1
|
Hayashi S, Abe T, Igawa T, Katsura Y, Kazama Y, Nozawa M. Sex chromosome cycle as a mechanism of stable sex determination. J Biochem 2024; 176:81-95. [PMID: 38982631 PMCID: PMC11289310 DOI: 10.1093/jb/mvae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/27/2024] [Indexed: 07/11/2024] Open
Abstract
Recent advances in DNA sequencing technology have enabled the precise decoding of genomes in non-model organisms, providing a basis for unraveling the patterns and mechanisms of sex chromosome evolution. Studies of different species have yielded conflicting results regarding the traditional theory that sex chromosomes evolve from autosomes via the accumulation of deleterious mutations and degeneration of the Y (or W) chromosome. The concept of the 'sex chromosome cycle,' emerging from this context, posits that at any stage of the cycle (i.e., differentiation, degeneration, or loss), sex chromosome turnover can occur while maintaining stable sex determination. Thus, understanding the mechanisms that drive both the persistence and turnover of sex chromosomes at each stage of the cycle is crucial. In this review, we integrate recent findings on the mechanisms underlying maintenance and turnover, with a special focus on several organisms having unique sex chromosomes. Our review suggests that the diversity of sex chromosomes in the maintenance of stable sex determination is underappreciated and emphasizes the need for more research on the sex chromosome cycle.
Collapse
Affiliation(s)
- Shun Hayashi
- Amphibian Research Center, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Takuya Abe
- Division of Biochemistry, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aobaku, Sendai, Miyagi 981-8558, Japan
| | - Takeshi Igawa
- Amphibian Research Center, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Yukako Katsura
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, 41-2 Kanrin, Inuyama, Aichi 484-8506, Japan
| | - Yusuke Kazama
- Department of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Kenjojima, Matsuoka, Eiheiji, Fukui 910-1195, Japan
| | - Masafumi Nozawa
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachioji, Tokyo 192-0397, Japan
- Research Center for Genomics and Bioinformatics, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachioji, Tokyo 192-0397, Japan
| |
Collapse
|
2
|
Sakagami K, Igawa T, Saikawa K, Sakaguchi Y, Hossain N, Kato C, Kinemori K, Suzuki N, Suzuki M, Kawaguchi A, Ochi H, Tajika Y, Ogino H. Development of a heat-stable alkaline phosphatase reporter system for cis-regulatory analysis and its application to 3D digital imaging of Xenopus embryonic tissues. Dev Growth Differ 2024; 66:256-265. [PMID: 38439617 PMCID: PMC11457516 DOI: 10.1111/dgd.12919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/06/2024]
Abstract
Xenopus is one of the essential model systems for studying vertebrate development. However, one drawback of this system is that, because of the opacity of Xenopus embryos, 3D imaging analysis is limited to surface structures, explant cultures, and post-embryonic tadpoles. To develop a technique for 3D tissue/organ imaging in whole Xenopus embryos, we identified optimal conditions for using placental alkaline phosphatase (PLAP) as a transgenic reporter and applied it to the correlative light microscopy and block-face imaging (CoMBI) method for visualization of PLAP-expressing tissues/organs. In embryos whose endogenous alkaline phosphatase activities were heat-inactivated, PLAP staining visualized various tissue-specific enhancer/promoter activities in a manner consistent with green fluorescent protein (GFP) fluorescence. Furthermore, PLAP staining appeared to be more sensitive than GFP fluorescence as a reporter, and the resulting expression patterns were not mosaic, in striking contrast to the mosaic staining pattern of β-galactosidase expressed from the lacZ gene that was introduced by the same transgenesis method. Owing to efficient penetration of alkaline phosphatase substrates, PLAP activity was detected in deep tissues, such as the developing brain, spinal cord, heart, and somites, by whole-mount staining. The stained embryos were analyzed by the CoMBI method, resulting in the digital reconstruction of 3D images of the PLAP-expressing tissues. These results demonstrate the efficacy of the PLAP reporter system for detecting enhancer/promoter activities driving deep tissue expression and its combination with the CoMBI method as a powerful approach for 3D digital imaging analysis of specific tissue/organ structures in Xenopus embryos.
Collapse
Affiliation(s)
- Kiyo Sakagami
- Department of Animal BioscienceNagahama Institute of Bio‐Science and TechnologyNagahamaJapan
| | - Takeshi Igawa
- Amphibian Research Center, Graduate School of Integrated Sciences for LifeHiroshima UniversityHiroshimaJapan
| | - Kaori Saikawa
- Department of Animal BioscienceNagahama Institute of Bio‐Science and TechnologyNagahamaJapan
| | - Yusuke Sakaguchi
- Amphibian Research Center, Graduate School of Integrated Sciences for LifeHiroshima UniversityHiroshimaJapan
| | - Nusrat Hossain
- Amphibian Research Center, Graduate School of Integrated Sciences for LifeHiroshima UniversityHiroshimaJapan
- Department of Pharmaceutical SciencesNorth South UniversityDhakaBangladesh
| | - Chiho Kato
- Department of Animal BioscienceNagahama Institute of Bio‐Science and TechnologyNagahamaJapan
| | - Kazuhito Kinemori
- Amphibian Research Center, Graduate School of Integrated Sciences for LifeHiroshima UniversityHiroshimaJapan
| | - Nanoka Suzuki
- Amphibian Research Center, Graduate School of Integrated Sciences for LifeHiroshima UniversityHiroshimaJapan
| | - Makoto Suzuki
- Amphibian Research Center, Graduate School of Integrated Sciences for LifeHiroshima UniversityHiroshimaJapan
| | - Akane Kawaguchi
- Department of Genomics and Evolutionary BiologyNational Institute of GeneticsShizuokaJapan
| | - Haruki Ochi
- Institute for Promotion of Medical Science Research, Faculty of MedicineYamagata UniversityYamagataJapan
| | - Yuki Tajika
- Department of Radiological TechnologyGunma Prefectural College of Health SciencesMaebashiJapan
| | - Hajime Ogino
- Amphibian Research Center, Graduate School of Integrated Sciences for LifeHiroshima UniversityHiroshimaJapan
| |
Collapse
|
3
|
Bredeson JV, Mudd AB, Medina-Ruiz S, Mitros T, Smith OK, Miller KE, Lyons JB, Batra SS, Park J, Berkoff KC, Plott C, Grimwood J, Schmutz J, Aguirre-Figueroa G, Khokha MK, Lane M, Philipp I, Laslo M, Hanken J, Kerdivel G, Buisine N, Sachs LM, Buchholz DR, Kwon T, Smith-Parker H, Gridi-Papp M, Ryan MJ, Denton RD, Malone JH, Wallingford JB, Straight AF, Heald R, Hockemeyer D, Harland RM, Rokhsar DS. Conserved chromatin and repetitive patterns reveal slow genome evolution in frogs. Nat Commun 2024; 15:579. [PMID: 38233380 PMCID: PMC10794172 DOI: 10.1038/s41467-023-43012-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 10/27/2023] [Indexed: 01/19/2024] Open
Abstract
Frogs are an ecologically diverse and phylogenetically ancient group of anuran amphibians that include important vertebrate cell and developmental model systems, notably the genus Xenopus. Here we report a high-quality reference genome sequence for the western clawed frog, Xenopus tropicalis, along with draft chromosome-scale sequences of three distantly related emerging model frog species, Eleutherodactylus coqui, Engystomops pustulosus, and Hymenochirus boettgeri. Frog chromosomes have remained remarkably stable since the Mesozoic Era, with limited Robertsonian (i.e., arm-preserving) translocations and end-to-end fusions found among the smaller chromosomes. Conservation of synteny includes conservation of centromere locations, marked by centromeric tandem repeats associated with Cenp-a binding surrounded by pericentromeric LINE/L1 elements. This work explores the structure of chromosomes across frogs, using a dense meiotic linkage map for X. tropicalis and chromatin conformation capture (Hi-C) data for all species. Abundant satellite repeats occupy the unusually long (~20 megabase) terminal regions of each chromosome that coincide with high rates of recombination. Both embryonic and differentiated cells show reproducible associations of centromeric chromatin and of telomeres, reflecting a Rabl-like configuration. Our comparative analyses reveal 13 conserved ancestral anuran chromosomes from which contemporary frog genomes were constructed.
Collapse
Affiliation(s)
- Jessen V Bredeson
- Department of Molecular and Cell Biology, Weill Hall, University of California, Berkeley, CA, 94720, USA
- DOE-Joint Genome Institute, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Austin B Mudd
- Department of Molecular and Cell Biology, Weill Hall, University of California, Berkeley, CA, 94720, USA
| | - Sofia Medina-Ruiz
- Department of Molecular and Cell Biology, Weill Hall, University of California, Berkeley, CA, 94720, USA
| | - Therese Mitros
- Department of Molecular and Cell Biology, Weill Hall, University of California, Berkeley, CA, 94720, USA
| | - Owen Kabnick Smith
- Department of Biochemistry, Stanford University School of Medicine, 279 Campus Drive, Beckman Center 409, Stanford, CA, 94305-5307, USA
| | - Kelly E Miller
- Department of Molecular and Cell Biology, Weill Hall, University of California, Berkeley, CA, 94720, USA
| | - Jessica B Lyons
- Department of Molecular and Cell Biology, Weill Hall, University of California, Berkeley, CA, 94720, USA
| | - Sanjit S Batra
- Computer Science Division, University of California Berkeley, 2626 Hearst Avenue, Berkeley, CA, 94720, USA
| | - Joseph Park
- Department of Molecular and Cell Biology, Weill Hall, University of California, Berkeley, CA, 94720, USA
| | - Kodiak C Berkoff
- Department of Molecular and Cell Biology, Weill Hall, University of California, Berkeley, CA, 94720, USA
| | - Christopher Plott
- HudsonAlpha Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Jane Grimwood
- HudsonAlpha Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Jeremy Schmutz
- HudsonAlpha Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Guadalupe Aguirre-Figueroa
- Department of Biochemistry, Stanford University School of Medicine, 279 Campus Drive, Beckman Center 409, Stanford, CA, 94305-5307, USA
| | - Mustafa K Khokha
- Pediatric Genomics Discovery Program, Departments of Pediatrics and Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - Maura Lane
- Pediatric Genomics Discovery Program, Departments of Pediatrics and Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - Isabelle Philipp
- Department of Molecular and Cell Biology, Weill Hall, University of California, Berkeley, CA, 94720, USA
| | - Mara Laslo
- Department of Organismic and Evolutionary Biology, and Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA
| | - James Hanken
- Department of Organismic and Evolutionary Biology, and Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA
| | - Gwenneg Kerdivel
- Département Adaptation du Vivant, UMR 7221 CNRS, Muséum National d'Histoire Naturelle, Paris, France
| | - Nicolas Buisine
- Département Adaptation du Vivant, UMR 7221 CNRS, Muséum National d'Histoire Naturelle, Paris, France
| | - Laurent M Sachs
- Département Adaptation du Vivant, UMR 7221 CNRS, Muséum National d'Histoire Naturelle, Paris, France
| | - Daniel R Buchholz
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Taejoon Kwon
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Heidi Smith-Parker
- Department of Integrative Biology, Patterson Labs, 2401 Speedway, University of Texas, Austin, TX, 78712, USA
| | - Marcos Gridi-Papp
- Department of Biological Sciences, University of the Pacific, 3601 Pacific Avenue, Stockton, CA, 95211, USA
| | - Michael J Ryan
- Department of Integrative Biology, Patterson Labs, 2401 Speedway, University of Texas, Austin, TX, 78712, USA
| | - Robert D Denton
- Department of Molecular and Cell Biology and Institute of Systems Genomics, University of Connecticut, 181 Auditorium Road, Unit 3197, Storrs, CT, 06269, USA
| | - John H Malone
- Department of Molecular and Cell Biology and Institute of Systems Genomics, University of Connecticut, 181 Auditorium Road, Unit 3197, Storrs, CT, 06269, USA
| | - John B Wallingford
- Department of Molecular Biosciences, Patterson Labs, 2401 Speedway, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Aaron F Straight
- Department of Biochemistry, Stanford University School of Medicine, 279 Campus Drive, Beckman Center 409, Stanford, CA, 94305-5307, USA
| | - Rebecca Heald
- Department of Molecular and Cell Biology, Weill Hall, University of California, Berkeley, CA, 94720, USA
| | - Dirk Hockemeyer
- Department of Molecular and Cell Biology, Weill Hall, University of California, Berkeley, CA, 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, 94720, USA
- Chan-Zuckerberg BioHub, 499 Illinois Street, San Francisco, CA, 94158, USA
| | - Richard M Harland
- Department of Molecular and Cell Biology, Weill Hall, University of California, Berkeley, CA, 94720, USA
| | - Daniel S Rokhsar
- Department of Molecular and Cell Biology, Weill Hall, University of California, Berkeley, CA, 94720, USA.
- DOE-Joint Genome Institute, 1 Cyclotron Road, Berkeley, CA, 94720, USA.
- Innovative Genomics Institute, University of California, Berkeley, CA, 94720, USA.
- Chan-Zuckerberg BioHub, 499 Illinois Street, San Francisco, CA, 94158, USA.
- Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 9040495, Japan.
| |
Collapse
|
4
|
Hossain N, Igawa T, Suzuki M, Tazawa I, Nakao Y, Hayashi T, Suzuki N, Ogino H. Phenotype-genotype relationships in Xenopus sox9 crispants provide insights into campomelic dysplasia and vertebrate jaw evolution. Dev Growth Differ 2023; 65:481-497. [PMID: 37505799 DOI: 10.1111/dgd.12884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023]
Abstract
Since CRISPR-based genome editing technology works effectively in the diploid frog Xenopus tropicalis, a growing number of studies have successfully modeled human genetic diseases in this species. However, most of their targets were limited to non-syndromic diseases that exhibit abnormalities in a small fraction of tissues or organs in the body. This is likely because of the complexity of interpreting the phenotypic variations resulting from somatic mosaic mutations generated in the founder animals (crispants). In this study, we attempted to model the syndromic disease campomelic dysplasia (CD) by generating sox9 crispants in X. tropicalis. The resulting crispants failed to form neural crest cells at neurula stages and exhibited various combinations of jaw, gill, ear, heart, and gut defects at tadpole stages, recapitulating part of the syndromic phenotype of CD patients. Genotyping of the crispants with a variety of allelic series of mutations suggested that the heart and gut defects depend primarily on frame-shift mutations expected to be null, whereas the jaw, gill, and ear defects could be induced not only by such mutations but also by in-frame deletion mutations expected to delete part of the jawed vertebrate-specific domain from the encoded Sox9 protein. These results demonstrate that Xenopus crispants are useful for investigating the phenotype-genotype relationships behind syndromic diseases and examining the tissue-specific role of each functional domain within a single protein, providing novel insights into vertebrate jaw evolution.
Collapse
Affiliation(s)
- Nusrat Hossain
- Amphibian Research Center, Hiroshima University, Hiroshima, Japan
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Takeshi Igawa
- Amphibian Research Center, Hiroshima University, Hiroshima, Japan
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Makoto Suzuki
- Amphibian Research Center, Hiroshima University, Hiroshima, Japan
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Ichiro Tazawa
- Amphibian Research Center, Hiroshima University, Hiroshima, Japan
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Yuta Nakao
- Amphibian Research Center, Hiroshima University, Hiroshima, Japan
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Toshinori Hayashi
- Amphibian Research Center, Hiroshima University, Hiroshima, Japan
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Nanoka Suzuki
- Amphibian Research Center, Hiroshima University, Hiroshima, Japan
| | - Hajime Ogino
- Amphibian Research Center, Hiroshima University, Hiroshima, Japan
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
5
|
Omata K, Nomura I, Hirata A, Yonezuka Y, Muto H, Kuriki R, Jimbo K, Ogasa K, Kato T. Isolation and evaluation of erythroid progenitors in the livers of larval, froglet, and adult Xenopus tropicalis. Biol Open 2023; 12:bio059862. [PMID: 37421150 PMCID: PMC10399205 DOI: 10.1242/bio.059862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/28/2023] [Indexed: 07/09/2023] Open
Abstract
Xenopus liver maintains erythropoietic activity from the larval to the adult stage. During metamorphosis, thyroid hormone mediates apoptosis of larval-type erythroid progenitors and proliferation of adult-type erythroid progenitors, and a globin switch occurs during this time. In addition, the whole-body mass and the liver also change; however, whether there is a change in the absolute number of erythroid progenitors is unclear. To isolate and evaluate erythroid progenitors in the Xenopus liver, we developed monoclonal ER9 antibodies against the erythropoietin receptor (EPOR) of Xenopus. ER9 recognized erythrocytes, but not white blood cells or thrombocytes. The specificity of ER9 for EPOR manifested as its inhibitory effect on the proliferation of a Xenopus EPOR-expressing cell line. Furthermore, ER9 recognition was consistent with epor gene expression. ER9 staining with Acridine orange (AO) allowed erythrocyte fractionation through fluorescence-activated cell sorting. The ER9+ and AO-red (AOr)high fractions were highly enriched in erythroid progenitors and primarily localized to the liver. The method developed using ER9 and AO was also applied to larvae and froglets with different progenitor populations from adult frogs. The liver to body weight and the number of ER9+ AOrhigh cells per unit body weight were significantly higher in adults than in larvae and froglets, and the number of ER9+ AOrhigh cells per unit liver weight was the highest in froglets. Collectively, our results show increased erythropoiesis in the froglet liver and demonstrate growth-dependent changes in erythropoiesis patterns in specific organs of Xenopus.
Collapse
Affiliation(s)
- Kazuki Omata
- Department of Biology, School of Education, Waseda University, 2-2 Wakamatsu, Shinjuku, Tokyo 162-8480, Japan
- Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu, Shinjuku, Tokyo 162-8480, Japan
| | - Ikki Nomura
- Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu, Shinjuku, Tokyo 162-8480, Japan
| | - Akito Hirata
- Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu, Shinjuku, Tokyo 162-8480, Japan
| | - Yuka Yonezuka
- Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu, Shinjuku, Tokyo 162-8480, Japan
| | - Hiroshi Muto
- Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu, Shinjuku, Tokyo 162-8480, Japan
| | - Ryo Kuriki
- Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu, Shinjuku, Tokyo 162-8480, Japan
| | - Kirin Jimbo
- Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu, Shinjuku, Tokyo 162-8480, Japan
| | - Koujin Ogasa
- Department of Biology, School of Education, Waseda University, 2-2 Wakamatsu, Shinjuku, Tokyo 162-8480, Japan
| | - Takashi Kato
- Department of Biology, School of Education, Waseda University, 2-2 Wakamatsu, Shinjuku, Tokyo 162-8480, Japan
- Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu, Shinjuku, Tokyo 162-8480, Japan
| |
Collapse
|
6
|
Kitamura K, Yamamoto T, Ochi H, Suzuki M, Suzuki N, Igawa T, Yoshida T, Futakuchi M, Ogino H, Michiue T. Identification of tumor-related genes via RNA sequencing of tumor tissues in Xenopus tropicalis. Sci Rep 2023; 13:13214. [PMID: 37580380 PMCID: PMC10425369 DOI: 10.1038/s41598-023-40193-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/06/2023] [Indexed: 08/16/2023] Open
Abstract
Cancer treatment is still challenging because the disease is often caused by multiple mutations. Although genomic studies have identified many oncogenes and tumor suppressor genes, gene sets involved in tumorigenesis remain poorly understood. Xenopus, a genus of aquatic frogs, is a useful model to identify gene sets because it can be genetically and experimentally analyzed. Here, we analyzed gene expression in tumor tissues of three individuals in Xenopus tropicalis and identified 55 differentially expressed genes (DEGs). Gene ontology (GO) analysis showed that the upregulated genes in the tumor tissues were enriched in GO terms related to the extracellular matrix and collagen fibril organization. Hierarchical clustering showed that the gene expression patterns of tumor tissues in X. tropicalis were comparable to those of human connective, soft, and subcutaneous tissue-derived cancers. Additionally, pathway analysis revealed that these DEGs were associated with multiple pathways, including the extracellular matrix, collagen fibril organization, MET signaling, and keratan sulfate. We also found that the expression tendency of some DEGs that have not been well analyzed in the cancer field clearly determines the prognosis of human cancer patients. This study provides a remarkable reference for future experimental work on X. tropicalis to identify gene sets involved in human cancer.
Collapse
Affiliation(s)
- Kazuki Kitamura
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-Ku, Tokyo, 153-8902, Japan
| | - Takayoshi Yamamoto
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-Ku, Tokyo, 153-8902, Japan
| | - Haruki Ochi
- Institute for Promotion of Medical Science Research, Faculty of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata City, Yamagata, 990-9585, Japan
| | - Makoto Suzuki
- Amphibian Research Center, Hiroshima University, 1-3-2 Kagamiyama, Higashi-Hiroshima City, Hiroshima, 739-8511, Japan
| | - Nanoka Suzuki
- Amphibian Research Center, Hiroshima University, 1-3-2 Kagamiyama, Higashi-Hiroshima City, Hiroshima, 739-8511, Japan
| | - Takeshi Igawa
- Amphibian Research Center, Hiroshima University, 1-3-2 Kagamiyama, Higashi-Hiroshima City, Hiroshima, 739-8511, Japan
| | - Tadashi Yoshida
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-Ku, Tokyo, 153-8902, Japan
| | - Mitsuru Futakuchi
- Department of Pathology, Faculty of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata City, Yamagata, 990-9585, Japan
| | - Hajime Ogino
- Amphibian Research Center, Hiroshima University, 1-3-2 Kagamiyama, Higashi-Hiroshima City, Hiroshima, 739-8511, Japan
| | - Tatsuo Michiue
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-Ku, Tokyo, 153-8902, Japan.
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
7
|
Tada R, Higashidate T, Amano T, Ishikawa S, Yokoyama C, Kobari S, Nara S, Ishida K, Kawaguchi A, Ochi H, Ogino H, Yakushiji-Kaminatsui N, Sakamoto J, Kamei Y, Tamura K, Yokoyama H. The shh limb enhancer is activated in patterned limb regeneration but not in hypomorphic limb regeneration in Xenopus laevis. Dev Biol 2023:S0012-1606(23)00093-3. [PMID: 37247832 DOI: 10.1016/j.ydbio.2023.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/16/2023] [Accepted: 05/26/2023] [Indexed: 05/31/2023]
Abstract
Xenopus young tadpoles regenerate a limb with the anteroposterior (AP) pattern, but metamorphosed froglets regenerate a hypomorphic limb after amputation. The key gene for AP patterning, shh, is expressed in a regenerating limb of the tadpole but not in that of the froglet. Genomic DNA in the shh limb-specific enhancer, MFCS1 (ZRS), is hypermethylated in froglets but hypomethylated in tadpoles: shh expression may be controlled by epigenetic regulation of MFCS1. Is MFCS1 specifically activated for regenerating the AP-patterned limb? We generated transgenic Xenopus laevis lines that visualize the MFCS1 enhancer activity with a GFP reporter. The transgenic tadpoles showed GFP expression in hoxd13-and shh-expressing domains of developing and regenerating limbs, whereas the froglets showed no GFP expression in the regenerating limbs despite having hoxd13 expression. Genome sequence analysis and co-transfection assays using cultured cells revealed that Hoxd13 can activate Xenopus MFCS1. These results suggest that MFCS1 activation correlates with regeneration of AP-patterned limbs and that re-activation of epigenetically inactivated MFCS1 would be crucial to confer the ability to non-regenerative animals for regenerating a properly patterned limb.
Collapse
Affiliation(s)
- Reimi Tada
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan
| | - Takuya Higashidate
- Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, Aramaki-Aza-Aoba 6-3, Aoba-ku, Sendai, 980-8578, Japan
| | - Takanori Amano
- Next Generation Human Disease Model Team, RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| | - Shoma Ishikawa
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan
| | - Chifuyu Yokoyama
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan
| | - Suzu Kobari
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan
| | - Saki Nara
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan
| | - Koshiro Ishida
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan
| | - Akane Kawaguchi
- Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), Ikoma, Nara, Japan
| | - Haruki Ochi
- Institute for Promotion of Medical Science Research, Faculty of Medicine, Yamagata University, Yamagata, 990-9585, Japan
| | - Hajime Ogino
- Amphibian Research Center / Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagami-yama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Nayuta Yakushiji-Kaminatsui
- RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Joe Sakamoto
- Laboratory for Biothermology, National Institute for Basic, Biology, Myodaiji, Okazaki, Aichi, 444-8585, Japan; Biophotonics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute for Physiological Sciences, Higashiyama Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Yasuhiro Kamei
- Laboratory for Biothermology, National Institute for Basic, Biology, Myodaiji, Okazaki, Aichi, 444-8585, Japan; Department of Basic Biology in the School of Life Science of the Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, 444-8585, Japan
| | - Koji Tamura
- Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, Aramaki-Aza-Aoba 6-3, Aoba-ku, Sendai, 980-8578, Japan
| | - Hitoshi Yokoyama
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan.
| |
Collapse
|
8
|
Nakanishi K, Hasegawa N, Takeo K, Nakajima K, Furuno N, Tazawa I. Osteological and histological comparison of the development of the interphalangeal intercalary skeletal element between hyloid and ranoid anurans. Dev Growth Differ 2023; 65:100-108. [PMID: 36762977 DOI: 10.1111/dgd.12844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 12/13/2022] [Accepted: 01/11/2023] [Indexed: 02/11/2023]
Abstract
Some frog species have a unique skeletal element, referred to as the intercalary element (IE), in the joints between the terminal and subterminal phalanges of all digits. IEs are composed of cartilage or connective tissue and have a markedly differ shape than the phalanges. IEs are highly related to the arboreal lifestyle and toe pads. The IE is found only in neobatrachian frogs among anurans, suggesting that it is a novelty of Neobatrachia. IEs are widely distributed among multiple neobatrachian lineages and are found in the suborders Hyloides and Ranoides (the two major clades in Neobatrachia). However, it is unclear whether the IEs found in multiple linages resulted from convergent evolution. Therefore, in this study, we aimed to examine how similar or different the developmental trajectories of the IEs are between Hyloides and Ranoides. To that end, we compared the osteological and histological developmental processes of the IEs of the hyloid frog Dryophytes japonicus and the ranoid frog Zhangixalus schlegelii. Both species shared the same IE-initiation site and level of tissue differentiation around the IE when it began to form in tadpoles, although the IE developments initiated at different stages which were determined by external criteria. These results suggest that similar mechanisms drive IE formation in the digits of both species, supporting the hypothesis that the IEs did not evolve convergently.
Collapse
Affiliation(s)
| | - Nao Hasegawa
- Kindai University Hiroshima High School, Higashihiroshima, Japan
| | - Koichi Takeo
- Kindai University Hiroshima High School, Higashihiroshima, Japan
| | - Keisuke Nakajima
- Hiroshima University Amphibian Research Center, Higashihiroshima, Japan.,Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
| | - Nobuaki Furuno
- Hiroshima University Amphibian Research Center, Higashihiroshima, Japan.,Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
| | - Ichiro Tazawa
- Hiroshima University Amphibian Research Center, Higashihiroshima, Japan.,Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
| |
Collapse
|
9
|
Heaton A, Milligan E, Faulconer E, Allen A, Nguyen T, Weir SM, Glaberman S. Variation in copper sensitivity between laboratory and wild strains of Caenorhabditis elegans. CHEMOSPHERE 2022; 287:131883. [PMID: 34818820 DOI: 10.1016/j.chemosphere.2021.131883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Ecological risk assessments of chemicals are frequently based on laboratory toxicity data from a small number of model species that may be reared in labs for years or decades. These populations can undergo many processes in the lab including artificial selection, founder effect, and genetic drift, and may not adequately represent their wild counterparts, potentially undermining the goal of protecting natural populations. Here we measure variation in lethality to copper chloride among strains of an emerging model species in toxicology, Caenorhabditis elegans. We tested four wild strains from Chile, Germany, Kenya, and Madeira (Portugal) against several versions of the standard laboratory N2 strain from Bristol, UK used in molecular biology. The four wild strains were more sensitive than any of the N2 strains tested with copper. We also found that the standard N2 strain cultured in the laboratory for >1 year was less sensitive than a recently cultured N2 strain as well as a cataloged ancestral version of the N2 strain. These results suggest that toxicologists should be cognizant of performing toxicity testing with long-held animal cultures, and should perhaps use multiple strains as well as renew cultures periodically in the laboratory. This study also shows that multi-strain toxicity testing with nematodes is highly achievable and useful for understanding variation in intra- and interspecific chemical sensitivity.
Collapse
Affiliation(s)
- Andrew Heaton
- Department of Biology, University of South Alabama, Mobile, AL, USA; Grand Bay National Estuarine Research Reserve, Moss Point, MS, USA
| | - Emma Milligan
- Department of Biology, University of South Alabama, Mobile, AL, USA
| | | | - Andrew Allen
- Department of Biology, University of South Alabama, Mobile, AL, USA
| | - Timothy Nguyen
- Department of Biology, University of South Alabama, Mobile, AL, USA
| | - Scott M Weir
- Department of Biology, Queens University of Charlotte, Charlotte, NC, USA
| | - Scott Glaberman
- Department of Biology, University of South Alabama, Mobile, AL, USA; Department of Environmental Science & Policy, George Mason University, Fairfax, VA, USA.
| |
Collapse
|
10
|
Suzuki M, Igawa T, Suzuki N, Ogino H, Ochi H. Spontaneous neoplasia in the western clawed frog Xenopus tropicalis. MICROPUBLICATION BIOLOGY 2020; 2020. [PMID: 32908966 PMCID: PMC7474949 DOI: 10.17912/micropub.biology.000294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
| | | | | | | | - Haruki Ochi
- Institute for Promotion of Medical Science Research, Yamagata University, Faculty of Medicine
| |
Collapse
|
11
|
Mitros T, Lyons JB, Session AM, Jenkins J, Shu S, Kwon T, Lane M, Ng C, Grammer TC, Khokha MK, Grimwood J, Schmutz J, Harland RM, Rokhsar DS. A chromosome-scale genome assembly and dense genetic map for Xenopus tropicalis. Dev Biol 2019; 452:8-20. [PMID: 30980799 DOI: 10.1016/j.ydbio.2019.03.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 03/12/2019] [Accepted: 03/22/2019] [Indexed: 12/19/2022]
Abstract
The Western clawed frog Xenopus tropicalis is a diploid model system for both frog genetics and developmental biology, complementary to the paleotetraploid X. laevis. Here we report a chromosome-scale assembly of the X. tropicalis genome, improving the previously published draft genome assembly through the use of new assembly algorithms, additional sequence data, and the addition of a dense genetic map. The improved genome enables the mapping of specific traits (e.g., the sex locus or Mendelian mutants) and the characterization of chromosome-scale synteny with other tetrapods. We also report an improved annotation of the genome that integrates deep transcriptome sequence from diverse tissues and stages. The exon-intron structures of these genes are highly conserved relative to both X. laevis and human, as are chromosomal linkages ("synteny") and local gene order. A network analysis of developmental gene expression will aid future studies.
Collapse
Affiliation(s)
- Therese Mitros
- University of California, Berkeley, Department of Molecular and Cell Biology, Life Sciences Addition, Berkeley, CA 94720-3200, USA.
| | - Jessica B Lyons
- University of California, Berkeley, Department of Molecular and Cell Biology, Life Sciences Addition, Berkeley, CA 94720-3200, USA.
| | - Adam M Session
- Joint Genome Institute, 2800 Mitchell Dr # 100, Walnut Creek, CA 94598, USA.
| | - Jerry Jenkins
- Joint Genome Institute, 2800 Mitchell Dr # 100, Walnut Creek, CA 94598, USA; HudsonAlpha Institute of Biotechnology, 601 Genome Way, Huntsville, AL 35806, USA.
| | - Shengquiang Shu
- Joint Genome Institute, 2800 Mitchell Dr # 100, Walnut Creek, CA 94598, USA.
| | - Taejoon Kwon
- Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.
| | - Maura Lane
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, FMP 410, 333 Cedar St./LCI 305, New Haven, CT 06520, USA.
| | - Connie Ng
- University of California, Berkeley, Department of Molecular and Cell Biology, Life Sciences Addition, Berkeley, CA 94720-3200, USA.
| | - Timothy C Grammer
- University of California, Berkeley, Department of Molecular and Cell Biology, Life Sciences Addition, Berkeley, CA 94720-3200, USA.
| | - Mustafa K Khokha
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, FMP 410, 333 Cedar St./LCI 305, New Haven, CT 06520, USA.
| | - Jane Grimwood
- Joint Genome Institute, 2800 Mitchell Dr # 100, Walnut Creek, CA 94598, USA; HudsonAlpha Institute of Biotechnology, 601 Genome Way, Huntsville, AL 35806, USA.
| | - Jeremy Schmutz
- Joint Genome Institute, 2800 Mitchell Dr # 100, Walnut Creek, CA 94598, USA; HudsonAlpha Institute of Biotechnology, 601 Genome Way, Huntsville, AL 35806, USA.
| | - Richard M Harland
- University of California, Berkeley, Department of Molecular and Cell Biology, Life Sciences Addition, Berkeley, CA 94720-3200, USA.
| | - Daniel S Rokhsar
- University of California, Berkeley, Department of Molecular and Cell Biology, Life Sciences Addition, Berkeley, CA 94720-3200, USA; Joint Genome Institute, 2800 Mitchell Dr # 100, Walnut Creek, CA 94598, USA; Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 9040495, Japan.
| |
Collapse
|
12
|
Horb M, Wlizla M, Abu-Daya A, McNamara S, Gajdasik D, Igawa T, Suzuki A, Ogino H, Noble A, Robert J, James-Zorn C, Guille M. Xenopus Resources: Transgenic, Inbred and Mutant Animals, Training Opportunities, and Web-Based Support. Front Physiol 2019; 10:387. [PMID: 31073289 PMCID: PMC6497014 DOI: 10.3389/fphys.2019.00387] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 03/21/2019] [Indexed: 02/06/2023] Open
Abstract
Two species of the clawed frog family, Xenopus laevis and X. tropicalis, are widely used as tools to investigate both normal and disease-state biochemistry, genetics, cell biology, and developmental biology. To support both frog specialist and non-specialist scientists needing access to these models for their research, a number of centralized resources exist around the world. These include centers that hold live and frozen stocks of transgenic, inbred and mutant animals and centers that hold molecular resources. This infrastructure is supported by a model organism database. Here, we describe much of this infrastructure and encourage the community to make the best use of it and to guide the resource centers in developing new lines and libraries.
Collapse
Affiliation(s)
- Marko Horb
- National Xenopus Resource, Marine Biological Laboratory, Woods Hole, MA, United States
| | - Marcin Wlizla
- National Xenopus Resource, Marine Biological Laboratory, Woods Hole, MA, United States
| | - Anita Abu-Daya
- European Xenopus Resource Centre, Portsmouth, United Kingdom
| | - Sean McNamara
- National Xenopus Resource, Marine Biological Laboratory, Woods Hole, MA, United States
| | - Dominika Gajdasik
- School of Biological Sciences, King Henry Building, Portsmouth, United Kingdom
| | - Takeshi Igawa
- Amphibian Research Center, Hiroshima University, Higashihiroshima, Japan
| | - Atsushi Suzuki
- Amphibian Research Center, Hiroshima University, Higashihiroshima, Japan
| | - Hajime Ogino
- Amphibian Research Center, Hiroshima University, Higashihiroshima, Japan
| | - Anna Noble
- European Xenopus Resource Centre, Portsmouth, United Kingdom
| | | | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Christina James-Zorn
- Xenbase, Division of Developmental Biology, Cincinnati Children's Research Foundation, Cincinnati, OH, United States
| | - Matthew Guille
- European Xenopus Resource Centre, Portsmouth, United Kingdom.,School of Biological Sciences, King Henry Building, Portsmouth, United Kingdom
| |
Collapse
|
13
|
Otsuka-Yamaguchi R, Kawasumi-Kita A, Kudo N, Izutsu Y, Tamura K, Yokoyama H. Cells from subcutaneous tissues contribute to scarless skin regeneration in Xenopus laevis froglets. Dev Dyn 2017; 246:585-597. [PMID: 28618059 DOI: 10.1002/dvdy.24520] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 05/01/2017] [Accepted: 05/01/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Mammals cannot regenerate the dermis and other skin structures after an injury and instead form a scar. However, a Xenopus laevis froglet can regenerate scarless skin, including the dermis and secretion glands, on the limbs and trunk after skin excision. Subcutaneous tissues in the limbs and trunk consist mostly of muscles. Although subcutaneous tissues beneath a skin injury appear disorganized, the cellular contribution of these underlying tissues to skin regeneration remains unclear. RESULTS We crossed the inbred J strain with a green fluorescent protein (GFP)-labeled transgenic Xenopus line to obtain chimeric froglets that have GFP-negative skin and GFP-labeled subcutaneous tissues and are not affected by immune rejection after metamorphosis. We found that GFP-positive cells from subcutaneous tissues contributed to regenerating the skin, especially the dermis, after an excision injury. We also showed that the skin on the head, which is over bone rather than muscle, can also completely regenerate skin structures. CONCLUSIONS Cells derived from subcutaneous tissues, at least in the trunk region, contribute to and may be essential for skin regeneration. Characterizing the subcutaneous tissue-derived cells that contribute to skin regeneration in amphibians may lead to the induction of cells that can regenerate complete skin structures without scarring in mammals. Developmental Dynamics 246:585-597, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rina Otsuka-Yamaguchi
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Aiko Kawasumi-Kita
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Nanako Kudo
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan
| | - Yumi Izutsu
- Department of Biology, Faculty of Science, Niigata University, Niigata, Japan
| | - Koji Tamura
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Hitoshi Yokoyama
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan.,Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan
| |
Collapse
|
14
|
Igawa T, Nozawa M, Suzuki DG, Reimer JD, Morov AR, Wang Y, Henmi Y, Yasui K. Evolutionary history of the extant amphioxus lineage with shallow-branching diversification. Sci Rep 2017; 7:1157. [PMID: 28442709 PMCID: PMC5430900 DOI: 10.1038/s41598-017-00786-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 03/13/2017] [Indexed: 01/20/2023] Open
Abstract
Amphioxus or lancelets have been regarded as a key animal in understanding the origin of vertebrates. However, the evolutionary history within this lineage remains unexplored. As the amphioxus lineage has likely been separated from other chordates for a very long time and displays a marked left-right asymmetry, its evolutionary history is potentially helpful in better understanding chordate and vertebrate origins. We studied the phylogenetic relationships within the extant amphioxus lineage based on mitochondrial genomes incorporating new Asymmetron and Epigonichthys populations, and based on previously reported nuclear transcriptomes. The resulting tree patterns are consistent, showing the Asymmetron clade diverging first, followed by the Epigonichthys and Branchiostoma clades splitting. Divergence time estimates based on nuclear transcriptomes with vertebrate calibrations support a shallow diversification of the extant amphioxus lineage in the Tertiary. These estimates fit well with the closure of seaways between oceans by continental drift, ocean currents, and present geographical distributions, and suggest a long cryptic history from the origin of amphioxus to its most recent diversification. Deduced character polarities based on phylogenetic analyses suggest that the common ancestor of the extant amphioxus existed in a tiny epibenthic state with larva-like appearance of extant amphioxus, likely with ciliate epidermis.
Collapse
Affiliation(s)
- Takeshi Igawa
- Amphibian Research Center, Hiroshima University, 1-3-1 Kagamiyama, Higashi-hiroshima, Hiroshima, 739-8529, Japan
| | - Masafumi Nozawa
- Department of Biological Sciences, School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachioji, Tokyo, 192-0397, Japan
| | - Daichi G Suzuki
- Department of Biological Sciences, Graduate School of Life and Environmental Sciences, Tsukuba University, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan.,Nobel Institute for Neurophysiology, Department of Neuroscience, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - James D Reimer
- Department of Biology, Chemistry & Marine Sciences, Faculty of Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan
| | - Arseniy R Morov
- Department of Biological Science, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-hiroshima, Hiroshima, 739-8526, Japan.,Depertment of Zoology and General Biology, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., Kazan, 420008, Republic of Tatarstan, Russian Federation
| | - Yiquan Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Yasuhisa Henmi
- Aitsu Marine Station, Center for Marine Environmental Studies, Kumamoto University, 6061 Aitsu, Kami-Amakusa, Kumamoto, 861-6102, Japan
| | - Kinya Yasui
- Department of Biological Science, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-hiroshima, Hiroshima, 739-8526, Japan.
| |
Collapse
|
15
|
Suzuki KIT, Suzuki M, Shigeta M, Fortriede JD, Takahashi S, Mawaribuchi S, Yamamoto T, Taira M, Fukui A. Clustered Xenopus keratin genes: A genomic, transcriptomic, and proteomic analysis. Dev Biol 2016; 426:384-392. [PMID: 27842699 DOI: 10.1016/j.ydbio.2016.10.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 10/21/2016] [Accepted: 10/26/2016] [Indexed: 01/21/2023]
Abstract
Keratin genes belong to the intermediate filament superfamily and their expression is altered following morphological and physiological changes in vertebrate epithelial cells. Keratin genes are divided into two groups, type I and II, and are clustered on vertebrate genomes, including those of Xenopus species. Various keratin genes have been identified and characterized by their unique expression patterns throughout ontogeny in Xenopus laevis; however, compilation of previously reported and newly identified keratin genes in two Xenopus species is required for our further understanding of keratin gene evolution, not only in amphibians but also in all terrestrial vertebrates. In this study, 120 putative type I and II keratin genes in total were identified based on the genome data from two Xenopus species. We revealed that most of these genes are highly clustered on two homeologous chromosomes, XLA9_10 and XLA2 in X. laevis, and XTR10 and XTR2 in X. tropicalis, which are orthologous to those of human, showing conserved synteny among tetrapods. RNA-Seq data from various embryonic stages and adult tissues highlighted the unique expression profiles of orthologous and homeologous keratin genes in developmental stage- and tissue-specific manners. Moreover, we identified dozens of epidermal keratin proteins from the whole embryo, larval skin, tail, and adult skin using shotgun proteomics. In light of our results, we discuss the radiation, diversification, and unique expression of the clustered keratin genes, which are closely related to epidermal development and terrestrial adaptation during amphibian evolution, including Xenopus speciation.
Collapse
Affiliation(s)
- Ken-Ichi T Suzuki
- Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan.
| | - Miyuki Suzuki
- Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Mitsuki Shigeta
- Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Joshua D Fortriede
- Xenbase, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Shuji Takahashi
- Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Shuuji Mawaribuchi
- Kitasato Institute for Life Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Takashi Yamamoto
- Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Masanori Taira
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Akimasa Fukui
- Laboratory of Tissue and Polymer Sciences, Faculty of Advanced Life Science, Hokkaido University, N10W8, Sapporo 060-0810, Japan.
| |
Collapse
|