1
|
Zhang J, Pan Z, Zhou J, Zhang L, Tang J, Gong S, Li F, Yu B, Zhang Y, Kou J. The myosin II inhibitor, blebbistatin, ameliorates pulmonary endothelial barrier dysfunction in acute lung injury inducedB19 by LPS via NMMHC IIA/Wnt5a/β-catenin pathway. Toxicol Appl Pharmacol 2022; 450:116132. [PMID: 35716767 PMCID: PMC9527152 DOI: 10.1016/j.taap.2022.116132] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022]
Abstract
Acute lung injury (ALI) or its most advanced form, acute respiratory distress syndrome (ARDS), is a severe inflammatory pulmonary process triggered by varieties of pathophysiological factors, among which endothelial barrier disruption plays a critical role in the progression of ALI/ARDS. As an inhibitor of myosin II, blebbistatin inhibits endothelial barrier damage. This study aimed to investigate the effect of blebbistatin on lung endothelial barrier dysfunction in LPS induced acute lung injury and its potential mechanism. Mice were challenged with LPS (5 mg/kg) by intratracheal instillation for 6 h to disrupt the pulmonary endothelial barrier in the model group. Blebbistatin (5 mg/kg, ip) was administrated 1 h before LPS challenge. The results showed that blebbistatin could significantly attenuate LPS-induced lung injury and pulmonary endothelial barrier dysfunction. And we observed that blebbistatin inhibited the activation of NMMHC IIA/Wnt5a/β-catenin pathway in pulmonary endothelium after LPS treatment. In murine lung vascular endothelial cells (MLECs) and human umbilical vein endothelial cells (HUVECs), we further confirmed that Blebbistatin (1 μmol/L) markedly ameliorated endothelial barrier dysfunction in MLECs and HUVECs by modulating NMMHC IIA/Wnt5a/β-catenin pathway. Our data demonstrated that blebbistatin could inhibit the development of pulmonary endothelial barrier dysfunction and ALI via NMMHC IIA/Wnt5a/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Jiazhi Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Ziqian Pan
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jianhao Zhou
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Ling Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jiahui Tang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Shuaishuai Gong
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Fang Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Boyang Yu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yuanyuan Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Junping Kou
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
2
|
Li T, Chan RW, Lee CL, Chiu PC, Li RH, Ng EH, Yeung WS. WNT5A Interacts With FZD5 and LRP5 to Regulate Proliferation and Self-Renewal of Endometrial Mesenchymal Stem-Like Cells. Front Cell Dev Biol 2022; 10:837827. [PMID: 35295855 PMCID: PMC8919396 DOI: 10.3389/fcell.2022.837827] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/06/2022] [Indexed: 12/22/2022] Open
Abstract
Endometrial mesenchymal stem-like cells (eMSC) reside in the basal layer of the endometrium and are responsible for cyclic regeneration during the reproductive lives of women. Myometrial cells act as a component of the niche and regulate the stem cell fate through the activation of WNT/β-catenin signaling via WNT5A. Since WNT5A-responsive mechanisms on eMSC are still uncertain, we hypothesize that the WNT ligand–WNT5A works to activate WNT/β-catenin signaling through binding to Frizzled receptors (FZDs) and co-receptor low-density lipoprotein receptor-related protein 5 (LRP5). Among the various receptors that have been reported to interact with WNT5A, we found FZD5 abundantly expressed by eMSC when compared to unfractionated stromal cells. Neutralizing the protein expression by using anti-FZD5 antibody suppressed the stimulatory effects on phenotypic expression and the clonogenicity of eMSC in a myometrial cell–eMSC co-culture system as well as in an L-Wnt5a conditioned medium. Gene silencing of FZD5 not only reduced the binding of WNT5A to eMSC but also decreased the TCF/LEF transcriptional activities and expression of active β-catenin. Inhibition of LRP coreceptors with recombinant Dickkopf-1 protein significantly reduced the binding affinity of eMSC to WNT5A as well as the proliferation and self-renewal activity. During postpartum remodeling in mouse endometrium, active β-catenin (ABC) was detected in label-retaining stromal cells (LRSCs), and these ABC+ LRSCs express FZD5 and LRP5, suggesting the activation of WNT/β-catenin signaling. In conclusion, our findings demonstrate the interaction of WNT5A, FZD5, and LRP5 in regulating the proliferation and self-renewal of eMSC through WNT/β-catenin signaling.
Collapse
Affiliation(s)
- Tianqi Li
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Rachel W.S. Chan
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong Shenzhen Hospital, Shenzhen, China
- *Correspondence: Rachel W S. Chan, ; William S B. Yeung,
| | - Cheuk-Lun Lee
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong Shenzhen Hospital, Shenzhen, China
| | - Philip C.N. Chiu
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong Shenzhen Hospital, Shenzhen, China
| | - Raymond H.W. Li
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong Shenzhen Hospital, Shenzhen, China
| | - Ernest H.Y. Ng
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong Shenzhen Hospital, Shenzhen, China
| | - William S.B. Yeung
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong Shenzhen Hospital, Shenzhen, China
- *Correspondence: Rachel W S. Chan, ; William S B. Yeung,
| |
Collapse
|
3
|
Zhang Y, Jiang W, Xia Q, Lin J, Xu J, Zhang S, Tian L, Han X. Construction of a potential microRNA and messenger RNA regulatory network of acute lung injury in mice. Sci Rep 2022; 12:777. [PMID: 35039607 PMCID: PMC8763866 DOI: 10.1038/s41598-022-04800-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 01/03/2022] [Indexed: 12/23/2022] Open
Abstract
Acute lung injury (ALI) is a life-threatening clinical condition associated with critically ill patients, and the construction of potential microRNA (miRNA) and messenger RNA (mRNA) regulatory networks will help to fully elucidate its underlying molecular mechanisms. First, we screened fifteen upregulated differentially expressed miRNAs (DE-miRNAs) and six downregulated DE-miRNAs from the Gene Expression Omnibus (GEO) database. Then, the predicted target genes of the upregulated and downregulated DE-miRNAs were identified from the miRNet database. Subsequently, differentially expressed mRNAs (DE-mRNAs) were identified from the GEO database and subjected to combined analysis with the predicted DE-miRNA target genes. Eleven target genes of the upregulated DE-miRNAs and one target gene of the downregulated DE-miRNAs were screened out. To further validate the prediction results, we randomly selected a dataset for subsequent analysis and found some accurate potential miRNA-mRNA regulatory axes, including mmu-mir-7b-5p-Gria1, mmu-mir-486a-5p-Shc4 and mmu-mir-486b-5p-Shc4 pairs. Finally, mir-7b and its target gene Gria1 and mir-486b and its target gene Shc4 were further validated in a bleomycin-induced ALI mouse model. We established a potential miRNA-mRNA regulatory network of ALI in mice, which may provide a basis for basic and clinical research on ALI and advance the available treatment options.
Collapse
Affiliation(s)
- Yufeng Zhang
- Department of Respiratory Medicine, Jiangyin Hospital of Traditional Chinese Medicine, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, 214400, China
| | - Weilong Jiang
- Department of Respiratory Medicine, Jiangyin Hospital of Traditional Chinese Medicine, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, 214400, China
| | - Qingqing Xia
- Department of Respiratory Medicine, Jiangyin Hospital of Traditional Chinese Medicine, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, 214400, China
| | - Jinfeng Lin
- Department of Critical Care Medicine, Nantong Third People's Hospital, Nantong University, Nantong, 226001, China
| | - Junxian Xu
- Department of Critical Care Medicine, Nantong Third People's Hospital, Nantong University, Nantong, 226001, China
| | - Suyan Zhang
- Department of Critical Care Medicine, Nantong Third People's Hospital, Nantong University, Nantong, 226001, China
| | - Lijun Tian
- Department of Critical Care Medicine, Nantong Third People's Hospital, Nantong University, Nantong, 226001, China.
| | - Xudong Han
- Department of Critical Care Medicine, Nantong Third People's Hospital, Nantong University, Nantong, 226001, China.
| |
Collapse
|
4
|
Wang X, Zhang Q, Yan Y, Yang Y, Shang X, Li Y. Clinical Significance of Pro-inflammatory Cytokines and Their Correlation with Disease Severity and Blood Coagulation in Septic Patients with Bacterial Co-infection. Shock 2021; 56:396-402. [PMID: 34398126 DOI: 10.1097/shk.0000000000001735] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE To evaluate the clinical significance of pro-inflammatory cytokines for disease severity and coagulation in septic patients with bacterial co-infection. METHODS A total of 92 patients with sepsis admitted to intensive care unit (ICU) from January 2017 to August 2020 were enrolled and their clinical data were retrospectively analyzed. Forty-seven patients (51.1%) had a single infection by Klebsiella pneumoniae or Acinetobacter baumannii (single-infection group), and 45 patients (48.9%) were infected by both species (co-infection group). We compared the clinical characteristics and disease severity among the 92 patients. Disease severity was defined as ICU stay time and 30-day mortality. Plasma concentrations of pro-inflammatory cytokines and their correlation with disease severity and blood coagulation were analyzed. RESULTS The 30-day mortality in the co-infection group (35.5%) was significantly higher than in the single-infection group (19.1%). The levels of IL-6 and TNF-α in the co-infection group were higher than in the single-infection group. Moreover, high levels of IL-6, IL-8, and TNF-α were positively correlated with disease severity (Spearman P value < 0.05). High levels of IL-6 and TNF-α were negatively correlated with the platelet count (Spearman P value < 0.05) and positively correlated with prothrombin time, and plasma levels of fibrin degradation product and D-dimer levels (Spearman P value < 0.05 for all). CONCLUSION Septic patients with bacterial co-infection had increased plasma levels of pro-inflammatory cytokines. Furthermore, a positive correlation between high levels of pro-inflammatory cytokines and increased disease severity and depressed blood coagulation function for septic patients with co-infection was identified.
Collapse
Affiliation(s)
- Xin Wang
- Academy of Military Medical Sciences, Beijing, China
- Department of Critical Care Medicine, Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Qi Zhang
- Academy of Military Medical Sciences, Beijing, China
- The Sixth Health Care Department, Second Medical Center of PLA General Hospital, Beijing, China
| | - Yong Yan
- Department of Critical Care Medicine, Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Yang Yang
- Department of Critical Care Medicine, Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Xueyi Shang
- Department of Critical Care Medicine, Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Yan Li
- Department of Critical Care Medicine, Fifth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
5
|
Huang HC, Hsiao TS, Liao MH, Tsao CM, Shih CC, Wu CC. Low-dose hydralazine improves endotoxin-induced coagulopathy and multiple organ dysfunction via its anti-inflammatory and anti-oxidative/nitrosative properties. Eur J Pharmacol 2020; 882:173279. [PMID: 32561290 DOI: 10.1016/j.ejphar.2020.173279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/01/2020] [Accepted: 06/10/2020] [Indexed: 11/30/2022]
Abstract
Coagulopathy is the major cause of organ injury as well as a strong predictor of mortality in septic patients. Systemic inflammatory response and redox imbalance are regarded as the major causes of sepsis-induced coagulopathy. There is growing evidence that a vasodilator hydralazine has beneficial effects on heart failure, hypertension, and ischemia/reperfusion injury via its antioxidant and anti-inflammatory properties. However, the effects of hydralazine on sepsis have not been examined. Therefore, we evaluated the effects of low-dose hydralazine on coagulopathy and multiple organ dysfunction in septic rats induced by endotoxin. Sepsis-induced coagulopathy was established by intravenous injection of rats with lipopolysaccharide (LPS). The changes of blood pressure, heart rate, blood glucose, hemostatic variables, prothrombin time, organ function indices, interleukin-6 (IL-6) concentration, and nitric oxide (NO) level were assessed during the experimental period. In addition, the aortas, lungs, livers, and kidneys were dissected to analyze superoxide levels and protein expressions. LPS induced (i) coagulopathy, multiple organ dysfunction, and circulatory failure successfully, and (ii) excessive superoxide, NO, and IL-6 production, accompanied by the overexpression of iNOS and Wnt5a in animals. Treatment of LPS-induced septic rats with low-dose hydralazine not only improved coagulopathy but also ameliorated multiple organ dysfunction. These could be due to attenuation of the overproduction of superoxide, NO, and IL-6, which were attributed to reduction of the overexpression of iNOS and Wnt5a. Thus, these findings indicate that low-dose hydralazine could be a potential therapy for sepsis-induced coagulopathy and multiple organ dysfunction via its anti-inflammatory and anti-oxidative/nitrosative properties.
Collapse
Affiliation(s)
- Hsieh-Chou Huang
- Department of Anesthesiology and Pain Medicine, Cheng-Hsin General Hospital, Taipei, Taiwan
| | - Tsan-Seng Hsiao
- Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan; Department of Pharmacy, Taichung Armed Forces General Hospital, Taichung, Taiwan
| | - Mei-Hui Liao
- Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan
| | - Cheng-Ming Tsao
- Department of Anesthesiology, Taipei Veterans General Hospital and National Yang-Ming University, Taipei, Taiwan
| | - Chih-Chin Shih
- Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan; Department of Pharmacy Practice, Tri-Service General Hospital, Taipei, Taiwan.
| | - Chin-Chen Wu
- Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan; Department of Pharmacy Practice, Tri-Service General Hospital, Taipei, Taiwan.
| |
Collapse
|
6
|
Yang D, Li S, Duan X, Ren J, Liang S, Yakoumatos L, Kang Y, Uriarte SM, Shang J, Li W, Wang H. TLR4 induced Wnt3a-Dvl3 restrains the intensity of inflammation and protects against endotoxin-driven organ failure through GSK3β/β-catenin signaling. Mol Immunol 2020; 118:153-164. [PMID: 31884387 PMCID: PMC7035959 DOI: 10.1016/j.molimm.2019.12.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Accumulating evidence suggests a regulatory role of Wnt proteins in innate immune responses. However, the effects of Wnt3a signaling on TLR4-mediated inflammatory responses are controversial and the signaling crosstalk between TLR4 and Wnt3a remains uncertain. METHODS Gain- and Loss- of function approaches were utilized to determine the function of Wnt3a signaling in TLR4-mediated inflammatory responses. Cytokine production at protein and mRNA levels and phosphorylation of signaling molecules were measured by ELISA, qRT-PCR, and Western Blot, respectively. Endotoxemia mouse model was employed to assess the effect of Wnt3a on systemic inflammatory cytokine levels and neutrophil infiltration. RESULTS LPS stimulation leads to an increase of Wnt3a expression and its downstream molecule, Dvl3, in primary monocytes. Inhibition or silence of Wnt3a or Dvl3 significantly increases the production of pro-inflammatory cytokines (IL-12, IL-6, TNFα), robustly reduces β-catenin accumulation, and enhances the phosphorylation of NF-κB P65 and its DNA binding activity. These results were confirmed by multiple gain- and loss- of function approaches including specific siRNA and ectopic expression of Dvl3, GSK3β, and β-catenin in monocytes. Moreover, in vivo relevance was established in a murine endotoxin model, in which Wnt3a inhibition enhances the inflammatory responses by augmenting the systemic pro-inflammatory cytokine levels and neutrophil infiltration. CONCLUSIONS TLR4 activation promotes Wnt3a-Dvl3 signaling, which acts as rheostats to restrain the intensity of inflammation through regulating GSK3β-β-catenin signaling and NF-κB activity. GENERAL SIGNIFICANCE Wnt3a-Dvl3-β-catenin signaling axis could be a potential interventional target for manipulating the direction and intensity of inflammatory responses.
Collapse
Affiliation(s)
- Dongqiang Yang
- Department of Infectious Diseases, Henan Provincial People's Hospital (People's Hospital of Zhengzhou University), Zhengzhou 450003, China
| | - ShuJian Li
- Department of Neurology, Henan Provincial People's Hospital (People's Hospital of Zhengzhou University), Zhengzhou 450003, China
| | - Xiaoxian Duan
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Junling Ren
- VCU Philips Institute for Oral Health Research, Virginia Commonwealth University School of Dentistry, Department of Oral and Craniofacial Molecular Biology, Richmond, VA, USA
| | - Shuang Liang
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Lan Yakoumatos
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Yi Kang
- Department of Infectious Diseases, Henan Provincial People's Hospital (People's Hospital of Zhengzhou University), Zhengzhou 450003, China
| | - Silvia M Uriarte
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Jia Shang
- Department of Infectious Diseases, Henan Provincial People's Hospital (People's Hospital of Zhengzhou University), Zhengzhou 450003, China
| | - Wei Li
- Department of Neurology, Henan Provincial People's Hospital (People's Hospital of Zhengzhou University), Zhengzhou 450003, China
| | - Huizhi Wang
- VCU Philips Institute for Oral Health Research, Virginia Commonwealth University School of Dentistry, Department of Oral and Craniofacial Molecular Biology, Richmond, VA, USA.
| |
Collapse
|
7
|
Modulation of GSK - 3β/β - catenin cascade by commensal bifidobateria plays an important role for the inhibition of metaflammation-related biomarkers in response to LPS or non-physiological concentrations of fructose: An in vitro study. PHARMANUTRITION 2019. [DOI: 10.1016/j.phanu.2019.100145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
8
|
Mehmeti M, Bergenfelz C, Källberg E, Millrud CR, Björk P, Ivars F, Johansson-Lindbom B, Kjellström S, André I, Leandersson K. Wnt5a is a TLR2/4-ligand that induces tolerance in human myeloid cells. Commun Biol 2019; 2:176. [PMID: 31098409 PMCID: PMC6509336 DOI: 10.1038/s42003-019-0432-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 04/18/2019] [Indexed: 01/12/2023] Open
Abstract
Innate immune responses are rapid, dynamic and highly regulated to avoid overt reactions. This regulation is executed by innate immune tolerance mechanisms that remain obscure. Wnt5a is a signalling protein mainly involved in developmental processes and cancer. The effect of Wnt5a on inflammatory myeloid cells is controversial. Here, we combine primary cell cultures, in vitro binding studies, mass spectrometry and Drosophila protein modelling to show that Wnt5a is a direct ligand of toll-like receptor (TLR) 2 and 4. The binding promotes a MyD88-non-canonical nuclear factor of kappa B (NFκB) and AP-1 signalling cascade, with contradictory profiles in mouse (pro-inflammatory) and human (anti-inflammatory) myeloid immune cells. These data reveal that the true nature of Wnt5a in inflammatory cells, is to regulate TLR signals, and in human myeloid cells it acts as an endogenous, tolerance-associated molecular pattern (TAMP), inducing IL-10 and innate immune tolerance.
Collapse
Affiliation(s)
- Meliha Mehmeti
- Cancer Immunology, Department of Translational Medicine, Lund University, Malmö, 21428 Sweden
| | - Caroline Bergenfelz
- Cancer Immunology, Department of Translational Medicine, Lund University, Malmö, 21428 Sweden
- Experimental Infection Medicine, Department of Translational Medicine, Lund University, Malmö, 21428 Sweden
| | - Eva Källberg
- Cancer Immunology, Department of Translational Medicine, Lund University, Malmö, 21428 Sweden
- Immunology Unit, Department of Experimental Medicine, Lund University, Lund, 22184 Sweden
| | - Camilla Rydberg Millrud
- Cancer Immunology, Department of Translational Medicine, Lund University, Malmö, 21428 Sweden
| | - Per Björk
- Active Biotech AB, Lund, 22007 Sweden
| | - Fredrik Ivars
- Immunology Unit, Department of Experimental Medicine, Lund University, Lund, 22184 Sweden
| | | | - Sven Kjellström
- Centre of Excellence in Biological and Medical Mass Spectrometry, Lund University, Lund, 22184 Sweden
| | - Ingemar André
- Center for Molecular Protein Science, Lund University, Lund, 22362 Sweden
| | - Karin Leandersson
- Cancer Immunology, Department of Translational Medicine, Lund University, Malmö, 21428 Sweden
| |
Collapse
|
9
|
Cui W, Zhang Z, Zhang P, Qu J, Zheng C, Mo X, Zhou W, Xu L, Yao H, Gao J. Nrf2 attenuates inflammatory response in COPD/emphysema: Crosstalk with Wnt3a/β-catenin and AMPK pathways. J Cell Mol Med 2018; 22:3514-3525. [PMID: 29659176 PMCID: PMC6010849 DOI: 10.1111/jcmm.13628] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 03/09/2018] [Indexed: 12/17/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by persistent airflow limitation and abnormal inflammatory response. Wnt/β-catenin and AMP-activated protein kinase (AMPK) have been shown to modulate lung inflammatory responses and injury. However, it remains elusive whether Wnt/β-catenin and AMPK modulate nuclear factor erythroid-2 related factor-2 (Nrf2)-mediated protective responses during the development of emphysema. Here we showed that treatment with a Wnt pathway activator (LiCl) reduced elastase-induced airspace enlargement and cigarette smoke extract (CSE)-induced lung inflammatory responses in WT mice, which was associated with increased activation of Nrf2 pathway. Interestingly, these effects of LiCl were not observed in Nrf2-/- mice exposed to elastase. In normal human bronchial epithelial (NHBE) cells, Wnt3a overexpression up-regulated, whereas Wnt3a knockdown further down-regulated the levels of Nrf2 and its target proteins heme oxygenase-1 (HO-1) and NAD(P)H: quinone oxidoreductase 1 (NQO1) by CSE treatment. In contrast, Nrf2 deficiency did not have any effects on Wnt/β-catenin pathway in mouse lungs and NHBE cells. Both elastase and CSE exposures reduced AMPK phosphorylation. A specific AMPK activator metformin increased Wnt3a, β-catenin, Nrf2 phosphorylation and activation but reduced the levels of IL-6 and IL-8 in NHBE cells and mouse lungs exposed to CSE. Furthermore, Nrf2 deficiency abolished the protection of metformin against CSE-induced increase in IL-6 and IL-8 in NHBE cells. In conclusion, Nrf2 mediates the protective effects of both Wnt3a/β-catenin and AMPK on lung inflammatory responses during the development of COPD/emphysema. These findings provide potential therapeutic targets for the intervention of COPD/emphysema.
Collapse
Affiliation(s)
- Wenhui Cui
- First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.,Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.,General Hospital of Datong Coal Mining Group, Datong, Shanxi, China
| | - Zhihui Zhang
- First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.,Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Panpan Zhang
- School of Pharmacy, Dalian Medical University, Dalian, Liaoning, China
| | - Jiao Qu
- School of Pharmacy, Dalian Medical University, Dalian, Liaoning, China
| | - Cheng Zheng
- First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xiaoting Mo
- First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Wencheng Zhou
- First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Liang Xu
- First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Hongwei Yao
- Department of Critical Care and Pulmonary Medicine, Shanxi Medical University Second Hospital, Taiyuan, Shanxi, China
| | - Jian Gao
- First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.,Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
10
|
Anti-aging factor, serum alpha-Klotho, as a marker of acute physiological stress, and a predictor of ICU mortality, in patients with septic shock. J Crit Care 2017; 44:323-330. [PMID: 29268200 DOI: 10.1016/j.jcrc.2017.11.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/09/2017] [Accepted: 11/15/2017] [Indexed: 02/07/2023]
Abstract
PURPOSE Genetic deletions decreasing serum alpha-Klotho (alpha-KL) have been associated with rapid aging, multi-organ failure and increased mortality in experimental sepsis. We hypothesized that lower alpha-KL obtained at the onset of septic shock correlates with higher mortality. MATERIALS AND METHODS Prospective cohort of 104 adult patients with septic shock. Alpha-KL was measured via ELISA on serum collected on the day of enrollment (within 72h from the onset of shock). Relationship between alpha-KL and clinical outcome measures was evaluated in uni- and multi-variable models. RESULTS Median (IQR) alpha-KL was 816 (1020.4) pg/mL and demonstrated a bimodal distribution with two distinct populations, Cohort A [n=97, median alpha-KL 789.3 (767.1)] and Cohort B [n=7, median alpha-KL 4365.1(1374.4), >1.5 IQR greater than Cohort A]. Within Cohort A, ICU non-survivors had significantly higher serum alpha-KL compared to survivors as well as significantly higher APACHE II and SOFA scores, rates of mechanical ventilation, and serum BUN, creatinine, calcium, phosphorus and lactate (all p≤0.05). Serum alpha-KL≥1005, the highest tertile, was an independent predictor of ICU mortality when controlling for co-variates (p=0.028, 95% CI 1.143-11.136). CONCLUSIONS Elevated serum alpha-KL in patients with septic shock is independently associated with higher mortality. Further studies are needed to corroborate these findings.
Collapse
|
11
|
Brandenburg J, Reiling N. The Wnt Blows: On the Functional Role of Wnt Signaling in Mycobacterium tuberculosis Infection and Beyond. Front Immunol 2016; 7:635. [PMID: 28082976 PMCID: PMC5183615 DOI: 10.3389/fimmu.2016.00635] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 12/12/2016] [Indexed: 12/01/2022] Open
Abstract
In recent years, it has become apparent that the Wnt signaling pathway, known for its essential functions in embryonic development and tissue homeostasis, exerts immunomodulatory functions during inflammation and infection. Most functional studies indicate that Wnt5a exerts pro-inflammatory functions on its cellular targets, which include various types of immune and non-immune cells. Wnt5a expression has also been linked to the pathogenesis of chronic inflammatory diseases. Activation of beta-catenin-dependent Wnt signaling, e.g., by Wnt3a, has however been shown to limit inflammation by interfering with the nuclear factor kappa-light chain-enhancer of activated B-cells (NF-kappaB) pathway. This review focuses on the regulation of Wnt5a, Wnt3a, and the recently identified Wnt6 and their functional role in bacterial infections with a primary focus on pulmonary tuberculosis, a leading infectious cause of morbidity and mortality worldwide.
Collapse
Affiliation(s)
- Julius Brandenburg
- Microbial Interface Biology, Priority Research Area Infections, Research Center Borstel, Leibniz Center for Medicine and Biosciences, Borstel, Germany
| | - Norbert Reiling
- Microbial Interface Biology, Priority Research Area Infections, Research Center Borstel, Leibniz Center for Medicine and Biosciences, Borstel, Germany
| |
Collapse
|
12
|
Zhang J, Shao Y, He D, Zhang L, Xu G, Shen J. Evidence that bone marrow-derived mesenchymal stem cells reduce epithelial permeability following phosgene-induced acute lung injury via activation of wnt3a protein-induced canonical wnt/β-catenin signaling. Inhal Toxicol 2016; 28:572-579. [PMID: 27644345 DOI: 10.1080/08958378.2016.1228720] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Jing Zhang
- Department of Intensive Care Unit, Center of Emergency & Intensive Care Unit, Jinshan Hospital, Fudan University, Shanghai, China,
- Department of Intensive Care Unit, Medical Research Center of Chemical Injury, Jinshan Hospital, Fudan University, Shanghai, China,
- Department of Intensive Care Unit, Medical Center of Radiation Injury, Jinshan Hospital, Fudan University, Shanghai, China, and
| | - Yiru Shao
- Department of Intensive Care Unit, Center of Emergency & Intensive Care Unit, Jinshan Hospital, Fudan University, Shanghai, China,
- Department of Intensive Care Unit, Medical Research Center of Chemical Injury, Jinshan Hospital, Fudan University, Shanghai, China,
- Department of Intensive Care Unit, Medical Center of Radiation Injury, Jinshan Hospital, Fudan University, Shanghai, China, and
| | - Daikun He
- Department of Intensive Care Unit, Center of Emergency & Intensive Care Unit, Jinshan Hospital, Fudan University, Shanghai, China,
- Department of Intensive Care Unit, Medical Research Center of Chemical Injury, Jinshan Hospital, Fudan University, Shanghai, China,
- Department of Intensive Care Unit, Medical Center of Radiation Injury, Jinshan Hospital, Fudan University, Shanghai, China, and
| | - Lin Zhang
- Department of Intensive Care Unit, Center of Emergency & Intensive Care Unit, Jinshan Hospital, Fudan University, Shanghai, China,
- Department of Intensive Care Unit, Medical Research Center of Chemical Injury, Jinshan Hospital, Fudan University, Shanghai, China,
- Department of Intensive Care Unit, Medical Center of Radiation Injury, Jinshan Hospital, Fudan University, Shanghai, China, and
| | - Guoxiong Xu
- Department of Center Laboratory, Jinshan Hospital, Fudan University, Shanghai, China
| | - Jie Shen
- Department of Intensive Care Unit, Center of Emergency & Intensive Care Unit, Jinshan Hospital, Fudan University, Shanghai, China,
- Department of Intensive Care Unit, Medical Research Center of Chemical Injury, Jinshan Hospital, Fudan University, Shanghai, China,
- Department of Intensive Care Unit, Medical Center of Radiation Injury, Jinshan Hospital, Fudan University, Shanghai, China, and
| |
Collapse
|
13
|
Bretón-Romero R, Feng B, Holbrook M, Farb MG, Fetterman JL, Linder EA, Berk BD, Masaki N, Weisbrod RM, Inagaki E, Gokce N, Fuster JJ, Walsh K, Hamburg NM. Endothelial Dysfunction in Human Diabetes Is Mediated by Wnt5a-JNK Signaling. Arterioscler Thromb Vasc Biol 2016; 36:561-9. [PMID: 26800561 DOI: 10.1161/atvbaha.115.306578] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 01/08/2016] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Endothelial dysfunction is linked to insulin resistance, inflammatory activation, and increased cardiovascular risk in diabetes mellitus; however, the mechanisms remain incompletely understood. Recent studies have identified proinflammatory signaling of wingless-type family member (Wnt) 5a through c-jun N-terminal kinase (JNK) as a regulator of metabolic dysfunction with potential relevance to vascular function. We sought to gain evidence that increased activation of Wnt5a-JNK signaling contributes to impaired endothelial function in patients with diabetes mellitus. APPROACH AND RESULTS We measured flow-mediated dilation of the brachial artery and characterized freshly isolated endothelial cells by protein expression, eNOS activation, and nitric oxide production in 85 subjects with type 2 diabetes mellitus (n=42) and age- and sex-matched nondiabetic controls (n=43) and in human aortic endothelial cells treated with Wnt5a. Endothelial cells from patients with diabetes mellitus displayed 1.3-fold higher Wnt5a levels (P=0.01) along with 1.4-fold higher JNK activation (P<0.01) without a difference in total JNK levels. Higher JNK activation was associated with lower flow-mediated dilation, consistent with endothelial dysfunction (r=0.53, P=0.02). Inhibition of Wnt5a and JNK signaling restored insulin and A23187-mediated eNOS activation and improved nitric oxide production in endothelial cells from patients with diabetes mellitus. In endothelial cells from nondiabetic controls, rWnt5a treatment inhibited eNOS activation replicating the diabetic endothelial phenotype. In human aortic endothelial cells, Wnt5a-induced impairment of eNOS activation and nitric oxide production was reversed by Wnt5a and JNK inhibition. CONCLUSIONS Our findings demonstrate that noncanonical Wnt5a signaling and JNK activity contribute to vascular insulin resistance and endothelial dysfunction and may represent a novel therapeutic opportunity to protect the vasculature in patients with diabetes mellitus.
Collapse
Affiliation(s)
- Rosa Bretón-Romero
- From the Whitaker Cardiovascular Institute, Department of Medicine, Boston University School of Medicine, MA
| | - Bihua Feng
- From the Whitaker Cardiovascular Institute, Department of Medicine, Boston University School of Medicine, MA
| | - Monika Holbrook
- From the Whitaker Cardiovascular Institute, Department of Medicine, Boston University School of Medicine, MA
| | - Melissa G Farb
- From the Whitaker Cardiovascular Institute, Department of Medicine, Boston University School of Medicine, MA
| | - Jessica L Fetterman
- From the Whitaker Cardiovascular Institute, Department of Medicine, Boston University School of Medicine, MA
| | - Erika A Linder
- From the Whitaker Cardiovascular Institute, Department of Medicine, Boston University School of Medicine, MA
| | - Brittany D Berk
- From the Whitaker Cardiovascular Institute, Department of Medicine, Boston University School of Medicine, MA
| | - Nobuyuki Masaki
- From the Whitaker Cardiovascular Institute, Department of Medicine, Boston University School of Medicine, MA
| | - Robert M Weisbrod
- From the Whitaker Cardiovascular Institute, Department of Medicine, Boston University School of Medicine, MA
| | - Elica Inagaki
- From the Whitaker Cardiovascular Institute, Department of Medicine, Boston University School of Medicine, MA
| | - Noyan Gokce
- From the Whitaker Cardiovascular Institute, Department of Medicine, Boston University School of Medicine, MA
| | - Jose J Fuster
- From the Whitaker Cardiovascular Institute, Department of Medicine, Boston University School of Medicine, MA
| | - Kenneth Walsh
- From the Whitaker Cardiovascular Institute, Department of Medicine, Boston University School of Medicine, MA
| | - Naomi M Hamburg
- From the Whitaker Cardiovascular Institute, Department of Medicine, Boston University School of Medicine, MA.
| |
Collapse
|