Kinetics of Intestinal Permeability in a Mouse Model of Traumatic Brain Injury. CURRENT PROTOCOLS IN MOUSE BIOLOGY 2020; 10:e86. [PMID: 33264493 DOI: 10.1002/cpmo.86] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Traumatic brain injury (TBI) is a leading cause of morbidity and mortality among trauma patients. Increased intestinal permeability plays an important role in the inflammatory process that accompanies TBI, and therapies that prevent this permeability change may improve outcomes in TBI patients. Different animal models have been developed to test permeability changes, but there has been no agreement on when permeability should be tested after TBI. Here, we describe a method for creating the TBI mouse model and for measuring intestinal permeability. We also detail our permeability measurements at different time points after TBI to help guide future experimental design. The TBI is made using a controlled cortical impact model with the cortical impactor set to speed 6 m/s, depth 3 mm, dwell time 0.2 s, and tip size 3 mm to produce a severe TBI. Permeability is measured at 2, 4, 6, and 24 hr after TBI by removing a piece of terminal ileum, tying the ends, filling the lumen with FITC-labeled dextran, and then measuring how much of the dextran moves into the surrounding solution bath over time using a fluorescent plate reader. Our results show that peak permeability occurs between 4 and 6 hr after TBI. We recommend that future experiments incorporate permeability measurements 4 to 6 hr after TBI in order to take advantage of this peak permeability. © 2020 Wiley Periodicals LLC. Basic Protocol: Mouse CCI traumatic brain injury model and intestinal permeability measurement.
Collapse
Affiliation(s)
- Jessica L Weaver
- Department of Surgery, University of California San Diego, San Diego, California
| |
Collapse
|
14
|
Iftikhar PM, Anwar A, Saleem S, Nasir S, Inayat A. Traumatic brain injury causing intestinal dysfunction: A review. J Clin Neurosci 2020; 79:237-240. [PMID: 33070903 DOI: 10.1016/j.jocn.2020.07.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/09/2020] [Indexed: 12/19/2022]
Abstract
Traumatic brain injuries (TBI) and its sequelae are becoming one of the most pressing public health concerns worldwide. It is one of the leading causes of increased morbidity and mortality. The primary insult to the brain can cause ischemic brain injury, paralysis, concussions, death, and other serious complications. Brain injury also involves other systems through a secondary pathway resulting in multiple complications during and after hospitalization. The focus of our article is to assess the literature available on traumatic brain injury and intestinal dysfunctional to highlight the aspects of epidemiology, pathophysiology, and different diagnostic approaches for early diagnosis of gut dysfunction. We review studies done in both humans and animals, to better understand this underrated topic, as it costs billions of dollars to the healthcare industry because of delayed diagnosis.
Collapse
Affiliation(s)
- Pulwasha M Iftikhar
- Department of Health Sciences, St John's University, New York, United States.
| | - Arsalan Anwar
- Department of Internal Medicine, University of Toledo, OH, United States
| | - Sidra Saleem
- Department of Internal Medicine, University of Toledo, OH, United States
| | - Saad Nasir
- Department of Internal Medicine, United Medical and Dental College, Karachi, Pakistan
| | - Arslan Inayat
- Department of Internal Medicine, University at Buffalo, New York, United States
| |
Collapse
|
15
|
Royes LFF, Gomez-Pinilla F. Making sense of gut feelings in the traumatic brain injury pathogenesis. Neurosci Biobehav Rev 2019; 102:345-361. [PMID: 31102601 DOI: 10.1016/j.neubiorev.2019.05.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 02/06/2023]
Abstract
Traumatic brain injury (TBI) is a devastating condition which often initiates a sequel of neurological disorders that can last throughout lifespan. From metabolic perspective, TBI also compromises systemic physiology including the function of body organs with subsequent malfunctions in metabolism. The emerging panorama is that the effects of TBI on the periphery strike back on the brain and exacerbate the overall TBI pathogenesis. An increasing number of clinical reports are alarming to show that metabolic dysfunction is associated with incidence of long-term neurological and psychiatric disorders. The autonomic nervous system, associated hypothalamic-pituitary axis, and the immune system are at the center of the interface between brain and body and are central to the regulation of overall homeostasis and disease. We review the strong association between mechanisms that regulate cell metabolism and inflammation which has important clinical implications for the communication between body and brain. We also discuss the integrative actions of lifestyle interventions such as diet and exercise on promoting brain and body health and cognition after TBI.
Collapse
Affiliation(s)
- Luiz Fernando Freire Royes
- Exercise Biochemistry Laboratory, Center of Physical Education and Sports, Federal University of Santa Maria - UFSM, Santa Maria, RS, Brazil
| | - Fernando Gomez-Pinilla
- Departments of Neurosurgery, and Integrative and Biology and Physiology, UCLA Brain Injury Research Center, University of California, Los Angeles, USA.
| |
Collapse
|
16
|
Intestinal barrier dysfunction following traumatic brain injury. Neurol Sci 2019; 40:1105-1110. [PMID: 30771023 DOI: 10.1007/s10072-019-03739-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 01/24/2019] [Indexed: 12/12/2022]
Abstract
Traumatic brain injury (TBI) can cause non-neurological injuries to other organs such as the intestine. Newer studies have shown that paracellular hyperpermeability is the basis of intestinal barrier dysfunction following TBI. Ischemia-reperfusion injury, inflammatory response, abnormal release of neurotransmitters and hormones, and malnutrition contribute to TBI-induced intestinal barrier dysfunction. Several interventions that may protect intestinal barrier function and promote the recovery of TBI have been proposed, but relevant studies are still limited. This review is to clarify the established mechanisms of intestinal barrier dysfunction following TBI and to describe the possible strategies to reduce or prevent intestinal barrier dysfunction.
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to describe established and emerging mechanisms of gut injury and dysfunction in trauma, describe emerging strategies to improve gut dysfunction, detail the effect of trauma on the gut microbiome, and describe the gut-brain connection in traumatic brain injury. RECENT FINDINGS Newer data suggest intraluminal contents, pancreatic enzymes, and hepatobiliary factors disrupt the intestinal mucosal layer. These mechanisms serve to perpetuate the inflammatory response leading to multiple organ dysfunction syndrome (MODS). To date, therapies to mitigate acute gut dysfunction have included enteral nutrition and immunonutrition; emerging therapies aimed to intestinal mucosal layer disruption, however, include protease inhibitors such as tranexamic acid, parenteral nutrition-supplemented bombesin, and hypothermia. Clinical trials to demonstrate benefit in humans are needed before widespread applications can be recommended. SUMMARY Despite resuscitation, gut dysfunction promotes distant organ injury. In addition, postresuscitation nosocomial and iatrogenic 'hits' exaggerate the immune response, contributing to MODS. This was a provocative concept, suggesting infectious and noninfectious causes of inflammation may trigger, heighten, and perpetuate an inflammatory response culminating in MODS and death. Emerging evidence suggests posttraumatic injury mechanisms, such as intestinal mucosal disruption and shifting of the gut microbiome to a pathobiome. In addition, traumatic brain injury activates the gut-brain axis and increases intestinal permeability.
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW The current review summarizes different aspects of assessment of gastrointestinal function and provides a practical approach to management of adult patients with gastrointestinal dysfunction in the ICU. RECENT FINDINGS Different ways to define gastrointestinal failure have been used in the past. Recently, the term 'acute gastrointestinal injury (AGI)' has been proposed to specifically describe gastrointestinal dysfunction as a part of multiple organ dysfunction syndrome. Possible pathophysiological mechanisms and different aspects in assessment of gastrointestinal function in adult ICU patients are presented. Currently, there is no single marker that could reliably describe gastrointestinal dysfunction. Therefore, monitoring and management is still based on complex assessment of different gastrointestinal symptoms and feeding intolerance, even though this approach includes a large amount of subjectivity. The possible role of biomarkers (citrulline, enterohormones, etc.) and additional parameters like intra-abdominal pressure remains to be clarified. SUMMARY Defining gastrointestinal failure remains challenging but broad consensus needs to be reached and disseminated soon to allow conduct of interventional studies. A systematic approach to management of gastrointestinal problems is recommended.
Collapse
|
19
|
Cheng Y, Wei Y, Yang W, Cai Y, Chen B, Yang G, Shang H, Zhao W. Ghrelin Attenuates Intestinal Barrier Dysfunction Following Intracerebral Hemorrhage in Mice. Int J Mol Sci 2016; 17:ijms17122032. [PMID: 27929421 PMCID: PMC5187832 DOI: 10.3390/ijms17122032] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/10/2016] [Accepted: 11/28/2016] [Indexed: 02/07/2023] Open
Abstract
Intestinal barrier dysfunction remains a critical problem in patients with intracerebral hemorrhage (ICH) and is associated with poor prognosis. Ghrelin, a brain-gut peptide, has been shown to exert protection in animal models of gastrointestinal injury. However, the effect of ghrelin on intestinal barrier dysfunction post-ICH and its possible underlying mechanisms are still unknown. This study was designed to investigate whether ghrelin administration attenuates intestinal barrier dysfunction in experimental ICH using an intrastriatal autologous blood infusion mouse model. Our data showed that treatment with ghrelin markedly attenuated intestinal mucosal injury at both histomorphometric and ultrastructural levels post-ICH. Ghrelin reduced ICH-induced intestinal permeability according to fluorescein isothiocyanate conjugated-dextran (FITC-D) and Evans blue extravasation assays. Concomitantly, the intestinal tight junction-related protein markers, Zonula occludens-1 (ZO-1) and claudin-5 were upregulated by ghrelin post-ICH. Additionally, ghrelin reduced intestinal intercellular adhesion molecule-1 (ICAM-1) expression at the mRNA and protein levels following ICH. Furthermore, ghrelin suppressed the translocation of intestinal endotoxin post-ICH. These changes were accompanied by improved survival rates and an attenuation of body weight loss post-ICH. In conclusion, our results suggest that ghrelin reduced intestinal barrier dysfunction, thereby reducing mortality and weight loss, indicating that ghrelin is a potential therapeutic agent in ICH-induced intestinal barrier dysfunction therapy.
Collapse
Affiliation(s)
- Yijun Cheng
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Yongxu Wei
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Wenlei Yang
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Yu Cai
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Bin Chen
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Guoyuan Yang
- Department of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Hanbing Shang
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Weiguo Zhao
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
20
|
Osier ND, Dixon CE. Catecholaminergic based therapies for functional recovery after TBI. Brain Res 2015; 1640:15-35. [PMID: 26711850 DOI: 10.1016/j.brainres.2015.12.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 12/11/2015] [Accepted: 12/14/2015] [Indexed: 11/15/2022]
Abstract
Among the many pathophysiologic consequences of traumatic brain injury are changes in catecholamines, including dopamine, epinephrine, and norepinephrine. In the context of TBI, dopamine is the one most extensively studied, though some research exploring epinephrine and norepinephrine have also been published. The purpose of this review is to summarize the evidence surrounding use of drugs that target the catecholaminergic system on pathophysiological and functional outcomes of TBI using published evidence from pre-clinical and clinical brain injury studies. Evidence of the effects of specific drugs that target catecholamines as agonists or antagonists will be discussed. Taken together, available evidence suggests that therapies targeting the catecholaminergic system may attenuate functional deficits after TBI. Notably, it is fairly common for TBI patients to be treated with catecholamine agonists for either physiological symptoms of TBI (e.g. altered cerebral perfusion pressures) or a co-occuring condition (e.g. shock), or cognitive symptoms (e.g. attentional and arousal deficits). Previous clinical trials are limited by methodological limitations, failure to replicate findings, challenges translating therapies to clinical practice, the complexity or lack of specificity of catecholamine receptors, as well as potentially counfounding effects of personal and genetic factors. Overall, there is a need for additional research evidence, along with a need for systematic dissemination of important study details and results as outlined in the common data elements published by the National Institute of Neurological Diseases and Stroke. Ultimately, a better understanding of catecholamines in the context of TBI may lead to therapeutic advancements. This article is part of a Special Issue entitled SI:Brain injury and recovery.
Collapse
Affiliation(s)
- Nicole D Osier
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, USA; School of Nursing, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - C Edward Dixon
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15260, USA; V.A. Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA.
| |
Collapse
|