1
|
Mocking TAM, van Oostveen WM, van Veldhoven JPD, Minnee H, Fehres CM, Whitehurst CE, IJzerman AP, Heitman LH. Label-free detection of prostaglandin transporter (SLCO2A1) function and inhibition: insights by wound healing and TRACT assays. Front Pharmacol 2024; 15:1372109. [PMID: 38783936 PMCID: PMC11111933 DOI: 10.3389/fphar.2024.1372109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024] Open
Abstract
The prostaglandin transporter (PGT, SLCO2A1) mediates transport of prostanoids (a.o. prostaglandin E2 (PGE2)) into cells and thereby promotes their degradation. Overexpression of PGT leads to low extracellular PGE2 levels and has been linked to impaired wound healing of diabetic foot ulcers. Inhibition of PGT could thus be beneficial, however, no PGT inhibitors are currently on the market and drug discovery efforts are hampered by lack of high-through screening assays for this transporter. Here we report on a label-free impedance-based assay for PGT that measures transport activity through receptor activation (TRACT) utilizing prostaglandin E2 receptor subtype EP3 and EP4 that are activated by PGE2. We found that induction of PGT expression on HEK293-JumpIn-SLCO2A1 cells that also express EP3 and EP4 leads to an over 10-fold reduction in agonistic potency of PGE2. PGE2 potency could be recovered upon inhibition of PGT-mediated PGE2 uptake with PGT inhibitors olmesartan and T26A, the potency of which could be established as well. Moreover, the TRACT assay enabled the assessment of transport function of PGT natural variants. Lastly, HUVEC cells endogenously expressing prostanoid receptors and PGT were exploited to study wound healing properties of PGE2 and T26A in real-time using a novel impedance-based scratch-induced wound healing assay. These novel impedance-based assays will advance PGT drug discovery efforts and pave the way for the development of PGT-based therapies.
Collapse
Affiliation(s)
- Tamara A. M. Mocking
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | | | | | - Hugo Minnee
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Cynthia M. Fehres
- Department of Rheumatology, Leiden University Medical Center, Leiden University, Leiden, Netherlands
| | - Charles E. Whitehurst
- Immunology and Respiratory Diseases, Boehringer-Ingelheim, Ridgefield, CT, United States
| | - Adriaan P. IJzerman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Laura H. Heitman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
- Oncode Institute, Leiden, Netherlands
| |
Collapse
|
2
|
Nakamura Y, Kozakai H, Nishio T, Yoshida K, Nakanishi T. Phenolsulfonphthalein as a surrogate substrate to assess altered function of the prostaglandin transporter SLCO2A1. Drug Metab Pharmacokinet 2022; 44:100452. [DOI: 10.1016/j.dmpk.2022.100452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/28/2022] [Accepted: 02/02/2022] [Indexed: 11/27/2022]
|
3
|
Cheng H, Huang H, Guo Z, Chang Y, Li Z. Role of prostaglandin E2 in tissue repair and regeneration. Am J Cancer Res 2021; 11:8836-8854. [PMID: 34522214 PMCID: PMC8419039 DOI: 10.7150/thno.63396] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/05/2021] [Indexed: 12/14/2022] Open
Abstract
Tissue regeneration following injury from disease or medical treatment still represents a challenge in regeneration medicine. Prostaglandin E2 (PGE2), which involves diverse physiological processes via E-type prostanoid (EP) receptor family, favors the regeneration of various organ systems following injury for its capabilities such as activation of endogenous stem cells, immune regulation, and angiogenesis. Understanding how PGE2 modulates tissue regeneration and then exploring how to elevate the regenerative efficiency of PGE2 will provide key insights into the tissue repair and regeneration processes by PGE2. In this review, we summarized the application of PGE2 to guide the regeneration of different tissues, including skin, heart, liver, kidney, intestine, bone, skeletal muscle, and hematopoietic stem cell regeneration. Moreover, we introduced PGE2-based therapeutic strategies to accelerate the recovery of impaired tissue or organs, including 15-hydroxyprostaglandin dehydrogenase (15-PGDH) inhibitors boosting endogenous PGE2 levels and biomaterial scaffolds to control PGE2 release.
Collapse
|
4
|
Liang Y, Wang M, Liu Y, Wang C, Takahashi K, Naruse K. Meta-Analysis-Assisted Detection of Gravity-Sensitive Genes in Human Vascular Endothelial Cells. Front Cell Dev Biol 2021; 9:689662. [PMID: 34422812 PMCID: PMC8371407 DOI: 10.3389/fcell.2021.689662] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/14/2021] [Indexed: 12/18/2022] Open
Abstract
Gravity affects the function and maintenance of organs, such as bones, muscles, and the heart. Several studies have used DNA microarrays to identify genes with altered expressions in response to gravity. However, it is technically challenging to combine the results from various microarray datasets because of their different data structures. We hypothesized that it is possible to identify common changes in gene expression from the DNA microarray datasets obtained under various conditions and methods. In this study, we grouped homologous genes to perform a meta-analysis of multiple vascular endothelial cell and skeletal muscle datasets. According to the t-distributed stochastic neighbor embedding (t-SNE) analysis, the changes in the gene expression pattern in vascular endothelial cells formed specific clusters. We also identified candidate genes in endothelial cells that responded to gravity. Further, we exposed human umbilical vein endothelial cells (HUVEC) to simulated microgravity (SMG) using a clinostat and measured the expression levels of the candidate genes. Gene expression analysis using qRT-PCR revealed that the expression level of the prostaglandin (PG) transporter gene SLCO2A1 decreased in response to microgravity, consistent with the meta-analysis of microarray datasets. Furthermore, the direction of gravity affected the expression level of SLCO2A1, buttressing the finding that its expression was affected by gravity. These results suggest that a meta-analysis of DNA microarray datasets may help identify new target genes previously overlooked in individual microarray analyses.
Collapse
Affiliation(s)
- Yin Liang
- Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Mengxue Wang
- Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yun Liu
- Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Chen Wang
- Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Ken Takahashi
- Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Keiji Naruse
- Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
5
|
Memon A, Kim BY, Kim SE, Pyao Y, Lee YG, Kang SC, Lee WK. Anti-Inflammatory Effect of Phytoncide in an Animal Model of Gastrointestinal Inflammation. Molecules 2021; 26:molecules26071895. [PMID: 33810618 PMCID: PMC8037037 DOI: 10.3390/molecules26071895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 01/08/2023] Open
Abstract
Background: Phytoncide is known to have antimicrobial and anti-inflammatory properties. Purpose: This study was carried out to confirm the anti-inflammatory activity of two types of phytoncide extracts from pinecone waste. Methods: We made two types of animal models to evaluate the efficacy, an indomethacin-induced gastroenteritis rat model and a dextran sulfate sodium-induced colitis mouse model. Result: In the gastroenteritis experiment, the expression of induced-nitric oxide synthase (iNOS), a marker for inflammation, decreased in the phytoncide-supplemented groups, and gastric ulcer development was significantly inhibited (p < 0.05). In the colitis experiment, the shortening of the colon length and the iNOS expression were significantly suppressed in the phytoncide-supplemented group (p < 0.05). Conclusions: Through this study, we confirmed that phytoncide can directly inhibit inflammation in digestive organs. Although further research is needed, we conclude that phytoncide has potential anti-inflammatory properties in the digestive tract and can be developed as a functional agent.
Collapse
Affiliation(s)
- Azra Memon
- Department of Biomedical Sciences, School of Medicine, Inha University, Incheon 22212, Korea; (A.M.); (Y.P.)
| | - Bae Yong Kim
- Research Institute, Phylus Co., LTD., Danyang-gun 27000, Korea;
- Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Korea; (S.-e.K.); (Y.-G.L.); (S.C.K.)
| | - Se-eun Kim
- Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Korea; (S.-e.K.); (Y.-G.L.); (S.C.K.)
| | - Yuliya Pyao
- Department of Biomedical Sciences, School of Medicine, Inha University, Incheon 22212, Korea; (A.M.); (Y.P.)
| | - Yeong-Geun Lee
- Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Korea; (S.-e.K.); (Y.-G.L.); (S.C.K.)
| | - Se Chan Kang
- Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Korea; (S.-e.K.); (Y.-G.L.); (S.C.K.)
| | - Woon Kyu Lee
- Department of Biomedical Sciences, School of Medicine, Inha University, Incheon 22212, Korea; (A.M.); (Y.P.)
- Correspondence: ; Tel.: +82-10-4607-3871
| |
Collapse
|
6
|
Quyu Shengji Formula Facilitates Diabetic Wound Healing via Inhibiting the Expression of Prostaglandin Transporter. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:8849935. [PMID: 33552219 PMCID: PMC7847361 DOI: 10.1155/2021/8849935] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/25/2020] [Accepted: 01/13/2021] [Indexed: 12/21/2022]
Abstract
Background Quyu Shengji Formula (QSF), a Chinese medicine formula widely used in the clinic, has proven therapeutic effects on diabetic ulcers. Nevertheless, the potential mechanism of how QSF cures diabetic ulcer remains elusive. Objective To assess the mechanism of QSF against wound healing defects in diabetes. Methods Db/db mice were adopted to determine the therapeutic potential of QSF. Further histology analysis was performed by hematoxylin and eosin (H&E) staining. Moreover, the expression patterns of prostaglandin transporter (PGT), prostaglandin E2 (PGE2), and angiogenesis factor vascular endothelial growth factor (VEGF) were evaluated by immunostaining (IHC) analysis, ELISA assay, real-time quantitative polymerase chain reaction (RT-qPCR), and western blot analysis in vivo. Human dermal microvascular endothelial cells (HDMECs) and the shRNA interference technique were used to explore the effects of QSF on cell migration, PGT, PGE2, and angiogenesis factor VEGF in vitro. Results Applied QSF on the wound of db/db mice significantly accelerated wound closure. Reductions of PGT and elevations of PGE2 and increased angiogenesis factor VEGF levels were shown after QSF treatment in vivo and in vitro. Furthermore, QSF promoted HDMEC migration. Inhibition of the expression of PGT by shRNA reversed phenotypes of QSF treatment in vitro. Conclusion Taken together, our findings reveal that QSF ameliorates diabetes-associated wound healing defects by abolishing the expression of PGT.
Collapse
|
7
|
Jara CP, Mendes NF, Prado TPD, de Araújo EP. Bioactive Fatty Acids in the Resolution of Chronic Inflammation in Skin Wounds. Adv Wound Care (New Rochelle) 2020; 9:472-490. [PMID: 32320357 DOI: 10.1089/wound.2019.1105] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Significance: Optimal skin wound healing is crucial for maintaining tissue homeostasis, particularly in response to an injury. The skin immune system is under regulation of mediators such as bioactive lipids and cytokines that can initiate an immune response with controlled inflammation, followed by efficient resolution. However, nutritional deficiency impacts wound healing by hindering fibroblast proliferation, collagen synthesis, and epithelialization, among other crucial functions. In this way, the correct nutritional support of bioactive lipids and of other essential nutrients plays an important role in the outcome of the wound healing process. Recent Advances and Critical Issues: Several studies have revealed the potential role of lipids as a treatment for the healing of skin wounds. Unsaturated fatty acids such as linoleic acid, α-linolenic acid, oleic acid, and most of their bioactive products have shown an effective role as a topical treatment of chronic skin wounds. Their effect, when the treatment starts at day 0, has been observed mainly in the inflammatory phase of the wound healing process. Moreover, some of them were associated with different dressings and were tested for clinical purposes, including pluronic gel, nanocapsules, collagen films and matrices, and polymeric bandages. Therefore, future research is still needed to evaluate these dressing technologies in association with different bioactive fatty acids in a wound healing context. Future Directions: This review summarizes the main results of the available clinical trials and basic research studies and provides evidence-based conclusions. Together, current data encourage the use of bioactive fatty acids for an optimal wound healing resolution.
Collapse
Affiliation(s)
- Carlos Poblete Jara
- Faculty of Nursing, University of Campinas, Campinas, Brazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Natália Ferreira Mendes
- Faculty of Nursing, University of Campinas, Campinas, Brazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Thais Paulino do Prado
- Faculty of Nursing, University of Campinas, Campinas, Brazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Eliana Pereira de Araújo
- Faculty of Nursing, University of Campinas, Campinas, Brazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| |
Collapse
|
8
|
Fowler AW, Gilbertie JM, Watson VE, Prange T, Osborne JA, Schnabel LV. Effects of acellular equine amniotic allografts on the healing of experimentally induced full-thickness distal limb wounds in horses. Vet Surg 2019; 48:1416-1428. [PMID: 31385329 DOI: 10.1111/vsu.13304] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 07/01/2019] [Accepted: 07/17/2019] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To characterize the growth factors contained in equine amniotic membrane allograft (eAM; StemWrap scaffold and StemWrap+ injection) and to evaluate the effect of eAM on equine distal limb wound healing. STUDY DESIGN Prospective experimental controlled study. SAMPLE POPULATION Eight adult horses. METHODS Transforming growth factor (TGF)-β1, vascular endothelial growth factor (VEGF), epidermal growth factor, platelet-derived growth factor-BB, and prostaglandin E2 (PGE2 ) concentrations in StemWrap+ were assessed with enzyme-linked immunosorbent assay. Two full-thickness 6.25-cm2 skin wounds were created on each metacarpus. On one forelimb, one wound was treated with eAM, and the other was left untreated (eAM control). On the contralateral limb, one wound was treated with a silicone dressing, and the other served as negative control. Three-dimensional images were obtained to determine wound circumference and surface area analyses at each bandage change until healed. Excessive granulation tissue was debrided once weekly for 4 weeks. Biopsy samples were taken to evaluate quality of wound healing via histologic and immunohistochemistry assays. RESULTS StemWrap+ contained moderate concentrations of TGF-β1 (494.10 pg/mL), VEGF (212.52 pg/mL), and PGE2 (1811.61 pg/mL). Treatment of wounds with eAM did not affect time to healing or histologic quality of the healing compared with other groups but was associated with increased granulation tissue production early in the study, particularly on day 7. CONCLUSION Application of eAM resulted in increased granulation tissue production while maintaining appropriate healing of experimental wounds. CLINICAL SIGNIFICANCE Use of eAM is likely most beneficial for substantial wounds in which expedient production of large amounts of granulation tissue is desirable.
Collapse
Affiliation(s)
- Alexander W Fowler
- Department of Clinical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina
| | - Jessica M Gilbertie
- Department of Clinical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina
| | - Victoria E Watson
- Department of Pathobiology and Diagnostic Investigation, Michigan State University College of Veterinary Medicine, East Lansing, Michigan
| | - Timo Prange
- Department of Clinical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina
| | - Jason A Osborne
- Department of Statistics, North Carolina State University, Raleigh, North Carolina
| | - Lauren V Schnabel
- Department of Clinical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina
| |
Collapse
|
9
|
Nakanishi T, Tamai I. Roles of Organic Anion Transporting Polypeptide 2A1 (OATP2A1/SLCO2A1) in Regulating the Pathophysiological Actions of Prostaglandins. AAPS JOURNAL 2017; 20:13. [PMID: 29204966 DOI: 10.1208/s12248-017-0163-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 10/17/2017] [Indexed: 02/06/2023]
Abstract
Solute carrier organic anion transporter family member 2A1 (OATP2A1, encoded by the SLCO2A1 gene), which was initially identified as prostaglandin transporter (PGT), is expressed ubiquitously in tissues and mediates the distribution of prostanoids, such as PGE2, PGF2α, PGD2 and TxB2. It is well known to play a key role in the metabolic clearance of prostaglandins, which are taken up into the cell by OATP2A1 and then oxidatively inactivated by 15-ketoprostaglandin dehydrogenase (encoded by HPGD); indeed, OATP2A1-mediated uptake is the rate-limiting step of PGE2 catabolism. Consequently, since OATP2A1 activity is required for termination of prostaglandin signaling via prostanoid receptors, its inhibition can enhance such signaling. On the other hand, OATP2A1 can also function as an organic anion exchanger, mediating efflux of prostaglandins in exchange for import of anions such as lactate, and in this context, it plays a role in the release of newly synthesized prostaglandins from cells. These different functions likely operate in different compartments within the cell. OATP2A1 is reported to function at cytoplasmic vesicle/organelle membranes. As a regulator of the levels of physiologically active prostaglandins, OATP2A1 is implicated in diverse physiological and pathophysiological processes in many organs. Recently, whole exome analysis has revealed that recessive mutations in SLCO2A1 cause refractory diseases in humans, including primary hypertrophic osteoarthropathy (PHO) and chronic non-specific ulcers in small intestine (CNSU). Here, we review and summarize recent information on the molecular functions of OATP2A1 and on its physiological and pathological significance.
Collapse
Affiliation(s)
- Takeo Nakanishi
- Department of Membrane Transport and Biopharmaceutics, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan.
| | - Ikumi Tamai
- Department of Membrane Transport and Biopharmaceutics, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| |
Collapse
|
10
|
Nakanishi T, Ohno Y, Aotani R, Maruyama S, Shimada H, Kamo S, Oshima H, Oshima M, Schuetz JD, Tamai I. A novel role for OATP2A1/SLCO2A1 in a murine model of colon cancer. Sci Rep 2017; 7:16567. [PMID: 29185482 PMCID: PMC5707394 DOI: 10.1038/s41598-017-16738-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 11/16/2017] [Indexed: 11/24/2022] Open
Abstract
Prostaglandin E2 (PGE2) is associated with proliferation and angiogenesis in colorectal tumours. The role of prostaglandin transporter OATP2A1/SLCO2A1 in colon cancer tumorogenesis is unknown. We evaluated mice of various Slco2a1 genotypes in a murine model of colon cancer, the adenomatous polyposis (APC) mutant (Apc∆716/+) model. Median lifespan was significantly extended from 19 weeks in Slco2a1+/+/ApcΔ716/+ mice to 25 weeks in Slco2a1−/−/ApcΔ716/+ mice. Survival was directly related to a reduction in the number of large polyps in the Slco2a1−/−/Apc∆716/+ compared to the Slco2a1+/+/ApcΔ716/+ or Slco2a1+/−/ApcΔ716/+mice. The large polyps from the Slco2a1−/−/Apc∆716/+ mice had significant reductions in microvascular density, consistent with the high expression of Slco2a1 in the tumour-associated vascular endothelial cells. Chemical suppression of OATP2A1 function significantly reduced tube formation and wound-healing activity of PGE2 in human vascular endothelial cells (HUVECs) although the amount of extracellular PGE2 was not affected by an OATP2A1 inhibitor. Further an in vivo model of angiogenesis, showed a significant reduction of haemoglobin content (54.2%) in sponges implanted into Slco2a1−/−, compared to wildtype mice. These studies indicate that OATP2A1 is likely to promote tumorogenesis by PGE2 uptake into the endothelial cells, suggesting that blockade of OATP2A1 is an additional pharmacologic strategy to improve colon cancer outcomes.
Collapse
Affiliation(s)
| | | | - Rika Aotani
- Kanazawa University, Kanazawa, 920-1192, Japan
| | | | - Hiroaki Shimada
- Kanazawa University, Kanazawa, 920-1192, Japan.,Faculty of Pharmacy, Kindai University, Higashiosaka, Osaka, Japan
| | | | - Hiroko Oshima
- Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Masanobu Oshima
- Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - John D Schuetz
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ikumi Tamai
- Kanazawa University, Kanazawa, 920-1192, Japan
| |
Collapse
|
11
|
Pluchart H, Khouri C, Blaise S, Roustit M, Cracowski JL. Targeting the Prostacyclin Pathway: Beyond Pulmonary Arterial Hypertension. Trends Pharmacol Sci 2017; 38:512-523. [DOI: 10.1016/j.tips.2017.03.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/03/2017] [Accepted: 03/06/2017] [Indexed: 01/08/2023]
|
12
|
Díaz-Flores L, Gutiérrez R, García MDP, Sáez FJ, Díaz-Flores L, Madrid JF. Piecemeal Mechanism Combining Sprouting and Intussusceptive Angiogenesis in Intravenous Papillary Formation Induced by PGE2 and Glycerol. Anat Rec (Hoboken) 2017; 300:1781-1792. [PMID: 28340517 DOI: 10.1002/ar.23599] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/30/2016] [Accepted: 12/13/2016] [Indexed: 12/17/2022]
Abstract
Recently, we demonstrated that in human intravascular papillary endothelial hyperplasia (IPEH), vein wall vascularization occurs in association with myriad papillae, a large part of which formed in the vascularized vein wall. Previously, using an animal model, we observed that PGE2 and glycerol administration around the femoral vein originates intense vascularization of the vein wall from its intimal endothelial cells (ECs). This vascularization is similar to that in IPEH. The aim of this study is to assess the mechanism of papillary formation, using this model after demonstrating papillary development in neo-vascularized femoral vein walls. In semithin and ultrathin sections, the sequential vascular and papillary development was as follows: (a) activation of vein intimal ECs, (b) sprouting of intimal ECs towards the vein media layer and microvessel development, (c) interconnection between neighboring microvessels originated elementary loops, which encircled vein wall components and formed papillae. The encircling ECs formed the papillary cover, and the encircled component formed the core. The papillae showed a similar structure to that of folds and pillars in intussusceptive angiogenesis, and (d) origin of secondary and complex loop systems by interconnection of neighboring elementary loops and by splitting of papillae by new loops, with abundant papillary development. In conclusion, the results support a piecemeal angiogenic mechanism in papillary formation, with association of sprouting and intussusceptive types of angiogenesis. Further studies are needed to assess whether the intravascular papillae described in several pathologic processes, including vessel tumors, such as Dabska's tumor, retiform hemangioendothelioma, and angiosarcoma, follow a similar mechanism. Anat Rec, 2017. © 2017 Wiley Periodicals, Inc. Anat Rec, 300:1781-1792, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lucio Díaz-Flores
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, Tenerife, Spain
| | - Ricardo Gutiérrez
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, Tenerife, Spain
| | - M Del Pino García
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, Tenerife, Spain.,Department of Pathology, Hospiten® Hospitals, Tenerife, Spain
| | - Francisco J Sáez
- Department of Cell Biology and Histology UFI11/44, School of Medicine and Dentistry, University of the Basque Country, UPV/EHU, Leioa, Spain
| | - Lucio Díaz-Flores
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, Tenerife, Spain
| | - Juan F Madrid
- Department of Cell Biology and Histology, School of Medicine, Regional Campus of International Excellence. "Campus Mare Nostrum," University of Murcia, Espinardo, Spain
| |
Collapse
|
13
|
Eizuka M, Tsuchida K, Sugimoto R, Ishida K, Uesugi N, Yanai S, Akasaka R, Toya Y, Kawasaki K, Nakamura S, Matsumoto T, Sugai T. A case of intravascular papillary endothelial hyperplasia of the stomach leading to a novel hypothesis for the pathogenesis. Histopathology 2016; 70:672-674. [PMID: 27676691 DOI: 10.1111/his.13093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Makoto Eizuka
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Kodai Tsuchida
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Ryo Sugimoto
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Kazuyuki Ishida
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Noriyuki Uesugi
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Syunichi Yanai
- Division of Gastroenterology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Risaburo Akasaka
- Division of Gastroenterology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Yosuke Toya
- Division of Gastroenterology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Keisuke Kawasaki
- Division of Gastroenterology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Syotaro Nakamura
- Division of Gastroenterology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Takayuki Matsumoto
- Division of Gastroenterology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Tamotsu Sugai
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Morioka, Japan
| |
Collapse
|