1
|
Ivanova T, Sbirkov Y, Kazakova M, Sarafian V. Lysosomes and LAMPs as Autophagy Drivers of Drug Resistance in Colorectal Cancer. Cells 2025; 14:574. [PMID: 40277899 PMCID: PMC12025563 DOI: 10.3390/cells14080574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 04/04/2025] [Accepted: 04/08/2025] [Indexed: 04/26/2025] Open
Abstract
Colorectal cancer (CRC) is among the most malignant pathologies worldwide. A major factor contributing to the poor prognosis of neoplastic diseases is the development of drug resistance. It significantly reduces the utility of most therapeutic protocols and necessitates the search for novel biomarkers and treatment strategies to combat cancer. An evolutionarily conserved catabolic mechanism, autophagy maintains nutrient recycling and metabolic adaptation and is also closely related to carcinogenesis, playing a dual role. Autophagy inhibition can limit the growth of tumors and improve the response to cancer therapeutics. Lysosomes, key players in autophagy, are also considered promising targets for anticancer treatment. There are still insufficient data on the role of poorly studied glycoproteins related to autophagy, such as the lysosome-associated membrane glycoproteins (LAMPs). They can act as multifunctional molecules involved in a multitude of processes like autophagy and cancer development. In the current review, we summarize the recent data on the double-faceted role of autophagy in cancer with a focus on drug resistance in CRC and on the roles of lysosomes and LAMPs in these interconnected processes. Several lysosomotropic drugs are discussed as options to overcome cancer cell chemoresistance. The complex networks that underline defined autophagic pathways in the context of CRC carcinogenesis and the role of autophagy, especially of LAMPs as drivers of drug resistance, are outlined.
Collapse
Affiliation(s)
- Tsvetomira Ivanova
- Department of Medical Biology, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria; (Y.S.); (M.K.)
- Research Division of Molecular and Regenerative Medicine, Research Institute at Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
| | - Yordan Sbirkov
- Department of Medical Biology, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria; (Y.S.); (M.K.)
- Research Division of Molecular and Regenerative Medicine, Research Institute at Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
| | - Maria Kazakova
- Department of Medical Biology, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria; (Y.S.); (M.K.)
- Research Division of Molecular and Regenerative Medicine, Research Institute at Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
| | - Victoria Sarafian
- Department of Medical Biology, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria; (Y.S.); (M.K.)
- Research Division of Molecular and Regenerative Medicine, Research Institute at Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
| |
Collapse
|
2
|
García-Acosta JC, Castillo-Montoya AI, Rostro-Alonso GO, Villegas-Vázquez EY, Quintas-Granados LI, Sánchez-Sánchez L, López-Muñóz H, Cariño-Calvo L, López-Reyes I, Bustamante-Montes LP, Leyva-Gómez G, Cortés H, Jacobo-Herrera NJ, García-Aguilar R, Reyes-Hernández OD, Figueroa-González G. Unrevealing Lithium Repositioning in the Hallmarks of Cancer: Effects of Lithium Salts (LiCl and Li 2CO 3) in an In Vitro Cervical Cancer Model. Molecules 2024; 29:4476. [PMID: 39339471 PMCID: PMC11434384 DOI: 10.3390/molecules29184476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/07/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Lithium, a natural element, has been employed as a mental stabilizer in psychiatric treatments; however, some reports indicate it has an anticancer effect, prompting the consideration of repurposing lithium for cancer treatment. The potential anticancer use of lithium may depend on its form (salt type) and the type of cancer cells targeted. Little is known about the effects of Li2CO3 or LiCl on cancer cells, so we focused on exploring their effects on proliferation, apoptosis, migration, and cell cycle as part of the hallmarks of cancer. Firstly, we established the IC50 values on HeLa, SiHa, and HaCaT cells with LiCl and Li2CO3 and determined by crystal violet that cell proliferation was time-dependent in the three cell lines (IC50 values for LiCl were 23.43 mM for SiHa, 23.14 mM for HeLa, and 15.10 mM for HaCaT cells, while the IC50 values for Li2CO3 were 20.57 mM for SiHa, 11.52 mM for HeLa, and 10.52 mM for HaCaT cells.) Our findings indicate that Li2CO3 and LiCl induce DNA fragmentation and caspase-independent apoptosis, as shown by TUNEL, Western Blot, and Annexin V/IP assay by flow cytometry. Also, cell cycle analysis showed that LiCl and Li2CO3 arrested the cervical cancer cells at the G1 phase. Moreover, lithium salts displayed an anti-migratory effect on the three cell lines observed by the wound-healing assay. All these findings imply the viable anticancer effect of lithium salts by targeting several of the hallmarks of cancer.
Collapse
Affiliation(s)
- Juan Carlos García-Acosta
- Laboratorio de Farmacogenética, UMIEZ, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México 09230, Mexico; (J.C.G.-A.); (A.I.C.-M.); (G.O.R.-A.); (E.Y.V.-V.); (O.D.R.-H.)
| | - Alejando Israel Castillo-Montoya
- Laboratorio de Farmacogenética, UMIEZ, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México 09230, Mexico; (J.C.G.-A.); (A.I.C.-M.); (G.O.R.-A.); (E.Y.V.-V.); (O.D.R.-H.)
| | - Gareth Omar Rostro-Alonso
- Laboratorio de Farmacogenética, UMIEZ, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México 09230, Mexico; (J.C.G.-A.); (A.I.C.-M.); (G.O.R.-A.); (E.Y.V.-V.); (O.D.R.-H.)
| | - Edgar Yebrán Villegas-Vázquez
- Laboratorio de Farmacogenética, UMIEZ, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México 09230, Mexico; (J.C.G.-A.); (A.I.C.-M.); (G.O.R.-A.); (E.Y.V.-V.); (O.D.R.-H.)
| | - Laura Itzel Quintas-Granados
- Colegio de Ciencias y Humanidades, Plantel Cuautepec, Universidad Autónoma de la Ciudad de México, Ciudad de México 07160, Mexico; (L.I.Q.-G.); (I.L.-R.)
| | - Luis Sánchez-Sánchez
- Laboratorio de Biología Molecular del Cáncer, UMIEZ, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México 09230, Mexico; (L.S.-S.); (H.L.-M.)
| | - Hugo López-Muñóz
- Laboratorio de Biología Molecular del Cáncer, UMIEZ, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México 09230, Mexico; (L.S.-S.); (H.L.-M.)
| | | | - Israel López-Reyes
- Colegio de Ciencias y Humanidades, Plantel Cuautepec, Universidad Autónoma de la Ciudad de México, Ciudad de México 07160, Mexico; (L.I.Q.-G.); (I.L.-R.)
| | | | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Zacatenco, Ciudad de México 07360, Mexico
| | - Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra, Ciudad de México 14389, Mexico;
| | - Nadia Judith Jacobo-Herrera
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubiran, Ciudad de México 14080, Mexico;
| | - Rosario García-Aguilar
- Laboratorio de Citometría de Flujo y Hematología, Diagnóstico Molecular de Leucemias y Terapia Celular (DILETEC), Ciudad de México 07800, Mexico;
| | - Octavio Daniel Reyes-Hernández
- Laboratorio de Farmacogenética, UMIEZ, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México 09230, Mexico; (J.C.G.-A.); (A.I.C.-M.); (G.O.R.-A.); (E.Y.V.-V.); (O.D.R.-H.)
| | - Gabriela Figueroa-González
- Laboratorio de Farmacogenética, UMIEZ, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México 09230, Mexico; (J.C.G.-A.); (A.I.C.-M.); (G.O.R.-A.); (E.Y.V.-V.); (O.D.R.-H.)
| |
Collapse
|
3
|
Li J, Gu X, Wan G, Wang Y, Chen K, Chen Q, Lu C. Rocuronium bromide suppresses esophageal cancer via blocking the secretion of C-X-C motif chemokine ligand 12 from cancer associated fibroblasts. J Transl Med 2023; 21:248. [PMID: 37029408 PMCID: PMC10082495 DOI: 10.1186/s12967-023-04081-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/25/2023] [Indexed: 04/09/2023] Open
Abstract
BACKGROUND Cancer associated fibroblasts (CAFs) communicate metabolically with tumor genesis and development. Rocuronium bromide (RB) is reported to exert certain inhibitory effect on tumor. Here, we investigate the role of RB in esophageal cancer (EC) malignant progression. METHODS Tumor xenograft models with EC cells were locally and systemically administrated with RB to detect the influence of different administrations on tumor progression. Mouse CAFs PDGFRα+/F4/80- were sorted by Flow cytometry with specific antibodies. CAFs were treated with RB and co-cultured with EC cells. The proliferation, invasion and apoptosis assays of EC cells were performed to detect the influences of RB targeting CAFs on EC cell malignant progression. Human fibroblasts were employed to perform these detections to confirm RB indirect effect on EC cells. The gene expression changes of CAFs response to RB treatment were detected using RNA sequencing and verified by Western blot, immunohistochemistry and ELISA. RESULTS Tumors in xenograft mice were observed significantly inhibited by local RB administration, but not by systemic administration. Moreover EC cells did not show obvious change in viability when direct stimulated with RB in vitro. However, when CAFs treated with RB were co-cultured with EC cells, obvious suppressions were observed in EC cell malignancy, including proliferation, invasion and apoptosis. Human fibroblasts were employed to perform these assays and similar results were obtained. RNA sequencing data of human fibroblast treated with RB, and Western blot, immunohistochemistry and ELISA results all showed that CXCL12 expression was significantly diminished in vivo and in vitro by RB. EC cells direct treated with CXCL12 showed much higher malignancy. Moreover cell autophagy and PI3K/AKT/mTOR signaling pathway in CAFs were both suppressed by RB which can be reversed by Rapamycin pretreatment. CONCLUSIONS Our data suggest that RB could repress PI3K/AKT/mTOR signaling pathway and autophagy to block the CXCL12 expression in CAFs, thereby weakening the CXCL12-mediated EC tumor progression. Our data provide a novel insight into the underlying mechanism of RB inhibiting EC, and emphasize the importance of tumor microenvironment (cytokines from CAFs) in modulating cancer malignant progression.
Collapse
Affiliation(s)
- Jingyi Li
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine & Health Sciences, No. 279, Zhouzhu Road, Shanghai, 201318, China
- Qiqihar Medical University, Qiqihar, 161006, Heilongjiang Province, China
| | - Xuefeng Gu
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine & Health Sciences, No. 279, Zhouzhu Road, Shanghai, 201318, China
| | - Guoqing Wan
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine & Health Sciences, No. 279, Zhouzhu Road, Shanghai, 201318, China
| | - Yuhan Wang
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine & Health Sciences, No. 279, Zhouzhu Road, Shanghai, 201318, China
| | - Kaijie Chen
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine & Health Sciences, No. 279, Zhouzhu Road, Shanghai, 201318, China
| | - Qi Chen
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine & Health Sciences, No. 279, Zhouzhu Road, Shanghai, 201318, China
| | - Changlian Lu
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine & Health Sciences, No. 279, Zhouzhu Road, Shanghai, 201318, China.
| |
Collapse
|
4
|
Villegas-Vázquez EY, Quintas-Granados LI, Cortés H, González-Del Carmen M, Leyva-Gómez G, Rodríguez-Morales M, Bustamante-Montes LP, Silva-Adaya D, Pérez-Plasencia C, Jacobo-Herrera N, Reyes-Hernández OD, Figueroa-González G. Lithium: A Promising Anticancer Agent. Life (Basel) 2023; 13:537. [PMID: 36836894 PMCID: PMC9966411 DOI: 10.3390/life13020537] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Lithium is a therapeutic cation used to treat bipolar disorders but also has some important features as an anti-cancer agent. In this review, we provide a general overview of lithium, from its transport into cells, to its innovative administration forms, and based on genomic, transcriptomic, and proteomic data. Lithium formulations such as lithium acetoacetate (LiAcAc), lithium chloride (LiCl), lithium citrate (Li3C6H5O7), and lithium carbonate (Li2CO3) induce apoptosis, autophagy, and inhibition of tumor growth and also participate in the regulation of tumor proliferation, tumor invasion, and metastasis and cell cycle arrest. Moreover, lithium is synergistic with standard cancer therapies, enhancing their anti-tumor effects. In addition, lithium has a neuroprotective role in cancer patients, by improving their quality of life. Interestingly, nano-sized lithium enhances its anti-tumor activities and protects vital organs from the damage caused by lipid peroxidation during tumor development. However, these potential therapeutic activities of lithium depend on various factors, such as the nature and aggressiveness of the tumor, the type of lithium salt, and its form of administration and dosage. Since lithium has been used to treat bipolar disorder, the current study provides an overview of its role in medicine and how this has changed. This review also highlights the importance of this repurposed drug, which appears to have therapeutic cancer potential, and underlines its molecular mechanisms.
Collapse
Affiliation(s)
- Edgar Yebrán Villegas-Vázquez
- Unidad Multidisciplinaria de Investigación Experimental Zaragoza, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México 09230, Mexico
| | | | - Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico
| | | | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Miguel Rodríguez-Morales
- Licenciatura en Médico Cirujano, Facultad de Ciencias de la Salud Universidad Anáhuac Norte, Academia de Genética Médica, Naucalpan de Juárez 52786, Mexico
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | | | - Daniela Silva-Adaya
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico
| | - Carlos Pérez-Plasencia
- Laboratorio de Genómica, Instituto Nacional de Cancerología (INCan), Ciudad de México 14080, Mexico
- Laboratorio de Genómica, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
| | - Nadia Jacobo-Herrera
- Unidad de Bioquímica, Instituto Nacional de Ciencias Medicas y Nutrición Salvador Zubirán (INCMNSZ), Ciudad de México 14080, Mexico
| | - Octavio Daniel Reyes-Hernández
- Laboratorio de Biología Molecular del Cáncer, Unidad Multidisciplinaria de Investigación Experimental Zaragoza, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México 09230, Mexico
| | - Gabriela Figueroa-González
- Laboratorio de Farmacogenética, Unidad Multidisciplinaria de Investigación Experimental Zaragoza, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México 09230, Mexico
| |
Collapse
|
5
|
Yang C, Zhu B, Zhan M, Hua ZC. Lithium in Cancer Therapy: Friend or Foe? Cancers (Basel) 2023; 15:cancers15041095. [PMID: 36831437 PMCID: PMC9954674 DOI: 10.3390/cancers15041095] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/29/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Lithium, a trace element important for fetal health and development, is considered a metal drug with a well-established clinical regime, economical production process, and a mature storage system. Several studies have shown that lithium affects tumor development by regulating inositol monophosphate (IMPase) and glycogen synthase kinase-3 (GSK-3). Lithium can also promote proliferation and programmed cell death (PCD) in tumor cells through a number of new targets, such as the nuclear receptor NR4A1 and Hedgehog-Gli. Lithium may increase cancer treatment efficacy while reducing side effects, suggesting that it can be used as an adjunctive therapy. In this review, we summarize the effects of lithium on tumor progression and discuss the underlying mechanisms. Additionally, we discuss lithium's limitations in antitumor clinical applications, including its narrow therapeutic window and potential pro-cancer effects on the tumor immune system.
Collapse
Affiliation(s)
- Chunhao Yang
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Bo Zhu
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, China
- Correspondence: (B.Z.); (Z.-C.H.)
| | - Mingjie Zhan
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Zi-Chun Hua
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, China
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
- Correspondence: (B.Z.); (Z.-C.H.)
| |
Collapse
|
6
|
Alassaf N, Attia H. Autophagy and necroptosis in cisplatin-induced acute kidney injury: Recent advances regarding their role and therapeutic potential. Front Pharmacol 2023; 14:1103062. [PMID: 36794281 PMCID: PMC9922871 DOI: 10.3389/fphar.2023.1103062] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/16/2023] [Indexed: 01/31/2023] Open
Abstract
Cisplatin (CP) is a broad-spectrum antineoplastic agent, used to treat many different types of malignancies due to its high efficacy and low cost. However, its use is largely limited by acute kidney injury (AKI), which, if left untreated, may progress to cause irreversible chronic renal dysfunction. Despite substantial research, the exact mechanisms of CP-induced AKI are still so far unclear and effective therapies are lacking and desperately needed. In recent years, necroptosis, a novel subtype of regulated necrosis, and autophagy, a form of homeostatic housekeeping mechanism have witnessed a burgeoning interest owing to their potential to regulate and alleviate CP-induced AKI. In this review, we elucidate in detail the molecular mechanisms and potential roles of both autophagy and necroptosis in CP-induced AKI. We also explore the potential of targeting these pathways to overcome CP-induced AKI according to recent advances.
Collapse
Affiliation(s)
- Noha Alassaf
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia,*Correspondence: Noha Alassaf,
| | - Hala Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia,Department of Biochemistry, College of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
7
|
Farmani AR, Salmeh MA, Golkar Z, Moeinzadeh A, Ghiasi FF, Amirabad SZ, Shoormeij MH, Mahdavinezhad F, Momeni S, Moradbeygi F, Ai J, Hardy JG, Mostafaei A. Li-Doped Bioactive Ceramics: Promising Biomaterials for Tissue Engineering and Regenerative Medicine. J Funct Biomater 2022; 13:162. [PMID: 36278631 PMCID: PMC9589997 DOI: 10.3390/jfb13040162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 12/03/2022] Open
Abstract
Lithium (Li) is a metal with critical therapeutic properties ranging from the treatment of bipolar depression to antibacterial, anticancer, antiviral and pro-regenerative effects. This element can be incorporated into the structure of various biomaterials through the inclusion of Li chloride/carbonate into polymeric matrices or being doped in bioceramics. The biocompatibility and multifunctionality of Li-doped bioceramics present many opportunities for biomedical researchers and clinicians. Li-doped bioceramics (capable of immunomodulation) have been used extensively for bone and tooth regeneration, and they have great potential for cartilage/nerve regeneration, osteochondral repair, and wound healing. The synergistic effect of Li in combination with other anticancer drugs as well as the anticancer properties of Li underline the rationale that bioceramics doped with Li may be impactful in cancer treatments. The role of Li in autophagy may explain its impact in regenerative, antiviral, and anticancer research. The combination of Li-doped bioceramics with polymers can provide new biomaterials with suitable flexibility, especially as bio-ink used in 3D printing for clinical applications of tissue engineering. Such Li-doped biomaterials have significant clinical potential in the foreseeable future.
Collapse
Affiliation(s)
- Ahmad Reza Farmani
- Tissue Engineering and Applied Cell Sciences Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 14166-34793, Iran
- Tissue Engineering Department, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa 74615-168, Iran
- Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran 14166-34793, Iran
| | - Mohammad Ali Salmeh
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14155-6619, Iran
| | - Zahra Golkar
- Department of Midwifery, Firoozabad Branch, Islamic Azad University, Firoozabad 74715-117, Iran
| | - Alaa Moeinzadeh
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 14496-14535, Iran
| | - Farzaneh Farid Ghiasi
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran
| | - Sara Zamani Amirabad
- Department of Chemical Engineering, Faculty of Engineering, Yasouj University, Yasouj 75918-74934, Iran
| | - Mohammad Hasan Shoormeij
- Emergency Medicine Department, Shariati Hospital, Tehran University of Medical Sciences, Tehran 14166-34793, Iran
| | - Forough Mahdavinezhad
- Anatomy Department, School of Medicine, Tehran University of Medical Sciences, Tehran 14166-34793, Iran
- Department of Infertility, Velayat Hospital, Qazvin University of Medical Sciences, Qazvin 34199-15315, Iran
| | - Simin Momeni
- Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 83151-61355, Iran
| | - Fatemeh Moradbeygi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Jafar Ai
- Tissue Engineering and Applied Cell Sciences Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 14166-34793, Iran
| | - John G. Hardy
- Department of Chemistry, Faraday Building, Lancaster University, Lancaster LA1 4YB, UK
- Materials Science Institute, Lancaster University, Lancaster LA1 4YW, UK
| | - Amir Mostafaei
- Department of Mechanical, Materials, and Aerospace Engineering, Illinois Institute of Technology, 10 W 32nd Street, Chicago, IL 60616, USA
| |
Collapse
|
8
|
Shi X, Yang J, Deng S, Xu H, Wu D, Zeng Q, Wang S, Hu T, Wu F, Zhou H. TGF-β signaling in the tumor metabolic microenvironment and targeted therapies. J Hematol Oncol 2022; 15:135. [PMID: 36115986 PMCID: PMC9482317 DOI: 10.1186/s13045-022-01349-6] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/24/2022] [Indexed: 12/30/2022] Open
Abstract
AbstractTransforming growth factor-β (TGF-β) signaling has a paradoxical role in cancer progression, and it acts as a tumor suppressor in the early stages but a tumor promoter in the late stages of cancer. Once cancer cells are generated, TGF-β signaling is responsible for the orchestration of the immunosuppressive tumor microenvironment (TME) and supports cancer growth, invasion, metastasis, recurrence, and therapy resistance. These progressive behaviors are driven by an “engine” of the metabolic reprogramming in cancer. Recent studies have revealed that TGF-β signaling regulates cancer metabolic reprogramming and is a metabolic driver in the tumor metabolic microenvironment (TMME). Intriguingly, TGF-β ligands act as an “endocrine” cytokine and influence host metabolism. Therefore, having insight into the role of TGF-β signaling in the TMME is instrumental for acknowledging its wide range of effects and designing new cancer treatment strategies. Herein, we try to illustrate the concise definition of TMME based on the published literature. Then, we review the metabolic reprogramming in the TMME and elaborate on the contribution of TGF-β to metabolic rewiring at the cellular (intracellular), tissular (intercellular), and organismal (cancer-host) levels. Furthermore, we propose three potential applications of targeting TGF-β-dependent mechanism reprogramming, paving the way for TGF-β-related antitumor therapy from the perspective of metabolism.
Collapse
|
9
|
Ryan JL, Sherman AK, Heble DE, Friesen CA, Daniel JF, Fischer RT, Slowik V. The effect of neuropsychiatric medication on pediatric nonalcoholic fatty liver disease. Clin Transl Sci 2022; 15:2241-2250. [PMID: 35769031 PMCID: PMC9468556 DOI: 10.1111/cts.13358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 05/13/2022] [Accepted: 06/01/2022] [Indexed: 01/25/2023] Open
Abstract
Obese and overweight children are at risk of developing nonalcoholic fatty liver disease (NAFLD), which can lead to steatohepatitis, cirrhosis, and liver transplantation. Neuropsychiatric conditions affect an increasing proportion of children and often require neuropsychiatric medications (NPMs) that are associated with weight gain and/or drug-induced liver injury. We sought to evaluate the role that the extended use of NPMs play in pediatric NAFLD. Medical chart review was conducted for 260 patients with NAFLD (NPM = 77, non-NPM = 183) seen in the Liver Care Center at Children's Mercy Hospital between 2000 and 2016. Outcome measures included body mass index (BMI) percentile, BMI z-score, aspartate aminotransferase (AST), alanine aminotransferase (ALT), total bilirubin, and gamma glutamyltransferase, and were collected at diagnosis, 6-18 month follow-up, and 18-36 months. Controlling for race and metformin, there was a significant increase over time in BMI z-score (p < 0.01) and total bilirubin (p = 0.03), with only initial decreases in ALT (p < 0.01) and AST (p < 0.01). Except for higher total bilirubin in the non-NPM group, no main effect of group or interaction effect was found. Similar patterns remained when subjects were analyzed by NPM drug class. Further study is needed to confirm these findings and to evaluate the effects of NPM dose and duration of exposure, by drug class, on pediatric NAFLD outcomes.
Collapse
Affiliation(s)
- Jamie L. Ryan
- Division of Pediatric Gastroenterology, Hepatology, and NutritionChildren’s Mercy HospitalKansas CityMissouriUSA,Division of Developmental and Behavioral HealthChildren’s Mercy HospitalKansas CityMissouriUSA
| | - Ashley K. Sherman
- Division of Health Services and Outcomes ResearchChildren’s Mercy HospitalKansas CityMissouriUSA
| | - Daniel E. Heble
- Department of PharmacyChildren’s Mercy HospitalKansas CityMissouriUSA
| | - Craig A. Friesen
- Division of Pediatric Gastroenterology, Hepatology, and NutritionChildren’s Mercy HospitalKansas CityMissouriUSA,Department of PediatricsUniversity of Missouri – Kansas City School of MedicineKansas CityMissouriUSA
| | - James F. Daniel
- Division of Pediatric Gastroenterology, Hepatology, and NutritionChildren’s Mercy HospitalKansas CityMissouriUSA,Department of PediatricsUniversity of Missouri – Kansas City School of MedicineKansas CityMissouriUSA
| | - Ryan T. Fischer
- Division of Pediatric Gastroenterology, Hepatology, and NutritionChildren’s Mercy HospitalKansas CityMissouriUSA,Department of PediatricsUniversity of Missouri – Kansas City School of MedicineKansas CityMissouriUSA
| | - Voytek Slowik
- Division of Pediatric Gastroenterology, Hepatology, and NutritionChildren’s Mercy HospitalKansas CityMissouriUSA,Department of PediatricsUniversity of Missouri – Kansas City School of MedicineKansas CityMissouriUSA
| |
Collapse
|
10
|
Altememy D, Mohammadi Arvejeh P, Amini Chermahini F, Alizadeh A, Mazarei M, Khosravian P. A comparative study of combination treatments in metastatic 4t1 cells: everolimus and 5- fluorouracil versus lithium chloride and 5-fluorouracil. PHARMACIA 2022. [DOI: 10.3897/pharmacia.69.e85358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background: Combination therapy has been one of the most pioneering and strategic approaches implemented for malignancy treatment, which can intentionally influence multiple signaling pathways involved in cancer growth and progression. In the present study, the effects of 5-fluorouracil (5FU) in combination with everolimus (EVE) or lithium chloride (LiCl) were evaluated in 4T1 metastatic breast cancer cells and compared to control and each other.
Methods and results: The resazurin assay, CompuSyn, flow cytometry, and real-time PCR were used to investigate cell proliferation, drug synergism, apoptosis, and gene expression. In comparison to the ternary combination of the drugs, the findings showed that cytotoxicity (p-value < 0.0001) and apoptosis (p-value < 0.0001) of two-by-two combinations increased dramatically as a consequence of the extreme synergy between 5FU and EVE or LiCl. Moreover, the hypoxiainducible transcription factor 1-alpha (HIF-1α) and the vascular endothelial growth factor (VEGF) downregulated considerably compared to control (p-value < 0.0001) by combination therapies of EVE-5FU and 5FU-LiCl; however, only VEGF displayed significant downregulation in comparison to single therapies.
Conclusion: The findings showed that the combination of 5FU-LiCl increased cell cytotoxicity and apoptosis significantly more than EVE-5FU but suggests a clinical potential for both to treat metastatic breast cancer encouraging validation of these results in pre-clinical models.
Collapse
|
11
|
Taskaeva I, Gogaeva I, Shatruk A, Bgatova N. Lithium Enhances Autophagy and Cell Death in Skin Melanoma: An Ultrastructural and Immunohistochemical Study. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2022; 28:1-9. [PMID: 35592888 DOI: 10.1017/s1431927622000745] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Lithium is an inhibitor of glycogen synthase kinase 3 beta, which is traditionally used in the treatment of bipolar disorders and has antitumor effects. The aim of the current study was to determine if lithium salt causes autophagy and apoptosis in skin melanoma cells to enhance cell death. Light microscopy, transmission electron microscopy, immunohistochemistry, and immunofluorescence were used to study the mechanism of action of lithium carbonate in B16 melanoma cells in vivo. Proliferating cell nuclear antigen immunofluorescence assay revealed that the proliferation of B16 melanoma cells was suppressed by lithium treatment for 7 days. Electron microscopy demonstrated a significant increase in the number of autophagic vacuoles in lithium-treated cells relative to control. In addition, levels of autophagy markers LC3 beta and LAMP1 found in lithium-treated tumor xenografts were higher than levels of these markers in the control tumors. Lithium induced caspase-3 expression and apoptotic cell death in tumor cells. Thus, lithium carbonate is the compound that inhibits cell proliferation and stimulates cell death in melanoma cells through induction of autophagy and apoptosis. Stimulation of autophagy by lithium could contribute to the development of autophagic cell death in tumor cells.
Collapse
Affiliation(s)
- Iuliia Taskaeva
- Laboratory of Ultrastructural Research, Research Institute of Clinical and Experimental Lymphology - Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Timakova str. 2, 630060 Novosibirsk, Russia
| | - Izabella Gogaeva
- Laboratory of Ultrastructural Research, Research Institute of Clinical and Experimental Lymphology - Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Timakova str. 2, 630060 Novosibirsk, Russia
| | - Anastasia Shatruk
- Laboratory of Ultrastructural Research, Research Institute of Clinical and Experimental Lymphology - Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Timakova str. 2, 630060 Novosibirsk, Russia
| | - Nataliya Bgatova
- Laboratory of Ultrastructural Research, Research Institute of Clinical and Experimental Lymphology - Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Timakova str. 2, 630060 Novosibirsk, Russia
| |
Collapse
|
12
|
Huang L, Yin X, Chen J, Liu R, Xiao X, Hu Z, He Y, Zou S. Lithium chloride promotes osteogenesis and suppresses apoptosis during orthodontic tooth movement in osteoporotic model via regulating autophagy. Bioact Mater 2021; 6:3074-3084. [PMID: 33778189 PMCID: PMC7960682 DOI: 10.1016/j.bioactmat.2021.02.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/01/2021] [Accepted: 02/10/2021] [Indexed: 02/08/2023] Open
Abstract
Osteoporosis is a widely distributed disease that may cause complications such as accelerated tooth movement, bone resorption, and tooth loss during orthodontic treatment. Promoting bone formation and reducing bone resorption are strategies for controlling these complications. For several decades, the autophagy inducer lithium chloride (LiCl) has been explored for bipolar . In this study, we investigated the autophagy-promoting effect of LiCl on bone remodeling under osteoporotic conditions during tooth movement. Ovariectomy was used to induce osteoporosis status in vivo. The results showed that LiCl rejuvenated autophagy, decreased apoptosis, and promoted bone formation, thus protecting tooth movement in osteoporotic mice. Furthermore, in vitro experiments showed that LiCl reversed the effects of ovariectomy on bone marrow-derived mesenchymal stem cells (BMSCs) extracted from ovariectomized mice, promoting osteogenesis and suppressing apoptosis by positively regulating autophagy. These findings suggest that LiCl can significantly decrease adverse effects of osteoporosis on bone remodeling, and that it has great potential significance in the field of bone formation during tooth movement in osteoporosis patients.
Collapse
Affiliation(s)
- Li Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xing Yin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jun Chen
- The Medical & Nursing School, Chengdu University, Chengdu, 610106, China
| | - Ruojing Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xiaoyue Xiao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Zhiai Hu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yan He
- Laboratory for Regenerative Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, 430064, China.,Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital and Harvard School of Dental Medicine, Boston, MA, 02114, USA
| | - Shujuan Zou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
13
|
Lack of Autophagy Induction by Lithium Decreases Neuroprotective Effects in the Striatum of Aged Rats. Pharmaceutics 2021; 13:pharmaceutics13020135. [PMID: 33494241 PMCID: PMC7909773 DOI: 10.3390/pharmaceutics13020135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
The pharmacological modulation of autophagy is considered a promising neuroprotective strategy. While it has been postulated that lithium regulates this cellular process, the age-related effects have not been fully elucidated. Here, we evaluated lithium-mediated neuroprotective effects in young and aged striatum. After determining the optimal experimental conditions for inducing autophagy in loco with lithium carbonate (Li2CO3), we measured cell viability, reactive oxygen species (ROS) generation and oxygen consumption with rat brain striatal slices from young and aged animals. In the young striatum, Li2CO3 increased tissue viability and decreased ROS generation. These positive effects were accompanied by enhanced levels of LC3-II, LAMP 1, Ambra 1 and Beclin-1 expression. In the aged striatum, Li2CO3 reduced the autophagic flux and increased the basal oxygen consumption rate. Ultrastructural changes in the striatum of aged rats that consumed Li2CO3 for 30 days included electrondense mitochondria with disarranged cristae and reduced normal mitochondria and lysosomes area. Our data show that the striatum from younger animals benefits from lithium-mediated neuroprotection, while the striatum of older rats does not. These findings should be considered when developing neuroprotective strategies involving the induction of autophagy in aging.
Collapse
|
14
|
Gąsiorkiewicz BM, Koczurkiewicz-Adamczyk P, Piska K, Pękala E. Autophagy modulating agents as chemosensitizers for cisplatin therapy in cancer. Invest New Drugs 2020; 39:538-563. [PMID: 33159673 PMCID: PMC7960624 DOI: 10.1007/s10637-020-01032-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 10/28/2020] [Indexed: 02/08/2023]
Abstract
Although cisplatin is one of the most common antineoplastic drug, its successful utilisation in cancer treatment is limited by the drug resistance. Multiple attempts have been made to find potential cisplatin chemosensitisers which would overcome cancer cells resistance thus improving antineoplastic efficacy. Autophagy modulation has become an important area of interest regarding the aforementioned topic. Autophagy is a highly conservative cellular self-digestive process implicated in response to multiple environmental stressors. The high basal level of autophagy is a common phenomenon in cisplatin-resistant cancer cells which is thought to grant survival benefit. However current evidence supports the role of autophagy in either promoting or limiting carcinogenesis depending on the context. This encourages the search of substances modulating the process to alleviate cisplatin resistance. Such a strategy encompasses not only simple autophagy inhibition but also harnessing the process to induce autophagy-dependent cell death. In this paper, we briefly describe the mechanism of cisplatin resistance with a special emphasis on autophagy and we give an extensive literature review of potential substances with cisplatin chemosensitising properties related to autophagy modulation.
Collapse
Affiliation(s)
- Bartosz Mateusz Gąsiorkiewicz
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland.
| | - Paulina Koczurkiewicz-Adamczyk
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Kamil Piska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Elżbieta Pękala
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| |
Collapse
|
15
|
Kuei CH, Lin HY, Lee HH, Lin CH, Zheng JQ, Chen KC, Lin YF. IMPA2 Downregulation Enhances mTORC1 Activity and Restrains Autophagy Initiation in Metastatic Clear Cell Renal Cell Carcinoma. J Clin Med 2020; 9:jcm9040956. [PMID: 32235551 PMCID: PMC7230261 DOI: 10.3390/jcm9040956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 02/06/2023] Open
Abstract
Although mTOR inhibitors have been approved as first-line therapy for treating metastatic clear cell renal cell carcinoma (ccRCC), the lack of useful markers reduces their therapeutic effectiveness. The objective of this study was to estimate if inositol monophosphatase 2 (IMPA2) downregulation refers to a favorable outcome in metastatic ccRCC receiving mTOR inhibitor treatment. Gene set enrichment analysis predicted a significant activation of mTORC1 in the metastatic ccRCC with IMPA2 downregulation. Transcriptional profiling of IMPA2 and mTORC1-related gene set revealed significantly inverse correlation in ccRCC tissues. Whereas the enforced expression of exogenous IMPA2 inhibited the phosphorylation of Akt/mTORC1, artificially silencing IMPA2 led to increased phosphorylation of Akt/mTORC1 in ccRCC cells. The pharmaceutical inhibition of mTORC1 activity by rapamycin reinforced autophagy initiation but suppressed the cellular migration and lung metastatic abilities of IMPA2-silenced ccRCC cells. In contrast, blocking autophagosome formation with 3-methyladenine rescued the mitigated metastatic potential in vitro and in vivo in IMPA2-overexpressing ccRCC cells. Our findings indicated that IMPA2 downregulation negatively activates mTORC1 activity and could be a biomarker for guiding the use of mTOR inhibitors or autophagy inducers to combat metastatic ccRCC in the clinic.
Collapse
Affiliation(s)
- Chia-Hao Kuei
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (C.-H.K.); (H.-Y.L.); (H.-H.L.); (J.-Q.Z.); (K.-C.C.)
- Department of Urology, Division of Surgery, Cardinal Tien Hospital, Xindian district, New Taipei City 23148, Taiwan
| | - Hui-Yu Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (C.-H.K.); (H.-Y.L.); (H.-H.L.); (J.-Q.Z.); (K.-C.C.)
- Department of Breast Surgery and General Surgery, Division of Surgery, Cardinal Tien Hospital, Xindian district, New Taipei City 23148, Taiwan
| | - Hsun-Hua Lee
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (C.-H.K.); (H.-Y.L.); (H.-H.L.); (J.-Q.Z.); (K.-C.C.)
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Neurology, Vertigo and Balance Impairment Center, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Che-Hsuan Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Otolaryngology, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Jing-Quan Zheng
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (C.-H.K.); (H.-Y.L.); (H.-H.L.); (J.-Q.Z.); (K.-C.C.)
- Department of Critical Care Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Kuan-Chou Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (C.-H.K.); (H.-Y.L.); (H.-H.L.); (J.-Q.Z.); (K.-C.C.)
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Urology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23148, Taiwan
| | - Yuan-Feng Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (C.-H.K.); (H.-Y.L.); (H.-H.L.); (J.-Q.Z.); (K.-C.C.)
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Correspondence: ; Tel.: +886-2-2736-1661 ext. 3106
| |
Collapse
|
16
|
Taskaeva I, Bgatova N, Gogaeva I. Lithium effects on vesicular trafficking in hepatocellular carcinoma cells. Ultrastruct Pathol 2019; 43:301-311. [PMID: 31826700 DOI: 10.1080/01913123.2019.1701167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most commonly malignant tumors worldwide, characterized by the presence of many heterogeneous molecular cell events that contribute to tumor growth and progression. Endocytic processes are intimately involved in various pathological conditions, including cancer, since they interface with various cellular signaling programs. The ability of lithium to induce cell death and autophagy and affect cell proliferation and intracellular signaling has been shown in various experimental tumor models. The aim of this study was to evaluate the effects of lithium on vesicular transport in hepatocellular carcinoma cells. Using transmission electron microscopy we have characterized the endocytic apparatus in hepatocellular carcinoma-29 (HCC-29) cells in vivo and detailed changes in endocytotic vesicles after 20 mM lithium carbonate administration. Immunofluorescent analysis was used to quantify cells positive for EEA1-positive early endosomes, Rab11-positive recycling endosomes and Rab7-positive late endosomes. Lithium treatment caused an increase in EEA1- and Rab11-positive structures and a decrease in Rab7-positive vesicles. Thus, lithium affects diverse endocytic pathways in HCC-29 cells which may modulate growth and development of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Iuliia Taskaeva
- Laboratory of Ultrastructural Research, Research Institute of Clinical and Experimental Lymphology - Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Laboratory of Boron-Neutron Capture Therapy, Department of Physics, Novosibirsk State University, Novosibirsk, Russia
| | - Nataliya Bgatova
- Laboratory of Ultrastructural Research, Research Institute of Clinical and Experimental Lymphology - Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Izabella Gogaeva
- Laboratory of Ultrastructural Research, Research Institute of Clinical and Experimental Lymphology - Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
17
|
Roles for Autophagy in Esophageal Carcinogenesis: Implications for Improving Patient Outcomes. Cancers (Basel) 2019; 11:cancers11111697. [PMID: 31683722 PMCID: PMC6895837 DOI: 10.3390/cancers11111697] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/25/2019] [Accepted: 10/26/2019] [Indexed: 02/07/2023] Open
Abstract
Esophageal cancer is among the most aggressive forms of human malignancy with five-year survival rates of <20%. Autophagy is an evolutionarily conserved catabolic process that degrades and recycles damaged organelles and misfolded proteins to maintain cellular homeostasis. While alterations in autophagy have been associated with carcinogenesis across tissues, cell type- and context-dependent roles for autophagy have been reported. Herein, we review the current knowledge related to autophagy in esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC), the two most common subtypes of esophageal malignancy. We explore roles for autophagy in the development and progression of ESCC and EAC. We then continue to discuss molecular markers of autophagy as they relate to esophageal patient outcomes. Finally, we summarize current literature examining roles for autophagy in ESCC and EAC response to therapy and discuss considerations for the potential use of autophagy inhibitors as experimental therapeutics that may improve patient outcomes in esophageal cancer.
Collapse
|
18
|
Zhang Y, Li C, Liu X, Wang Y, Zhao R, Yang Y, Zheng X, Zhang Y, Zhang X. circHIPK3 promotes oxaliplatin-resistance in colorectal cancer through autophagy by sponging miR-637. EBioMedicine 2019; 48:277-288. [PMID: 31631038 PMCID: PMC6838436 DOI: 10.1016/j.ebiom.2019.09.051] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/06/2019] [Accepted: 09/26/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Resistance to oxaliplatin-based chemotherapy is a major cause of recurrence in colorectal cancer (CRC) patients. There is increasing evidence indicating that circHIPK3 is involved in the development and progression of tumours. However, little is known about the potential role of circHIPK3 in CRC chemotherapy and its molecular mechanisms in chemoresistance also remain unclear. METHODS Quantitative real-time PCR was performed to detect circHIPK3 expression in tissues of 2 cohorts of CRC patients who received oxaliplatin-based chemotherapy. The chemoresistant effects of circHIPK3 were assessed by cell viability, apoptosis, and autophagy assays. The relationship between circHIPK3, miR-637, and STAT3 mRNA was confirmed by biotinylated RNA pull-down, luciferase reporter, and western blot assays. FINDINGS In the pilot study, increased circHIPK3 expression was observed in chemoresistant CRC patients. Functional assays showed that circHIPK3 promoted oxaliplatin resistance, which was dependent on inhibition of autophagy. Mechanistically, circHIPK3 sponged miR-637 to promote STAT3 expression, thereby activating the downstream Bcl-2/beclin1 signalling pathway. A clinical cohort study showed that circHIPK3 was upregulated in tissues from recurrent CRC patients and correlated with tumour size, regional lymph node metastasis, distant metastasis, and survival. INTERPRETATION circHIPK3 functions as a chemoresistant gene in CRC cells by targeting the miR-637/STAT3/Bcl-2/beclin1 axis and might be a prognostic predictor for CRC patients who receive oxaliplatin-based chemotherapy. FUNDING National Natural Science Foundation of China (81301506), Shandong Medical and Health Technology Development Project(2018WSB20002), Shandong Key Research and Development Program (2016GSF201122), Natural Science Foundation of Shandong Province (ZR2017MH044), and Jinan Science and Technology Development Plan(201805084, 201805003).
Collapse
Affiliation(s)
- Yanli Zhang
- Department of Clinical Laboratory, Shandong Provincial Third Hospital, Jinan, 250031, Shandong Province, PR China
| | - Chen Li
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, PR China
| | - Xinfeng Liu
- Department of Clinical Laboratory, Shandong Provincial Third Hospital, Jinan, 250031, Shandong Province, PR China
| | - Yanlei Wang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, 250012, Shandong Province, PR China
| | - Rui Zhao
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, PR China
| | - Yongmei Yang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, PR China
| | - Xin Zheng
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, PR China
| | - Yi Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, PR China
| | - Xin Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, PR China.
| |
Collapse
|
19
|
Chi HM, Du JD, Cheng J, Mao HD. Taxol-Resistant Gene 1 (Txr1) Mediates Oxaliplatin Resistance by Inducing Autophagy in Human Nasopharyngeal Carcinoma Cells. Med Sci Monit 2019; 25:475-483. [PMID: 30650069 PMCID: PMC6343521 DOI: 10.12659/msm.913180] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background Oxaliplatin (L-OHP) is an important chemotherapy regimen for nasopharyngeal carcinoma (NPC), but can fail due to drug resistance. In this study, the role of Txr1 (taxol-resistant gene 1) in oxaliplatin resistance was investigated. Material/Methods Cell viability assay was carried out using the CellTiter-Glo Luminescent Cell Viability Assay Kit. CNE1 and CNE2 cells were cultured continuously with gradually increasing concentrations of L-OHP for 6 months to establish drug-resistant cell lines. Autophagy was detected by electron microscopy. Txr1 expression in NPC cells was detected via Western blotting and real-time quantitative PCR (qRT-PCR). Results In L-OHP-resistant CNE1/L-OHP and CNE2/L-OHP cells, mRNA and protein expression of Txr1 increased compared to the parental cells, and downregulation of Txr1 re-sensitized drug-resistant cells to L-OHP. Moreover, we found that Txr1-mediated L-OHP resistance was associated with increased autophagy. Txr1-overexpression cells developed L-OHP resistance and a high level of autophagy. Inhibiting autophagy using 2 different methods – inhibition of autophagy-related gene expression and autophagy inhibitor – attenuated L-OHP resistance of NPC cells. Conclusions We conclude that the detection of Txr1 might become a good indicator to evaluate the treatment and prognosis of nasopharyngeal carcinoma. Our data suggest that further investigation of Txr1 in the setting of L-OHP resistance is warranted.
Collapse
Affiliation(s)
- Hua-Ming Chi
- Department of Otolaryngology, Renhe Hospital of China Three Gorges University, Yichang, Hubei, China (mainland)
| | - Jing-Dong Du
- Department of Otolaryngology, Renhe Hospital of China Three Gorges University, Yichang, Hubei, China (mainland)
| | - Jie Cheng
- Department of Otolaryngology, Renhe Hospital of China Three Gorges University, Yichang, Hubei, China (mainland)
| | - Hua-Dong Mao
- Department of Otolaryngology, Renhe Hospital of China Three Gorges University, Yichang, Hubei, China (mainland)
| |
Collapse
|
20
|
Luo H, Tobey A, Auh S, Cochran C, Zemskova M, Reynolds J, Lima C, Burman K, Wartofsky L, Skarulis M, Kebebew E, Klubo-Gwiezdzinska J. The effect of lithium on the progression-free and overall survival in patients with metastatic differentiated thyroid cancer undergoing radioactive iodine therapy. Clin Endocrinol (Oxf) 2018; 89:481-488. [PMID: 29972703 PMCID: PMC6138537 DOI: 10.1111/cen.13806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/13/2018] [Accepted: 07/02/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Pretreatment with lithium (Li) is associated with an increased residence time of radioactive iodine (RAI) in differentiated thyroid cancer (DTC) metastases. There are no data translating this observation into long-term outcomes. The study goal was to compare the efficacy of three methods of preparation for RAI therapy in metastatic DTC-thyroid hormone withdrawal (THW), THW with pretreatment with Li (THW+Li), and recombinant human TSH (rhTSH). DESIGN/PATIENTS/MEASUREMENTS We performed a cohort study comparing overall survival (OS) and progression-free survival (PFS) between the three groups: THW (n = 52), THW+Li (n = 41) and rhTSH (n = 42). Kaplan-Meier analyses were performed to compare OS and PFS between the groups. Cox proportional hazards regression model with a stepwise variable selection was performed to study the contribution of age, gender, histology, TNM status, a location of distant metastases and RAI dose. RESULTS During the follow-up of median 5.1 (IQR = 3.0-8.1) years, 52% of patients had disease progression and 12.6% died. Although THW+Li group was characterized by the longest OS (P = 0.007), only age (HR 1.05, CI 1.01-1.09, P = 0.01) and widespread disease (HR 3.8, CI 1.2-11.8, P = 0.02) were found to affect OS in a multivariate model. There was no difference in PFS between the groups (P = 0.47). Presence of distant metastases limited to the lungs only was associated with longer PFS (PFS HR 0.35, CI 0.20-0.60, P = 0.0002). CONCLUSION The older age is associated with shorter OS, while disease burden affects OS and PFS in patients with metastatic thyroid cancer. The method of preparation for RAI therapy does not affect the outcome.
Collapse
Affiliation(s)
- Hongxiu Luo
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Andrew Tobey
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Sungyoung Auh
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Craig Cochran
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Marina Zemskova
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - James Reynolds
- Radiology and Imaging Sciences Department, NIH Clinical Center, Washigton, DC
| | - Cristiane Lima
- Endocrine Section, Medstar Washington Hospital Center, Washigton, DC
| | - Kenneth Burman
- Endocrine Section, Medstar Washington Hospital Center, Washigton, DC
| | - Leonard Wartofsky
- Endocrine Section, Medstar Washington Hospital Center, Washigton, DC
| | - Monica Skarulis
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Electron Kebebew
- National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Joanna Klubo-Gwiezdzinska
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
21
|
Adams O, Janser FA, Dislich B, Berezowska S, Humbert M, Seiler CA, Kroell D, Slotta-Huspenina J, Feith M, Ott K, Tschan MP, Langer R. A specific expression profile of LC3B and p62 is associated with nonresponse to neoadjuvant chemotherapy in esophageal adenocarcinomas. PLoS One 2018; 13:e0197610. [PMID: 29897944 PMCID: PMC5999293 DOI: 10.1371/journal.pone.0197610] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 05/04/2018] [Indexed: 12/11/2022] Open
Abstract
Paclitaxel is a powerful chemotherapeutic drug, used for the treatment of many cancer types, including esophageal adenocarcinomas (EAC). Autophagy is a lysosome-dependent degradation process maintaining cellular homeostasis. Defective autophagy has been implicated in cancer biology and therapy resistance. We aimed to assess the impact of autophagy on chemotherapy response in EAC, with a special focus on paclitaxel. Responsiveness of EAC cell lines, OE19, FLO-1, OE33 and SK-GT-4, to paclitaxel was assessed using Alamar Blue assays. Autophagic flux upon paclitaxel treatment in vitro was assessed by immunoblotting of LC3B-II and quantitative assessment of WIP1 mRNA. Immunohistochemistry for the autophagy markers LC3B and p62 was applied on tumor tissue from 149 EAC patients treated with neoadjuvant chemotherapy, including pre- and post-therapeutic samples (62 matched pairs). Tumor response was assessed by histology. For comparison, previously published data on 114 primary resected EAC cases were used. EAC cell lines displayed differing responsiveness to paclitaxel treatment; however this was not associated with differential autophagy regulation. High p62 cytoplasmic expression on its own (p ≤ 0.001), or in combination with low LC3B (p = 0.034), was associated with nonresponse to chemotherapy, regardless of whether or not the regiments contained paclitaxel, but there was no independent prognostic value of LC3B or p62 expression patterns for EAC after neoadjuvant treatment. p62 and related pathways, most likely other than autophagy, play a role in chemotherapeutic response in EAC in a clinical setting. Therefore p62 could be a novel therapeutic target to overcome chemoresistance in EAC.
Collapse
Affiliation(s)
- Olivia Adams
- Institute of Pathology, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Félice A. Janser
- Institute of Pathology, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Bastian Dislich
- Institute of Pathology, University of Bern, Bern, Switzerland
| | | | - Magali Humbert
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Christian A. Seiler
- Department of Visceral Surgery and Medicine, Inselspital University Hospital Bern and University of Bern, Bern, Switzerland
| | - Dino Kroell
- Department of Visceral Surgery and Medicine, Inselspital University Hospital Bern and University of Bern, Bern, Switzerland
| | | | - Marcus Feith
- Department of Surgery, Klinikum Rechts der Isar, Technische Universität München, München, Germany
| | - Katja Ott
- Department of Surgery, RoMED Klinikum, Rosenheim, Germany
| | - Mario P. Tschan
- Institute of Pathology, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Rupert Langer
- Institute of Pathology, University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
22
|
Jiang F, Zhou JY, Zhang D, Liu MH, Chen YG. Artesunate induces apoptosis and autophagy in HCT116 colon cancer cells, and autophagy inhibition enhances the artesunate‑induced apoptosis. Int J Mol Med 2018; 42:1295-1304. [PMID: 29901098 PMCID: PMC6089754 DOI: 10.3892/ijmm.2018.3712] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 05/30/2018] [Indexed: 12/16/2022] Open
Abstract
The present study assessed the antitumor effect of artesunate (ART) in vitro and in vivo, as well as its underlying mechanism of action in HCT116 colon cancer cells. An MTT assay, DAPI staining, flow cytometry, western blotting, immunohistochemistry, transmission electron microscopy and TUNEL assay were performed to study the molecular mechanism underlying the antitumor effects of ART in HCT116 colon cancer cells. ART was observed to inhibit proliferation by inducing the apoptosis of HCT116 cells both in vitro and in vivo. Flow cytometry analysis demonstrated that treatment with 2 and 4 µg/ml ART for 48 h induced early apoptosis in 22.7 and 33.8% of cells, respectively. In the xenograft tumors of BALB/c nude mice, TUNEL-positive cells increased in the ART group compared with that in the normal saline group. Furthermore,the associated mitochondrial cleaved-caspase 3, poly-ADP ribose polymerase (PARP), caspase 9 and Bcl-2-associated X protein levels increased while B-cell lymphoma-2 (Bcl-2) decreased both in the cell and animal ART-treated group. ART-treated cells also exhibited autophagy induction, as evidenced by increased protein expression levels of light chain 3 (LC3) and beclin-1, and the presence of autophagosomes. Notably, pharmacological blockade of autophagy activation using hydroxychloroquine markedly enhanced ART-induced apoptosis and increased the protein levels of cleaved caspase 3 and PARP, while decreasing the levels of LC3 and beclin-1. These findings suggested that the ART-induced autophagy may have a cytoprotective effect by suppressing apoptosis. In conclusion, ART may be a potentially clinically useful anticancer drug for human colon cancer. In addition, co-treatment with ART and an autophagy inhibitor may be an effective anticancer therapy.
Collapse
Affiliation(s)
- Feng Jiang
- Department of Colorectal Surgery, The Affiliated Hospital of Nanjing University of TCM, Nanjing, Jiangsu 210029, P.R. China
| | - Jin-Yong Zhou
- Department of Central Laboratory, The Affiliated Hospital of Nanjing University of TCM, Nanjing, Jiangsu 210029, P.R. China
| | - Dan Zhang
- Department of Colorectal Surgery, The Affiliated Hospital of Nanjing University of TCM, Nanjing, Jiangsu 210029, P.R. China
| | - Ming-Hao Liu
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Yu-Gen Chen
- Department of Colorectal Surgery, The Affiliated Hospital of Nanjing University of TCM, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
23
|
Zheng Z, Xu L, Zhang S, Li W, Tou F, He Q, Rao J, Shen Q. Peiminine inhibits colorectal cancer cell proliferation by inducing apoptosis and autophagy and modulating key metabolic pathways. Oncotarget 2018; 8:47619-47631. [PMID: 28496003 PMCID: PMC5564592 DOI: 10.18632/oncotarget.17411] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 03/29/2017] [Indexed: 01/18/2023] Open
Abstract
Peiminine, a compound extracted from the bulbs of Fritillaria thunbergii and traditionally used as a medication in China and other Asian countries, was reported to inhibit colorectal cancer cell proliferation and tumor growth by inducing autophagic cell death. However, its mechanism of anticancer action is not well understood, especially at the metabolic level, which was thought to primarily account for peiminine's efficacy against cancer. Using an established metabolomic profiling platform combining ultra-performance liquid chromatography/tandem mass spectrometry with gas chromatography/mass spectrometry, we identified metabolic alterations in colorectal cancer cell line HCT-116 after peiminine treatment. Among the identified 236 metabolites, the levels of 57 of them were significantly (p < 0.05) different between peiminine-treated and -untreated cells in which 45 metabolites were increased and the other 12 metabolites were decreased. Several of the affected metabolites, including glucose, glutamine, oleate (18:1n9), and lignocerate (24:0), may be involved in regulation of the phosphoinositide 3-kinase/Akt/mammalian target of rapamycin (mTOR) pathway and in the oxidative stress response upon peiminine exposure. Peiminine predominantly modulated the pathways responsible for metabolism of amino acids, carbohydrates, and lipids. Collectively, these results provide new insights into the mechanisms by which peiminine modulates metabolic pathways to inhibit colorectal cancer cell growth, supporting further exploration of peiminine as a potential new strategy for treating colorectal cancer.
Collapse
Affiliation(s)
- Zhi Zheng
- Department of Internal Medicine 5th Division, Jiangxi Provincial Key Laboratory of Translational Medicine and Oncology, Jiangxi Cancer Hospital, Jiangxi Cancer Center, Nanchang, 330029, PR China.,School of Graduate Study, Medical College of Nanchang University, Nanchang, 330029, PR China.,Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Liting Xu
- Department of Internal Medicine 5th Division, Jiangxi Provincial Key Laboratory of Translational Medicine and Oncology, Jiangxi Cancer Hospital, Jiangxi Cancer Center, Nanchang, 330029, PR China.,School of Graduate Study, Medical College of Nanchang University, Nanchang, 330029, PR China
| | - Shuofeng Zhang
- Department of Pharmacology, Beijing University of Chinese Medicine, Beijing, 100102, PR China
| | - Wuping Li
- Department of Internal Medicine 5th Division, Jiangxi Provincial Key Laboratory of Translational Medicine and Oncology, Jiangxi Cancer Hospital, Jiangxi Cancer Center, Nanchang, 330029, PR China
| | - Fangfang Tou
- Department of Internal Medicine 5th Division, Jiangxi Provincial Key Laboratory of Translational Medicine and Oncology, Jiangxi Cancer Hospital, Jiangxi Cancer Center, Nanchang, 330029, PR China.,School of Graduate Study, Medical College of Nanchang University, Nanchang, 330029, PR China
| | - Qinsi He
- Department of Internal Medicine 5th Division, Jiangxi Provincial Key Laboratory of Translational Medicine and Oncology, Jiangxi Cancer Hospital, Jiangxi Cancer Center, Nanchang, 330029, PR China.,School of Graduate Study, Medical College of Nanchang University, Nanchang, 330029, PR China
| | - Jun Rao
- Department of Internal Medicine 5th Division, Jiangxi Provincial Key Laboratory of Translational Medicine and Oncology, Jiangxi Cancer Hospital, Jiangxi Cancer Center, Nanchang, 330029, PR China.,School of Graduate Study, Medical College of Nanchang University, Nanchang, 330029, PR China
| | - Qiang Shen
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| |
Collapse
|
24
|
Guo WH, Chen ZY, Chen H, Lin T, Zhao ML, Liu H, Yu J, Hu YF, Li GX. [Sericin regulates proliferation of human gastric cancer MKN45 cells through autophagic pathway]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:148-154. [PMID: 29502052 PMCID: PMC6743869 DOI: 10.3969/j.issn.1673-4254.2018.02.05] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
OBJECTIVE To investigate the effect of sericin on the proliferation of human gastric cancer MKN45 cells and explore the underlying molecular mechanism. METHODS MKN45 cells were transfected by LC3 double fluorescent autophagic virus, and the positive cells screened by puromycin were divided into blank group, sericin group and sericin∓3-MA group. After incubation with sericin for 48 h, the cells were examined for proliferation, apoptosis and cell cycle using CCK-8 assay and flow cytometry. Cell autophagy was detected by transmission electron microscopy (TEM) and fluorescent inverted microscope, and the autophagy-related markers including LC3, p62 and Beclin proteins were detected with Western blotting. Nude mice bearing gastric cancer xenograft were treated with normal saline or sericin injections (n=5) and the changes in the tumor volume and weight were measured. RESULTS Compared with the blank group, MKN45 cells with sericin treatment showed significantly inhibited proliferation both in vitro and in nude mice. Autophagosomes were observed in sericin-treated cells under TEM and fluorescent inverted microscope. Sericin treatment of the cells significantly increased the cell apoptosis (P<0.01), caused obvious cell cycle arrest in G2/M phase (P<0.01), up-regulated the expressions of both LC3-2 and Beclin, and down-regulated the expression of p62. The autophagy inhibitor 3-MA obviously antagonized the effects of sericin on cell apoptosis, cell cycle and autophagic protein expressions. CONCLUSION Sericin can inhibit the proliferation of human gastric cancer MKN45 cells by regulating cell autophagy to serve as potential anti-tumor agent.
Collapse
Affiliation(s)
- Wei-Hong Guo
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China. E-mail:
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
郭 伟, 陈 昭, 陈 豪, 林 填, 赵 明, 刘 浩, 余 江, 胡 彦, 李 国. [Sericin regulates proliferation of human gastric cancer MKN45 cells through autophagic pathway]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:148-154. [PMID: 29502052 PMCID: PMC6743869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Indexed: 07/30/2024]
Abstract
OBJECTIVE To investigate the effect of sericin on the proliferation of human gastric cancer MKN45 cells and explore the underlying molecular mechanism. METHODS MKN45 cells were transfected by LC3 double fluorescent autophagic virus, and the positive cells screened by puromycin were divided into blank group, sericin group and sericin∓3-MA group. After incubation with sericin for 48 h, the cells were examined for proliferation, apoptosis and cell cycle using CCK-8 assay and flow cytometry. Cell autophagy was detected by transmission electron microscopy (TEM) and fluorescent inverted microscope, and the autophagy-related markers including LC3, p62 and Beclin proteins were detected with Western blotting. Nude mice bearing gastric cancer xenograft were treated with normal saline or sericin injections (n=5) and the changes in the tumor volume and weight were measured. RESULTS Compared with the blank group, MKN45 cells with sericin treatment showed significantly inhibited proliferation both in vitro and in nude mice. Autophagosomes were observed in sericin-treated cells under TEM and fluorescent inverted microscope. Sericin treatment of the cells significantly increased the cell apoptosis (P<0.01), caused obvious cell cycle arrest in G2/M phase (P<0.01), up-regulated the expressions of both LC3-2 and Beclin, and down-regulated the expression of p62. The autophagy inhibitor 3-MA obviously antagonized the effects of sericin on cell apoptosis, cell cycle and autophagic protein expressions. CONCLUSION Sericin can inhibit the proliferation of human gastric cancer MKN45 cells by regulating cell autophagy to serve as potential anti-tumor agent.
Collapse
Affiliation(s)
- 伟洪 郭
- />南方医科大学南方医院普外科,广东 广州 510515Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 昭宇 陈
- />南方医科大学南方医院普外科,广东 广州 510515Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 豪 陈
- />南方医科大学南方医院普外科,广东 广州 510515Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 填 林
- />南方医科大学南方医院普外科,广东 广州 510515Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 明利 赵
- />南方医科大学南方医院普外科,广东 广州 510515Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 浩 刘
- />南方医科大学南方医院普外科,广东 广州 510515Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 江 余
- />南方医科大学南方医院普外科,广东 广州 510515Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 彦锋 胡
- />南方医科大学南方医院普外科,广东 广州 510515Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 国新 李
- />南方医科大学南方医院普外科,广东 广州 510515Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
26
|
Adams O, Dislich B, Berezowska S, Schläfli AM, Seiler CA, Kröll D, Tschan MP, Langer R. Prognostic relevance of autophagy markers LC3B and p62 in esophageal adenocarcinomas. Oncotarget 2018; 7:39241-39255. [PMID: 27250034 PMCID: PMC5129929 DOI: 10.18632/oncotarget.9649] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 05/13/2016] [Indexed: 12/12/2022] Open
Abstract
Esophageal adenocarcinomas (EAC) are aggressive tumors with considerable rates of chemoresistance. Autophagy is a lysosome-dependent degradation process, characterized by the formation of vesicles called autophagosomes, and has been implicated in cancer. Protein light chain 3 B (LC3B) and p62 are associated with autophagosomal membranes and degraded. We aimed to assess the impact of basal autophagy on EAC. In EAC cell lines, an increase in LC3B and p62 was observed with increasing concentrations of the autophagy inhibitor chloroquine, which indicates functional basal autophagy. LC3B and p62 immunohistochemistry was performed on primary resected EAC. High LC3B and p62 expression was associated with earlier tumor stages (p < 0.05). High nuclear and cytoplasmic p62 staining were associated with a better prognosis (p = 0.006; p = 0.028). Various combinations of p62 expression with or without LC3B expression identified different prognostic groups. Tumors with low total p62 (p = 0.007) or low LC3B/low p62 expression had the worst outcome (p = 0.007; p = 0.005). A combination score of dot-like/cytoplasmic p62 and nuclear p62 staining was an independent prognostic parameter (p = 0.033; HR = 0.6). This study highlights the potential significance of basal autophagy in EAC biology. Tumors with low LC3B and p62 expression show the most aggressive behavior and may be candidates for autophagy regulating therapeutics.
Collapse
Affiliation(s)
- Olivia Adams
- Institute of Pathology, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Bastian Dislich
- Institute of Pathology, University of Bern, Bern, Switzerland
| | | | - Anna M Schläfli
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Christian A Seiler
- Department of Visceral Surgery and Medicine, Inselspital University Hospital Bern and University of Bern, Bern, Switzerland
| | - Dino Kröll
- Department of Visceral Surgery and Medicine, Inselspital University Hospital Bern and University of Bern, Bern, Switzerland
| | - Mario P Tschan
- Institute of Pathology, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Rupert Langer
- Institute of Pathology, University of Bern, Bern, Switzerland
| |
Collapse
|
27
|
Zhang D, Wang F, Zhai X, Li XH, He XJ. Lithium promotes recovery of neurological function after spinal cord injury by inducing autophagy. Neural Regen Res 2018; 13:2191-2199. [PMID: 30323152 PMCID: PMC6199946 DOI: 10.4103/1673-5374.241473] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Lithium promotes autophagy and has a neuroprotective effect on spinal cord injury (SCI); however, the underlying mechanisms remain unclear. Therefore, in this study, we investigated the effects of lithium and the autophagy inhibitor 3-methyladenine (3-MA) in a rat model of SCI. The rats were randomly assigned to the SCI, lithium, 3-MA and sham groups. In the 3-MA group, rats were intraperitoneally injected with 3-MA (3 mg/kg) 2 hours before SCI. In the lithium and 3-MA groups, rats were intraperitoneally injected with lithium (LiCl; 30 mg/kg) 6 hours after SCI and thereafter once daily until sacrifice. At 2, 3 and 4 weeks after SCI, neurological function and diffusion tensor imaging indicators were remarkably improved in the lithium group compared with the SCI and 3-MA groups. The Basso, Beattie and Bresnahan locomotor rating scale score and fractional anisotropy values were increased, and the apparent diffusion coefficient value was decreased. Immunohistochemical staining showed that immunoreactivities for Beclin-1 and light-chain 3B peaked 1 day after SCI in the lithium and SCI groups. Immunoreactivities for Beclin-1 and light-chain 3B were weaker in the 3-MA group than in the SCI group, indicating that 3-MA inhibits lithium-induced autophagy. Furthermore, NeuN+ neurons were more numerous in the lithium group than in the SCI and 3-MA groups, with the fewest in the latter. Our findings show that lithium reduces neuronal damage after acute SCI and promotes neurological recovery by inducing autophagy. The neuroprotective mechanism of action may not be entirely dependent on the enhancement of autophagy, and furthermore, 3-MA might not completely inhibit all autophagy pathways.
Collapse
Affiliation(s)
- Duo Zhang
- Department of Orthopedics, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Fang Wang
- Department of Orthopedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Xu Zhai
- Department of Emergency, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Xiao-Hui Li
- Department of Radiology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Xi-Jing He
- Department of Orthopedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| |
Collapse
|
28
|
Luan Y, Li Y, Zhu L, Zheng S, Mao D, Chen Z, Cao Y. Codonopis bulleynana Forest ex Diels inhibits autophagy and induces apoptosis of colon cancer cells by activating the NF-κB signaling pathway. Int J Mol Med 2017; 41:1305-1314. [PMID: 29286074 PMCID: PMC5819931 DOI: 10.3892/ijmm.2017.3337] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 11/28/2017] [Indexed: 12/19/2022] Open
Abstract
Despite its favorable clinical efficacy, oxaliplatin-based chemotherapy frequently results in treatment withdrawal and induces liver damage in colon cancer. Therefore, it is important to develop novel drugs, which can safely and effectively complement or replace the therapeutic effects of oxaliplatin. Codonopis bulleynana Forest ex Diels (cbFeD) has wide range of pharmacological effects, including anticancer effects. In the present study, the anticancer activity of cbFeD and its potential molecular mechanisms were investigated. In vitro, cell counting kit-8 assays and flow cytometry were used to assess the anti-proliferation and apoptosis-promoting activities of cbFeD. Transmission electron microscopy was used to monitor the autophagic vesicles. Immunofluorescence staining was performed to observe the nuclear translocation of p65 and the fluorescence of microtubule-associated protein 1 light chain 3 (LC3) B-II. The protein expression levels of p65, inhibitor of nuclear factor (NF)-κB (IκB) a, LC3B-I, LC3B-II and Beclin-1 were detected using western blot analysis. In vivo, the antitumor effect of cbFeD was assessed in colon cancer-bearing nude mice as a model. H&E staining and immunohistochemistry (IHC) were performed, with oxaliplatin set as a positive control. The results showed that cbFeD inhibited cell proliferation and promoted cell apoptosis in a dose-dependent manner. The effects of a high dose of cbFeD on colon cancer cells were similar to those of oxaliplatin. In HCT116 and SW480 cells, cbFeD inhibited the expression of IκBα, LC3B-I/II and Beclin-1, and the results of western blot analysis and immunofluorescence showed that, in the cells treated with cbFeD, p65 gradually entered nuclei in a dose-dependent manner, and the expression of LC3B-II was gradually reduced. The results of the acridine orangestaining and electron microscopy demonstrated fewer autophagic vesicles in the high-dose cbFeD group and the oxaliplatin group. The high dose of cbFeD reversed the effect of pyrrolidine dithiocarbamate, a p65-inhibitor, on the expression of p65, LC3B-I, LC3B-II and Beclin-1, and on the production of autophagic vacuoles. The high dose of cbFeD and oxaliplatin also suppressed tumorigenicity in vivo. The results of the H&E and IHC staining confirmed the inhibition of autophagy (LC3 and Beclin-1) and activation of p65 by treatment with the high dose of cbFeD and oxaliplatin. Taken together, cbFeD exhibited an antitumor effect in colon cancer cells by inhibiting autophagy through activation of the NF-κB pathway. Therefore, cbFeD may be a promising Chinese herbal compound for development for use in cancer therapy.
Collapse
Affiliation(s)
- Yunpeng Luan
- Department of Life Technology Teaching and Research, School of Life Science, Southwest Forestry University, Kunming, Yunnan 652400, P.R. China
| | - Yanmei Li
- Department of Life Technology Teaching and Research, School of Life Science, Southwest Forestry University, Kunming, Yunnan 652400, P.R. China
| | - Lina Zhu
- Department of Life Technology Teaching and Research, School of Life Science, Southwest Forestry University, Kunming, Yunnan 652400, P.R. China
| | - Shuangqing Zheng
- Kunming Pharmaceutical Corp., Kunming, Yunnan 652400, P.R. China
| | - Dechang Mao
- Department of Life Technology Teaching and Research, School of Life Science, Southwest Forestry University, Kunming, Yunnan 652400, P.R. China
| | - Zhuxue Chen
- Department of Life Technology Teaching and Research, School of Life Science, Southwest Forestry University, Kunming, Yunnan 652400, P.R. China
| | - Yong Cao
- Department of Life Technology Teaching and Research, School of Life Science, Southwest Forestry University, Kunming, Yunnan 652400, P.R. China
| |
Collapse
|
29
|
Yang PW, Hsieh MS, Chang YH, Huang PM, Lee JM. Genetic polymorphisms of ATG5 predict survival and recurrence in patients with early-stage esophageal squamous cell carcinoma. Oncotarget 2017; 8:91494-91504. [PMID: 29207660 PMCID: PMC5710940 DOI: 10.18632/oncotarget.20793] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 07/27/2017] [Indexed: 01/08/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a deadly disease with high risk of tumor recurrence even among patients with an early pathologic stage of tumor. In the current study, we investigate the association between 20 SNPs of the ATG5 gene and prognosis of patients with early-stage ESCC. A total of 305 patients diagnosed with early-stage ESCC were enrolled in the study and randomly assigned to a training set (n=93) or replication set (n=212). The genotypes of candidate SNPs (single nucleotide polymorphisms) within ATG5 were analyzed and correlated with the prognosis of ESCC patients. We repeatedly demonstrated that 3 SNPs in ATG5, rs1322178, rs3804329, and rs671116, were significantly correlated with the prognosis of patients with early-stage ESCC (HR[95 % CI]=2.01[1.19-3.40], p=0.009 for ATG5: rs1322178; HR[95 % CI]=1.88 [1.08-3.26], p=0.025 for ATG5:rs3804329; HR[95 % CI]=1.73[1.24-2.42], p=0.001 for ATG5:rs671116, in combined group). Both rs1322178 and rs3804329 can predict early distant metastasis of patients. Furthermore, increased expression of ATG5 was observed in ESCC tumor tissue as compared to adjacent normal tissue. Moreover, higher levels of ATG5 expression in both normal and tumor tissues exhibited a trend to correlate with poor prognosis of patients. However, the expression of ATG5 did not correlate with these 3 relevant prognostic SNPs. We concluded that hereditary genetic polymorphisms and gene expression of ATG5 can serve as prognostic predictors of patients with early-stage ESCC.
Collapse
Affiliation(s)
- Pei-Wen Yang
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Min-Shu Hsieh
- Department of Pathology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.,Graduate Institute of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ya-Han Chang
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Pei-Ming Huang
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jang-Ming Lee
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
30
|
Bgatova NP, Gavrilova YS, Lykov AP, Solovieva AO, Makarova VV, Borodin YI, Konenkov VI. Apoptosis and autophagy in hepatocarcinoma cells induced by different forms of lithium salts. ACTA ACUST UNITED AC 2017. [DOI: 10.1134/s1990519x17040022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Liu P, Zhang Z, Wang Q, Guo R, Mei W. Lithium Chloride Facilitates Autophagy Following Spinal Cord Injury via ERK-dependent Pathway. Neurotox Res 2017; 32:535-543. [PMID: 28593525 DOI: 10.1007/s12640-017-9758-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 05/18/2017] [Accepted: 05/22/2017] [Indexed: 12/15/2022]
Abstract
Spinal cord injury (SCI) is one major cause of death and results in long-term disability even in the most productive periods of human lives with few efficacious drugs. Autophagy is a potential therapeutic target for SCI. In the present study, we examined the role of lithium in functional recovery in the rat model of SCI and explored the related mechanism. Locomotion tests were employed to assess the functional recovery after SCI, Western blotting and RT-PCT to determine the level of p-ERK and LC3-II as well as p62, immunofluorescence imaging to localize LC3 and p62. Here, we found that both the expression of LC3-II and p62 were increased after SCI. However, lithium chloride enhanced the level of LC3-II while abrogated the abundance of p62. Furthermore, lithium treatment facilitated ERK activation in vivo, and inhibition of MEK/ERK signaling pathway suppressed lithium-evoked autophagy flux. Taken together, our results illustrated that lithium facilitated functional recovery by enhancing autophagy flux.
Collapse
Affiliation(s)
- Peilin Liu
- Department of Spine Surgery, Zhengzhou Orthopaedic Hospital, Zhengzhou, China
| | - Zijuan Zhang
- Experimental Teaching Center, School of Basic Medical Science, Henan University of Chinese Medicine, Zhengzhou, China
| | - Qingde Wang
- Department of Spine Surgery, Zhengzhou Orthopaedic Hospital, Zhengzhou, China
| | - Rundong Guo
- Department of Spine Surgery, Zhengzhou Orthopaedic Hospital, Zhengzhou, China
| | - Wei Mei
- Department of Spine Surgery, Zhengzhou Orthopaedic Hospital, Zhengzhou, China.
| |
Collapse
|
32
|
LiCl Treatment Induces Programmed Cell Death of Schwannoma Cells through AKT- and MTOR-Mediated Necroptosis. Neurochem Res 2017; 42:2363-2371. [DOI: 10.1007/s11064-017-2256-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 03/29/2017] [Accepted: 03/30/2017] [Indexed: 12/21/2022]
|
33
|
Langer R, Streutker CJ, Swanson PE. Autophagy and its current relevance to the diagnosis and clinical management of esophageal diseases. Ann N Y Acad Sci 2016; 1381:113-121. [PMID: 27526024 DOI: 10.1111/nyas.13190] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/25/2016] [Accepted: 07/07/2016] [Indexed: 12/26/2022]
Abstract
Autophagy is an evolutionarily conserved cell survival program that degrades dysfunctional organelles and misfolded or long-lived proteins through the formation of lysosomes. Basal autophagy helps to maintain cellular homeostasis, while additional autophagy can be induced under cellular stress conditions. Autophagy has shown to be involved in a variety of diseases, such as inflammation, autoimmune diseases, degeneration, and cancer. We review the relevance of autophagy to the diagnosis and clinical management of esophageal diseases with the following questions in mind. What is autophagy and can/should we detect it in routine pathology specimens? What is the role of autophagy in gastroesophageal reflux disease/inflammatory esophageal disease? What role may autophagy play in the interaction between pro- and antiapoptotic pathways in esophageal malignancies and treatment?
Collapse
Affiliation(s)
- Rupert Langer
- Institute of Pathology, University of Bern, Bern, Switzerland.
| | - Catherine J Streutker
- Li Ka Shing Institute, St. Michael's Hospital and Department of Laboratory Medicine and Pathobiology University of Toronto, Toronto, Canada
| | - Paul E Swanson
- Cumming School of Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
34
|
Want A, Gillespie SR, Wang Z, Gordon R, Iomini C, Ritch R, Wolosin JM, Bernstein AM. Autophagy and Mitochondrial Dysfunction in Tenon Fibroblasts from Exfoliation Glaucoma Patients. PLoS One 2016; 11:e0157404. [PMID: 27391778 PMCID: PMC4938507 DOI: 10.1371/journal.pone.0157404] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 05/27/2016] [Indexed: 12/31/2022] Open
Abstract
Purpose To test the hypothesis that autophagy dysfunction is involved in exfoliation syndrome (XFS), a systemic disorder of extracellular elastic matrices that causes a distinct form of human glaucoma. Methods Fibroblasts derived from tenon tissue discards (TFs) from filtration surgery to relieve intraocular pressure in XFS patients were compared against age-matched TFs derived from surgery in primary open-angle glaucoma (POAG) patients or from strabismus surgery. Differential interference contrast light, and electron microscopy were used to examine structural cell features. Immunocytochemistry was used to visualize LOXL1 and Fibulin-5, lysosomes, endosomes, Golgi, and microtubules. Light scatter, Cyto-IDTM and JC1 flow cytometry were used to measure relative cell size, autophagic flux rate and mitochondrial membrane potential (MMPT), respectively. Enhanced autophagy was induced by serum withdrawal. Results In culture, XFS-TFs were 1.38-fold larger (by light scatter ratio, p = 0.05), proliferated 42% slower (p = 0.026), and were morphologically distinct in 2D and 3D culture compared to their POAG counterparts. In extended 3D cultures, XFS-TFs accumulated 8–10 times more Fibulin-5 than the POAG-TFs, and upon serum withdrawal, there were marked deficiencies in relocation of endosomes and lysosomes to the perinuclear area. Correspondingly, the XFS-TFs displayed significant accumulation of the autophagasome marker LC3 II (3.9 fold increase compared to POAG levels, p = 0.0001) and autophagic flux rate as measured by Cyto-ID dye was 53% lower in XFS-TFs than in POAG-TFs (p = 0.01), indicating reduced clearance of autophagasomes. Finally the percent of cells with diminished MMPT was 3–8 times larger in the XFS-TFs than in POAG-TFs (p = 0.02). Conclusions Our results provide for the first time a link between XFS pathology to autophagy dysfunction, a major contributor to multiple age related diseases systemically throughout the body, in the brain and in the retina. A diminished capacity for degradation of denatured protein and aging cellular organelles may underpin the development of extracellular protein aggregates in XFS.
Collapse
Affiliation(s)
- Andrew Want
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, United States of America
| | - Stephanie R. Gillespie
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, United States of America
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, United States of America
| | - Zheng Wang
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, United States of America
| | - Ronald Gordon
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, United States of America
| | - Carlo Iomini
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, United States of America
| | - Robert Ritch
- Einhorn Clinical Research Center, New York Eye and Ear Infirmary of Mount Sinai, New York, NY, 10003, United States of America
| | - J. Mario Wolosin
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, United States of America
- * E-mail: (AMB); (JMW)
| | - Audrey M. Bernstein
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, United States of America
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, United States of America
- * E-mail: (AMB); (JMW)
| |
Collapse
|