1
|
Gupta A, Purohit R. Identification of potent BRD4-BD1 inhibitors using classical and steered molecular dynamics based free energy analysis. J Cell Biochem 2024; 125:e30532. [PMID: 38317535 DOI: 10.1002/jcb.30532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/08/2024] [Accepted: 01/26/2024] [Indexed: 02/07/2024]
Abstract
In the present work a combination of traditional and steered molecular dynamics based techniques were employed to identify potential inhibitors against the human BRD4 protein (BRD4- BD1); an established drug target for multiple illnesses including various malignancies. Quinoline derivatives that were synthesized in-house were tested for their potential as new BRD4-BD1 inhibitors. Initially molecular docking experiments were performed to determine the binding poses of BRD4-BD1 inhibitors. To learn more about the thermodynamics of inhibitor binding to the BRD4-BD1 active site, the Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) free energy calculations were conducted afterwards. The findings of the MM-PBSA analysis were further reinforced by performing steered umbrella sampling simulations which revealed crucial details about the binding/unbinding process of the most potent quinoline derivatives at the BRD4-BD1 active site. We report a novel quinoline derivative which can be developed into a fully functional BRD4-BD1 inhibitor after experimental validation. The identified compound (4 g) shows better properties than the standard BRD4-BD1 inhibitors considered in the study. The study also highlights the crucial role of Gln78, Phe79, Trp81, Pro82, Phe83, Gln84, Gln85, Val87, Leu92, Leu94, Tyr97, Met105, Cys136, Asn140, Ile146 and Met149 in inhibitor binding. The study provides a possible lead candidate and key amino acids involved in inhibitor recognition and binding at the active site of BRD4-BD1 protein. The findings might be of significance to medicinal chemists involved in the development of potent BRD4-BD1 inhibitors.
Collapse
Affiliation(s)
- Ashish Gupta
- Structural Bioinformatics Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, India
| | - Rituraj Purohit
- Structural Bioinformatics Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
2
|
Windaryanti D, Gabriel CS, Hidayat IW, Zainuddin A, Dharsono HDA, Satari MH, Kurnia D. The Potential of 24-Propylcholestrol as Antibacterial Oral Bacteria of Enterococcus faecalis ATCC 29212 and Inhibitor Biofilms Formation: in vitro and in silico Study. Adv Appl Bioinform Chem 2022; 15:99-111. [PMID: 36578792 PMCID: PMC9792223 DOI: 10.2147/aabc.s372337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction Uncontrolled biofilm can cause several diseases such as dental caries, gingivitis, and periodontitis. Dental caries is a disease caused by the accumulation of plaque-containing pathogenic bacteria, including Enterococcus faecalis. These bacteria infect the root canals of teeth and colonize to form biofilms. Biofilm inhibition is carried out by interfering with cell wall formation metabolism. MurA enzyme has a role in peptidoglycan biosynthesis of cell walls. Enterococcal surface protein (Esp) is the main contributor of E. faecalis to form biofilms. In addition, inhibition of biofilms by interfering with the quorum sensing (QS) system, suppressing gelatinase virulence factors by blocking autoinducers gelatinase biosynthesis-activating pheromone (GBAP). Purpose Knowing the potential of Piper betel Linn. compounds as antibacterial in vitro and antibiofilm agents against E. faecalis in silico. Patients and Methods The compounds were purified by a bioactivity-guided chromatographic method. Antibacterial activity was tested by disc diffusion method, in vitro studies. In silico study, compound P. betel L. was used as the test ligand and compared with positive control fosfomycin, ambuic acid, quercetin, and taxifolin. The proteins used MurA, Esp, GBAP, and gelatinase were docking with the Autodock Vina PyRx 0.8 followed by the PYMOL program and visualized with the Discovery Studio 2020 program. Results An antibacterial compound was identified 24-propylcholesterol which can inhibit the activity of E. faecalis ATCC 29212 with MIC value of 78.1 µg/mL and MBC value of 156.3 µg/mL. Molecular docking results showed the binding affinity of 24-propylcholesterol with MurA, ESP, GBAP, and gelatinase enzymes was -7.6, -8.7, -5.3, and -7.9 kcal/mol. Conclusion 24-propylcholesterol has potential as an antibacterial against E. faecalis and as an antibiofilm through in silico inhibition of QS. However, further research is needed in vitro and in vivo to determine the effectiveness of these compounds as antibacterial and antibiofilm.
Collapse
Affiliation(s)
- Devi Windaryanti
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang, Indonesia
| | - Christine Sondang Gabriel
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang, Indonesia
| | - Ika Wiani Hidayat
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang, Indonesia
| | - Achmad Zainuddin
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang, Indonesia
| | - Hendra Dian Adhita Dharsono
- Department of Conservative Dentistry, Faculty of Dentistry, Universitas Padjadjaran, Bandung, Jawa Barat, Indonesia
| | - Mieke Hemiawati Satari
- Department of Oral Biology, Faculty of Dentistry, Universitas Padjadjaran, Bandung, Jawa Barat, Indonesia
| | - Dikdik Kurnia
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang, Indonesia,Correspondence: Dikdik Kurnia, Jl. Raya Bandung Sumedang km.21, Hegarmanah, Jatinangor, Kabupaten Sumedang, Sumedang, Jawa Barat, 45363, Indonesia, Tel/Fax +022 7794391, Email
| |
Collapse
|
3
|
Darwati, Nurlelasari, Mayanti T, Ambardhani N, Kurnia D. Morelloflavone as Potential Anticancer Agent Against MCF-7 Breast
Cancer Cell Lines: In vitro and In silico Studies. LETT DRUG DES DISCOV 2022. [DOI: 10.2174/1570180818666210706110538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background:
Breast cancer is most commonly reported to contribute to people's death. Nowadays,
cancer treatment is focused on investigating anticancer drugs from natural compounds. Various
methods, including in vitro, in vivo, and in silico methods, are used to assess the potential of anticancer
compounds. The efficacy of bioactive compounds from medicinal plant origin lies in their affordability
and minimized side effects. The Garcinia genus contains bioactive compounds, such as xanthones, benzophenones,
triterpenes, biflavonoids, and benzoquinones.
Purpose:
The study aimed at investigating an active compound that can inhibit cancer cell growth and
proteins that contribute to cancer cell growth, such as Caspase-9, TNF-α, ER-α, and HER-2.
Methods:
This study is divided into three steps. The first step is the isolation of the active compound from
G. cymosa. The second step is an assessment of cytotoxic activity against MCF-7 cell by using MTT assay,
and the last one is an investigation of the molecular mechanism of an active compound against
Caspase-9, TNF-α, ER-α, and HER-2 by using in silico studies utilizing various programs, such as PyRx
0.8, PYMOL, and Discovery Studio.
Results:
Morelloflavone from G. cymosa stem barks has exhibited anticancer activity (55.84 μg/mL)
eight times lower than doxorubicin (6.99 μg/mL), but it can block the activity of Caspase-9, TNF-α, ER-
α, and HER-2. The binding affinity of morelloflavone is the strongest of all ligands.
Conclusion:
The natural flavonoid, morelloflavone, may be a new lead candidate for anticancer agent
inhibiting action mechanism of Caspase-9, TNF-α, ER-α, and HER-2, respectively.
Collapse
Affiliation(s)
- Darwati
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjdjaran, Jatinangor 45363,
Jawa Barat, Indonesia
| | - Nurlelasari
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjdjaran, Jatinangor 45363,
Jawa Barat, Indonesia
| | - Tri Mayanti
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjdjaran, Jatinangor 45363,
Jawa Barat, Indonesia
| | - Nurul Ambardhani
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjdjaran, Jatinangor 45363,
Jawa Barat, Indonesia
| | - Dikdik Kurnia
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjdjaran, Jatinangor 45363,
Jawa Barat, Indonesia
| |
Collapse
|
4
|
Bio-Mechanism of Catechin as Pheromone Signal Inhibitor: Prediction of Antibacterial Agent Action Mode by In Vitro and In Silico Study. Molecules 2021; 26:molecules26216381. [PMID: 34770790 PMCID: PMC8587927 DOI: 10.3390/molecules26216381] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 11/24/2022] Open
Abstract
The utilization of medicinal plants has long been explored for the discovery of antibacterial agents and the most effective mechanisms or new targets that can prevent and control the spread of antibiotic resistance. One kind of bacterial cell wall inhibition is the inactivation of the MurA enzyme that contributes to the formation of peptidoglycan. Another approach is to interfere with the cell–cell communication of bacteria called the Quorum sensing (QS) system. The blocking of auto-inducer such as gelatinase biosynthesis-activating pheromone (GBAP) can also suppress the virulence factors of gelatinase and serine protease. This research, in particular, aims to analyze lead compounds as antibacterial and anti-QS agents from Gambir (Uncaria gambir Roxburgh) through protein inhibition by in silico study. Antibacterial agents were isolated by bioactivity-guided isolation using a combination of chromatographic methods, and their chemical structures were determined by spectroscopic analysis methods. The in vitro antibacterial activity was evaluated by disc diffusion methods to determine inhibitory values. Meanwhile, in the in silico analysis, the compound of Uncaria gambir was used as ligand and compared with fosfomycin, ambuic acid, quercetin, and taxifolin as the standard ligand. These ligands were attached to MurA, GBAP, gelatinase, and serine proteases using Autodock Vina in PyRx 0.8 followed by PYMOL for combining the ligand conformation and proteins. plus programs to explore the complex, and visualized by Discovery Studio 2020 Client program. The antibacterial agent was identified as catechin that showed inhibitory activity against Enterococcus faecalis ATCC 29212 with inhibition zones of 11.70 mm at 10%, together with MIC and MBC values of 0.63 and 1.25 μg/mL, respectively. In the in silico study, the molecular interaction of catechin with MurA, GBAP, and gelatinase proteins showed good binding energy compared with two positive controls, namely fosfomycin and ambuic acid. It is better to use catechin–MurA (−8.5 Kcal/mol) and catechin–gelatinase (−7.8 Kcal/mol), as they have binding energies which are not marginally different from quercetin and taxifolin. On the other hand, the binding energy of serine protease is lower than quercetin, taxifolin, and ambuic acid. Based on the data, catechin has potency as an antibacterial through the inhibition of GBAP proteins, gelatinase, and serine protease that play a role in the QS system. This is the first discovery of the potential of catechin as an alternative antibacterial agent with an effective mechanism to prevent and control oral disease affected by antibiotic resistance.
Collapse
|
5
|
Rocha-Santos A, Chaves EJ, Grillo IB, de Freitas AS, Araújo DAM, Rocha GB. Thermochemical and Quantum Descriptor Calculations for Gaining Insight into Ricin Toxin A (RTA) Inhibitors. ACS OMEGA 2021; 6:8764-8777. [PMID: 33842748 PMCID: PMC8027999 DOI: 10.1021/acsomega.0c02588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 12/30/2020] [Indexed: 05/03/2023]
Abstract
In this work, we performed a study to assess the interactions between the ricin toxin A (RTA) subunit of ricin and some of its inhibitors using modern semiempirical quantum chemistry and ONIOM quantum mechanics/molecular mechanics (QM/MM) methods. Two approaches were followed (calculation of binding enthalpies, ΔH bind, and reactivity quantum chemical descriptors) and compared with the respective half-maximal inhibitory concentration (IC50) experimental data, to gain insight into RTA inhibitors and verify which quantum chemical method would better describe RTA-ligand interactions. The geometries for all RTA-ligand complexes were obtained after running classical molecular dynamics simulations in aqueous media. We found that single-point energy calculations of ΔH bind with the PM6-DH+, PM6-D3H4, and PM7 semiempirical methods and ONIOM QM/MM presented a good correlation with the IC50 data. We also observed, however, that the correlation decreased significantly when we calculated ΔH bind after full-atom geometry optimization with all semiempirical methods. Based on the results from reactivity descriptors calculations for the cases studied, we noted that both types of interactions, molecular overlap and electrostatic interactions, play significant roles in the overall affinity of these ligands for the RTA binding pocket.
Collapse
Affiliation(s)
- Acassio Rocha-Santos
- Department
of Chemistry, Federal University of Paraíba, Cidade Universitária, João Pessoa, PB 58051-900, Brazil
| | - Elton José
Ferreira Chaves
- Department
of Biotechnology, Federal University of
Paraíba, Cidade Universitária, João Pessoa, PB 58051-900, Brazil
| | - Igor Barden Grillo
- Department
of Chemistry, Federal University of Paraíba, Cidade Universitária, João Pessoa, PB 58051-900, Brazil
| | - Amanara Souza de Freitas
- Department
of Chemical Engineering, Federal University
of Paraíba, Cidade Universitária, João Pessoa, PB 58051-900, Brazil
| | | | - Gerd Bruno Rocha
- Department
of Chemistry, Federal University of Paraíba, Cidade Universitária, João Pessoa, PB 58051-900, Brazil
- . Phone/Fax: +55-83-3216-7437
| |
Collapse
|
6
|
Yarla NS, Pathuri G, Gali H, Terzyan S, Panneerselvam J, Chandrakesan P, Scotti MT, Houchen C, Madka V, Rao CV. Discovery and Development of a Novel mPGES-1/5-LOX Dual Inhibitor LFA-9 for Prevention and Treatment of Chronic Inflammatory Diseases. J Inflamm Res 2021; 13:1261-1278. [PMID: 33408499 PMCID: PMC7781011 DOI: 10.2147/jir.s286110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/01/2020] [Indexed: 01/22/2023] Open
Abstract
Background Non-steroidal anti-inflammatory drugs, cyclooxygenase (COX)-2 selective inhibitors, have been explored for prevention and treatment of several inflammatory chronic conditions including arthritis, and cancer. However, the long-term use of these drugs is associated with gastrointestinal, renal, and cardiovascular side effects. Later, COX/5-lipoxygenase (5-LOX) dual inhibitors (eg, licofelone) have been developed but did not enter into the market from the clinical trails due to COX-1/2 inhibition-associated side effects. Hence, targeting microsomal prostaglandin E synthase-1 (mPGES-1) and 5-LOX can be an ideal approach while sparing COX-1/2 activities for development of the next generation of anti-inflammatory drugs with better efficacy and safety. Materials and Methods In silico (molecular modelling) studies were used to design a mPGES-1/5-LOX dual inhibitory and COX-1/2 sparing lead molecule licofelone analogue-9 (LFA-9) by modifying the pharmacophore of licofelone. In vitro cell-free enzymatic (mPGES-1, 5-LOX, COX-1/2) assays using fluorometric/colorimetric methods and cell-based assays (LPS-induced PGE2, LTB4, and PGI2 productions from macrophages) using ELISA technique, isothermal calorimetry, and circular dichroism techniques were performed to determine the mPGES-1/5-LOX inhibitory efficacy and selectivity. Anti-inflammatory efficacy of LFA-9 was evaluated using a carrageenan (inflammogen)-induced rat paw edema model. Infiltration/expression of CD68 immune cells and TNF-α in paw tissues were evaluated using confocal microscope and immunoblot analysis. Anti-cancer effect of LFA-9 was evaluated using colon spheroids in vitro. Results LFA-9 inhibited mPGES-1/5-LOX and their products PGE2 and LTB4, spared COX-1/2 and its product PGI2. LFA-9 bound strongly with human mPGES-1/5-LOX enzymes and induced changes in their secondary structure, thereby inhibited their enzymatic activities. LFA-9 inhibited carrageenan-induced inflammation (70.4%) in rats and suppressed CD68 immune cell infiltration (P ≤ 0.0001) and TNF-α expression. LFA-9 suppressed colon tumor stemness (60.2%) in vitro through inhibition of PGE2 (82%) levels. Conclusion Overall study results suggest that LFA-9 is a mPGES-1/5-LOX dual inhibitor and showed anti-inflammatory and colorectal cancer preventive activities, and warranted detailed studies.
Collapse
Affiliation(s)
- Nagendra Sastri Yarla
- Center for Cancer Prevention and Drug Development, Hem-Onc Section, Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Gopal Pathuri
- Center for Cancer Prevention and Drug Development, Hem-Onc Section, Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.,College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Hariprasad Gali
- College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Simon Terzyan
- Laboratory of Biomolecular Structure and Function; Department of Biochemistry and Molecular Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Janani Panneerselvam
- Center for Cancer Prevention and Drug Development, Hem-Onc Section, Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Parthasarathy Chandrakesan
- Division of Digestive Diseases and Nutrition, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Marcus Tullius Scotti
- Laboratory of Cheminformatics, Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Courtney Houchen
- Division of Digestive Diseases and Nutrition, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Venkateshwar Madka
- Center for Cancer Prevention and Drug Development, Hem-Onc Section, Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Chinthalapally V Rao
- Center for Cancer Prevention and Drug Development, Hem-Onc Section, Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.,VA Medical Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
7
|
Kurnia D, Hutabarat GS, Windaryanti D, Herlina T, Herdiyati Y, Satari MH. Potential Allylpyrocatechol Derivatives as Antibacterial Agent Against Oral Pathogen of S. sanguinis ATCC 10,556 and as Inhibitor of MurA Enzymes: in vitro and in silico Study. Drug Des Devel Ther 2020; 14:2977-2985. [PMID: 32801638 PMCID: PMC7396738 DOI: 10.2147/dddt.s255269] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Streptococcus sanguinis is Gram-positive bacteria that contribute to caries. Many antibacterial agents are resistant against bacteria so that the discovery of new antibacterial agents is a crucial issue. Mechanism of antibacterial agents by disrupting cell wall bacteria is a promising target to be developed. One of the enzymes contributing to the cell wall is MurA enzyme. MurA is an enzyme catalyzing the first step of peptidoglycan biosynthesis in the cell wall formation. Inhibiting MurA is an effective and efficient way to kill the bacteria. Source of bioactive compounds including the antibacterial agent can be found in natural product such as herbal plant. Piper betle L. was reported to contain active antibacterial compounds. However, there is no more information on the antibacterial activity and molecular mechanism of P. betle's compound against S. sanguinis. PURPOSE The study aims to identify antibacterial constituents of P. betle L. and evaluate their activities through two different methods including in vitro and in silico analysis. MATERIALS AND METHODS The antibacterial agent was purified by bioactivity-guided isolation with combination chromatography methods and the chemical structure was determined by spectroscopic methods. The in vitro antibacterial activity was evaluated by disc diffusion and dilution methods while the in silico study of a compound binds on the MurA was determined using PyRx program. RESULTS The antibacterial compound identified as allylpyrocatechol showed inhibitory activity against S. sanguinis with an inhibition zone of 11.85 mm at 1%, together with MIC and MBC values of 39.1 and 78.1 μg/mL, respectively. Prediction for molecular inhibition mechanism of allylpyrocatechols against the MurA presented two allylpyrocatechol derivatives showing binding activity of -5.4, stronger than fosfomycin as a reference with the binding activity of -4.6. CONCLUSION Two allylpyrocatechol derivatives were predicted to have a good potency as a novel natural antibacterial agent against S. sanguinis through blocking MurA activity that causes disruption of bacterial cell wall.
Collapse
Affiliation(s)
- Dikdik Kurnia
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang, Indonesia
| | - Geofanny Sarah Hutabarat
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang, Indonesia
| | - Devi Windaryanti
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang, Indonesia
| | - Tati Herlina
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang, Indonesia
| | - Yetty Herdiyati
- Department of Pediatric Dentistry, Faculty of Dentistry, Universitas Padjadjaran, Bandung, Indonesia
| | - Mieke Hemiawati Satari
- Department of Oral Biology, Faculty of Dentistry, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
8
|
Dos Santos Maia M, Soares Rodrigues GC, Silva Cavalcanti AB, Scotti L, Scotti MT. Consensus Analyses in Molecular Docking Studies Applied to Medicinal Chemistry. Mini Rev Med Chem 2020; 20:1322-1340. [PMID: 32013847 DOI: 10.2174/1389557520666200204121129] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 02/08/2023]
Abstract
The increasing number of computational studies in medicinal chemistry involving molecular docking has put the technique forward as promising in Computer-Aided Drug Design. Considering the main method in the virtual screening based on the structure, consensus analysis of docking has been applied in several studies to overcome limitations of algorithms of different programs and mainly to increase the reliability of the results and reduce the number of false positives. However, some consensus scoring strategies are difficult to apply and, in some cases, are not reliable due to the small number of datasets tested. Thus, for such a methodology to be successful, it is necessary to understand why, when and how to use consensus docking. Therefore, the present study aims to present different approaches to docking consensus, applications, and several scoring strategies that have been successful and can be applied in future studies.
Collapse
Affiliation(s)
- Mayara Dos Santos Maia
- Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraiba, Joao Pessoa-PB, Brazil
| | - Gabriela Cristina Soares Rodrigues
- Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraiba, Joao Pessoa-PB, Brazil
| | - Andreza Barbosa Silva Cavalcanti
- Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraiba, Joao Pessoa-PB, Brazil
| | - Luciana Scotti
- Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraiba, Joao Pessoa-PB, Brazil
| | - Marcus Tullius Scotti
- Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraiba, Joao Pessoa-PB, Brazil
| |
Collapse
|
9
|
Hou X, Rooklin D, Yang D, Liang X, Li K, Lu J, Wang C, Xiao P, Zhang Y, Sun JP, Fang H. Computational Strategy for Bound State Structure Prediction in Structure-Based Virtual Screening: A Case Study of Protein Tyrosine Phosphatase Receptor Type O Inhibitors. J Chem Inf Model 2018; 58:2331-2342. [PMID: 30299094 DOI: 10.1021/acs.jcim.8b00548] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Accurate protein structure in the ligand-bound state is a prerequisite for successful structure-based virtual screening (SBVS). Therefore, applications of SBVS against targets for which only an apo structure is available may be severely limited. To address this constraint, we developed a computational strategy to explore the ligand-bound state of a target protein, by combined use of molecular dynamics simulation, MM/GBSA binding energy calculation, and fragment-centric topographical mapping. Our computational strategy is validated against low-molecular weight protein tyrosine phosphatase (LMW-PTP) and then successfully employed in the SBVS against protein tyrosine phosphatase receptor type O (PTPRO), a potential therapeutic target for various diseases. The most potent hit compound GP03 showed an IC50 value of 2.89 μM for PTPRO and possessed a certain degree of selectivity toward other protein phosphatases. Importantly, we also found that neglecting the ligand energy penalty upon binding partially accounts for the false positive SBVS hits. The preliminary structure-activity relationships of GP03 analogs are also reported.
Collapse
Affiliation(s)
- Xuben Hou
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology of Natural Products (MOE), School of Pharmacy , Shandong University , Jinan , Shandong 250012 , China.,Department of Chemistry , New York University , New York , New York 10003 , United States
| | - David Rooklin
- Department of Chemistry , New York University , New York , New York 10003 , United States
| | - Duxiao Yang
- Key Laboratory of Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Medicine , Shandong University , Jinan , Shandong 250012 , China
| | - Xiao Liang
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology of Natural Products (MOE), School of Pharmacy , Shandong University , Jinan , Shandong 250012 , China
| | - Kangshuai Li
- Key Laboratory of Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Medicine , Shandong University , Jinan , Shandong 250012 , China
| | - Jianing Lu
- Department of Chemistry , New York University , New York , New York 10003 , United States
| | - Cheng Wang
- Department of Chemistry , New York University , New York , New York 10003 , United States
| | - Peng Xiao
- Key Laboratory of Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Medicine , Shandong University , Jinan , Shandong 250012 , China
| | - Yingkai Zhang
- Department of Chemistry , New York University , New York , New York 10003 , United States.,NYU-ECNU Center for Computational Chemistry , New York University-Shanghai , Shanghai 200122 , China
| | - Jin-Peng Sun
- Key Laboratory of Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Medicine , Shandong University , Jinan , Shandong 250012 , China
| | - Hao Fang
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology of Natural Products (MOE), School of Pharmacy , Shandong University , Jinan , Shandong 250012 , China
| |
Collapse
|
10
|
Lopes MD, Oliveira FM, Coelho IEV, Passos MJF, Alves CC, Taranto AG, Júnior MC, Santos LL, Fonseca CT, Villar JAFP, Lopes DO. Epitopes rationally selected through computational analyses induce T‐cell proliferation in mice and are recognized by serum from individuals infected with
Schistosoma mansoni. Biotechnol Prog 2017; 33:804-814. [DOI: 10.1002/btpr.2463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 03/03/2017] [Indexed: 01/04/2023]
Affiliation(s)
- Marcelo D. Lopes
- Laboratório de Biologia Molecular, Universidade Federal de São João del‐Rei, Rua Sebastião Gonçalves CoelhoDivinópolis MG Brasil
| | - Flávio M. Oliveira
- Laboratório de Biologia Molecular, Universidade Federal de São João del‐Rei, Rua Sebastião Gonçalves CoelhoDivinópolis MG Brasil
| | - Ivan E. V. Coelho
- Laboratório de Química Farmacêutica, Universidade Federal de São João del‐ReiDivinópolis MGBrasil
| | - Maria J. F. Passos
- Laboratório de Síntese Orgânica e Nanoestruturas, Universidade Federal de São João del‐ReiDivinópolis MG Brasil
| | - Clarice C. Alves
- Grupo de Pesquisa em Biologia Parasitária e Imunologia, Centro de Pesquisas René Rachou, Fundação Oswaldo CruzBelo Horizonte MG30190‐002 Brasil
| | - Alex G. Taranto
- Laboratório de Química Farmacêutica, Universidade Federal de São João del‐ReiDivinópolis MGBrasil
| | - Moacyr C. Júnior
- Laboratório de Química Farmacêutica, Universidade Federal de São João del‐ReiDivinópolis MGBrasil
| | - Luciana L. Santos
- Laboratório de Biologia Molecular, Universidade Federal de São João del‐Rei, Rua Sebastião Gonçalves CoelhoDivinópolis MG Brasil
| | - Cristina T. Fonseca
- Grupo de Pesquisa em Biologia Parasitária e Imunologia, Centro de Pesquisas René Rachou, Fundação Oswaldo CruzBelo Horizonte MG30190‐002 Brasil
| | - José A. F. P. Villar
- Laboratório de Síntese Orgânica e Nanoestruturas, Universidade Federal de São João del‐ReiDivinópolis MG Brasil
| | - Débora O. Lopes
- Laboratório de Biologia Molecular, Universidade Federal de São João del‐Rei, Rua Sebastião Gonçalves CoelhoDivinópolis MG Brasil
| |
Collapse
|
11
|
Trypanocidal Effect of Isotretinoin through the Inhibition of Polyamine and Amino Acid Transporters in Trypanosoma cruzi. PLoS Negl Trop Dis 2017; 11:e0005472. [PMID: 28306713 PMCID: PMC5371382 DOI: 10.1371/journal.pntd.0005472] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 03/29/2017] [Accepted: 03/09/2017] [Indexed: 12/04/2022] Open
Abstract
Polyamines are essential compounds to all living organisms and in the specific case of Trypanosoma cruzi, the causative agent of Chagas disease, they are exclusively obtained through transport processes since this parasite is auxotrophic for polyamines. Previous works reported that retinol acetate inhibits Leishmania growth and decreases its intracellular polyamine concentration. The present work describes a combined strategy of drug repositioning by virtual screening followed by in vitro assays to find drugs able to inhibit TcPAT12, the only polyamine transporter described in T. cruzi. After a screening of 3000 FDA-approved drugs, 7 retinoids with medical use were retrieved and used for molecular docking assays with TcPAT12. From the docked molecules, isotretinoin, a well-known drug used for acne treatment, showed the best interaction score with TcPAT12 and was selected for further in vitro studies. Isotretinoin inhibited the polyamine transport, as well as other amino acid transporters from the same protein family (TcAAAP), with calculated IC50 values in the range of 4.6–10.3 μM. It also showed a strong inhibition of trypomastigote burst from infected cells, with calculated IC50 of 130 nM (SI = 920) being significantly less effective on the epimastigote stage (IC50 = 30.6 μM). The effect of isotretinoin on the parasites plasma membrane permeability and on mammalian cell viability was tested, and no change was observed. Autophagosomes and apoptotic bodies were detected as part of the mechanisms of isotretinoin-induced death indicating that the inhibition of transporters by isotretinoin causes nutrient starvation that triggers autophagic and apoptotic processes. In conclusion, isotretinoin is a promising trypanocidal drug since it is a multi-target inhibitor of essential metabolites transporters, in addition to being an FDA-approved drug largely used in humans, which could reduce significantly the requirements for its possible application in the treatment of Chagas disease. Polyamines are polycationic compounds essential for the regulation of cell growth and differentiation. In contrast with other protozoa, Trypanosoma cruzi, the etiological agent of Chagas disease, is auxotrophic for polyamines; therefore the intracellular availability of these molecules depends exclusively on transport processes. It was previously demonstrated that the lack of polyamines in T. cruzi leads to its death, making the polyamine transporter an excellent therapeutic target for Chagas disease. In this work, the polyamine permease TcPAT12 was selected as a target for drug screening using 3000 FDA-approved compounds and computational simulation techniques. Using two combined virtual screening methods, isotretinoin, a well-known and safe drug used for acne treatment, bound to substrate recognition residues of TcPAT12 and was chosen for further in vitro studies. Isotretinoin inhibited not only the polyamine transport but also all tested amino acid transporters from the same protein family as TcPAT12. Interestingly, isotretinoin showed a high trypanocidal effect on trypomastigotes, with an IC50 in the nanomolar range. Autophagy and apoptosis were proposed as mechanisms of parasites death induced by isotretinoin. These results suggest that isotretinoin is a promising trypanocidal drug, being a multi-target inhibitor of essential metabolites transporters.
Collapse
|
12
|
Gupta A, Aparoy P. Insights into the structure activity relationship of mPGES-1 inhibitors: Hints for better inhibitor design. Int J Biol Macromol 2016; 88:624-32. [DOI: 10.1016/j.ijbiomac.2016.03.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 03/19/2016] [Accepted: 03/19/2016] [Indexed: 10/22/2022]
|