1
|
Brunnberg J, Barends M, Frühschulz S, Winter C, Battin C, de Wet B, Cole DK, Steinberger P, Tampé R. Dual role of the peptide-loading complex as proofreader and limiter of MHC-I presentation. Proc Natl Acad Sci U S A 2024; 121:e2321600121. [PMID: 38771881 PMCID: PMC11145271 DOI: 10.1073/pnas.2321600121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/17/2024] [Indexed: 05/23/2024] Open
Abstract
Antigen presentation via major histocompatibility complex class I (MHC-I) molecules is essential for surveillance by the adaptive immune system. Central to this process is the peptide-loading complex (PLC), which translocates peptides from the cytosol to the endoplasmic reticulum and catalyzes peptide loading and proofreading of peptide-MHC-I (pMHC-I) complexes. Despite its importance, the impact of individual PLC components on the presented pMHC-I complexes is still insufficiently understood. Here, we used stoichiometrically defined antibody-nanobody complexes and engineered soluble T cell receptors (sTCRs) to quantify different MHC-I allomorphs and defined pMHC-I complexes, respectively. Thereby, we uncovered distinct effects of individual PLC components on the pMHC-I surface pool. Knockouts of components of the PLC editing modules, namely tapasin, ERp57, or calreticulin, changed the MHC-I surface composition to a reduced proportion of HLA-A*02:01 presentation compensated by a higher ratio of HLA-B*40:01 molecules. Intriguingly, these knockouts not only increased the presentation of suboptimally loaded HLA-A*02:01 complexes but also elevated the presentation of high-affinity peptides overexpressed in the cytosol. Our findings suggest that the components of the PLC editing module serve a dual role, acting not only as peptide proofreaders but also as limiters for abundant peptides. This dual function ensures the presentation of a broad spectrum of antigenic peptides.
Collapse
Affiliation(s)
- Jamina Brunnberg
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt am Main60438, Germany
| | - Martina Barends
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt am Main60438, Germany
| | - Stefan Frühschulz
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt am Main60438, Germany
| | - Christian Winter
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt am Main60438, Germany
| | - Claire Battin
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna1090, Austria
| | - Ben de Wet
- Immunocore Ltd., AbingdonOX14 4RY, United Kingdom
| | | | - Peter Steinberger
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna1090, Austria
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt am Main60438, Germany
| |
Collapse
|
2
|
Larson AC, Knoche SM, Brumfield GL, Doty KR, Gephart BD, Moore-Saufley PR, Solheim JC. Gemcitabine Modulates HLA-I Regulation to Improve Tumor Antigen Presentation by Pancreatic Cancer Cells. Int J Mol Sci 2024; 25:3211. [PMID: 38542184 PMCID: PMC10970070 DOI: 10.3390/ijms25063211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/25/2024] [Accepted: 03/04/2024] [Indexed: 04/26/2024] Open
Abstract
Pancreatic cancer is a lethal disease, harboring a five-year overall survival rate of only 13%. Current treatment approaches thus require modulation, with attention shifting towards liberating the stalled efficacy of immunotherapies. Select chemotherapy drugs which possess inherent immune-modifying behaviors could revitalize immune activity against pancreatic tumors and potentiate immunotherapeutic success. In this study, we characterized the influence of gemcitabine, a chemotherapy drug approved for the treatment of pancreatic cancer, on tumor antigen presentation by human leukocyte antigen class I (HLA-I). Gemcitabine increased pancreatic cancer cells' HLA-I mRNA transcripts, total protein, surface expression, and surface stability. Temperature-dependent assay results indicated that the increased HLA-I stability may be due to reduced binding of low affinity peptides. Mass spectrometry analysis confirmed changes in the HLA-I-presented peptide pool post-treatment, and computational predictions suggested improved affinity and immunogenicity of peptides displayed solely by gemcitabine-treated cells. Most of the gemcitabine-exclusive peptides were derived from unique source proteins, with a notable overrepresentation of translation-related proteins. Gemcitabine also increased expression of select immunoproteasome subunits, providing a plausible mechanism for its modulation of the HLA-I-bound peptidome. Our work supports continued investigation of immunotherapies, including peptide-based vaccines, to be used with gemcitabine as new combination treatment modalities for pancreatic cancer.
Collapse
Affiliation(s)
- Alaina C. Larson
- Eppley Institute for Research in Cancer & Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Shelby M. Knoche
- Eppley Institute for Research in Cancer & Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Gabrielle L. Brumfield
- Eppley Institute for Research in Cancer & Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kenadie R. Doty
- Eppley Institute for Research in Cancer & Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Benjamin D. Gephart
- Eppley Institute for Research in Cancer & Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | | - Joyce C. Solheim
- Eppley Institute for Research in Cancer & Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
3
|
Wang SS, Pandey K, Watson KA, Abbott RC, Mifsud NA, Gracey FM, Ramarathinam SH, Cross RS, Purcell AW, Jenkins MR. Endogenous H3.3K27M derived peptide restricted to HLA-A∗02:01 is insufficient for immune-targeting in diffuse midline glioma. Mol Ther Oncolytics 2023; 30:167-180. [PMID: 37674626 PMCID: PMC10477804 DOI: 10.1016/j.omto.2023.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/11/2023] [Indexed: 09/08/2023] Open
Abstract
Diffuse midline glioma (DMG) is a childhood brain tumor with an extremely poor prognosis. Chimeric antigen receptor (CAR) T cell therapy has recently demonstrated some success in DMG, but there may a need to target multiple tumor-specific targets to avoid antigen escape. We developed a second-generation CAR targeting an HLA-A∗02:01 restricted histone 3K27M epitope in DMG, the target of previous peptide vaccination and T cell receptor-mimics. These CAR T cells demonstrated specific, titratable, binding to cells pulsed with the H3.3K27M peptide. However, we were unable to observe scFv binding, CAR T cell activation, or cytotoxic function against H3.3K27M+ patient-derived models. Despite using sensitive immunopeptidomics, we could not detect the H3.3K27M26-35-HLA-A∗02:01 peptide on these patient-derived models. Interestingly, other non-mutated peptides from DMG were detected bound to HLA-A∗02:01 and other class I molecules, including a novel HLA-A3-restricted peptide encompassing the K27M mutation and overlapping with the H3 K27M26-35-HLA-A∗02:01 peptide. These results suggest that targeting the H3 K27M26-35 mutation in context of HLA-A∗02:01 may not be a feasible immunotherapy strategy because of its lack of presentation. These findings should inform future investigations and clinical trials in DMG.
Collapse
Affiliation(s)
- Stacie S. Wang
- The Walter and Eliza Hall Institute of Medical Research, Immunology Division, Parkville, VIC 3052, Australia
- Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
- The University of Melbourne, Department of Medical Biology, Parkville, VIC 3052, Australia
| | - Kirti Pandey
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Katherine A. Watson
- The Walter and Eliza Hall Institute of Medical Research, Immunology Division, Parkville, VIC 3052, Australia
| | - Rebecca C. Abbott
- The Walter and Eliza Hall Institute of Medical Research, Immunology Division, Parkville, VIC 3052, Australia
- The University of Melbourne, Department of Medical Biology, Parkville, VIC 3052, Australia
| | - Nicole A. Mifsud
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Fiona M. Gracey
- Myrio Therapeutics, 6-16 Joseph St, Blackburn North, Melbourne, VIC 3130, Australia
| | - Sri H. Ramarathinam
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Ryan S. Cross
- The Walter and Eliza Hall Institute of Medical Research, Immunology Division, Parkville, VIC 3052, Australia
| | - Anthony W. Purcell
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Misty R. Jenkins
- The Walter and Eliza Hall Institute of Medical Research, Immunology Division, Parkville, VIC 3052, Australia
- The University of Melbourne, Department of Medical Biology, Parkville, VIC 3052, Australia
- La Trobe University, La Trobe Institute for Molecular Science, Bundoora, VIC, Australia
| |
Collapse
|
4
|
Johansson T, Partanen J, Saavalainen P. HLA allele-specific expression: Methods, disease associations, and relevance in hematopoietic stem cell transplantation. Front Immunol 2022; 13:1007425. [PMID: 36248878 PMCID: PMC9554311 DOI: 10.3389/fimmu.2022.1007425] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/09/2022] [Indexed: 11/27/2022] Open
Abstract
Varying HLA allele-specific expression levels are associated with human diseases, such as graft versus host disease (GvHD) in hematopoietic stem cell transplantation (HSCT), cytotoxic T cell response and viral load in HIV infection, and the risk of Crohn’s disease. Only recently, RNA-based next generation sequencing (NGS) methodologies with accompanying bioinformatics tools have emerged to quantify HLA allele-specific expression replacing the quantitative PCR (qPCR) -based methods. These novel NGS approaches enable the systematic analysis of the HLA allele-specific expression changes between individuals and between normal and disease phenotypes. Additionally, analyzing HLA allele-specific expression and allele-specific expression loss provide important information for predicting efficacies of novel immune cell therapies. Here, we review available RNA sequencing-based approaches and computational tools for NGS to quantify HLA allele-specific expression. Moreover, we explore recent studies reporting disease associations with differential HLA expression. Finally, we discuss the role of allele-specific expression in HSCT and how considering the expression quantification in recipient-donor matching could improve the outcome of HSCT.
Collapse
Affiliation(s)
- Tiira Johansson
- Translational Immunology Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
- Research and Development, Finnish Red Cross Blood Service, Helsinki, Finland
- *Correspondence: Tiira Johansson,
| | - Jukka Partanen
- Research and Development, Finnish Red Cross Blood Service, Helsinki, Finland
| | - Päivi Saavalainen
- Translational Immunology Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
- Genetics Research Program, Folkhälsan Research Center, Helsinki, Finland
| |
Collapse
|
5
|
Žilionytė K, Bagdzevičiūtė U, Mlynska A, Urbštaitė E, Paberalė E, Dobrovolskienė N, Krasko JA, Pašukonienė V. Functional antigen processing and presentation mechanism as a prerequisite factor of response to treatment with dendritic cell vaccines and anti-PD-1 in preclinical murine LLC1 and GL261 tumor models. Cancer Immunol Immunother 2022; 71:2691-2700. [PMID: 35364740 DOI: 10.1007/s00262-022-03190-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 03/14/2022] [Indexed: 12/15/2022]
Abstract
Low efficacy of cancer immunotherapy encourages the search for possible resistance mechanisms and biomarkers that would predict the outcome of immunotherapy in oncology patients. Most cancer immunotherapies act on T lymphocytes, which can specifically recognize and kill tumor cells. However, for immunotherapy-activated T lymphocytes to be able to perform these functions, proper tumor Ag processing and surface presentation by MHC-I molecule is important. Knowing the significance of Ag processing and presentation mechanism (APM) in anti-tumor immune response, we sought to evaluate how the functionality of APM affects tumor immune microenvironment and response to dendritic cell vaccines (DCV) and anti-PD-1. By comparing murine Lewis lung carcinoma LLC1 and glioma GL261 models a decreased expression of APM-related genes, such as Psmb8, Psmb9, Psmb10, Tap1, Tap2, Erap1, B2m, and low expression of surface MHC-I molecule were found in LLC1 cells. Changes in APM-related gene expression affected the ability of T lymphocytes to recognize and kill LLC1 cells, resulting in the absence of cytotoxic immune response and resistance to DCV and anti-PD-1. An emerging cytotoxic immune reaction and sensitivity to DCV and anti-PD-1 were observed in GL261 tumors where APM remained functional. This study demonstrates that one of the possible mechanisms of tumor resistance to immunotherapy is a dysfunctional APM and reveals a predictive potential of APM-related gene set expression for the personalization of dendritic cell vaccine and anti-PD-1 therapies in murine pre-treated tumors.
Collapse
Affiliation(s)
- Karolina Žilionytė
- Laboratory of Immunology, National Cancer Institute, Vilnius, Lithuania. .,Life Sciences Center, Vilnius University, Vilnius, Lithuania.
| | - Ugnė Bagdzevičiūtė
- Laboratory of Immunology, National Cancer Institute, Vilnius, Lithuania.,Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Agata Mlynska
- Laboratory of Immunology, National Cancer Institute, Vilnius, Lithuania.,Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | | | - Emilija Paberalė
- Laboratory of Immunology, National Cancer Institute, Vilnius, Lithuania.,Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | | | - Jan Aleksander Krasko
- Laboratory of Immunology, National Cancer Institute, Vilnius, Lithuania.,Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Vita Pašukonienė
- Laboratory of Immunology, National Cancer Institute, Vilnius, Lithuania.,Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Vilnius, Lithuania
| |
Collapse
|
6
|
Friedrich M, Vaxevanis CK, Biehl K, Mueller A, Seliger B. Targeting the coding sequence: opposing roles in regulating classical and non-classical MHC class I molecules by miR-16 and miR-744. J Immunother Cancer 2021; 8:jitc-2019-000396. [PMID: 32571994 PMCID: PMC7307530 DOI: 10.1136/jitc-2019-000396] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2020] [Indexed: 01/31/2023] Open
Abstract
Background To control gene expression, microRNAs (miRNAs) are of key importance and their deregulation is associated with the development and progression of various cancer types. In this context, a discordant messenger RNA/protein expression pointing to extensive post-transcriptional regulation of major histocompatibility complex (MHC) class I molecules was already shown. However, only a very limited number of miRNAs targeting these molecules have yet been identified. Despite an increasing evidence of coding sequence (CDS)-located miRNA binding sites, there exists so far, no detailed study of the interaction of miRNAs with the CDS of MHC class I molecules. Methods Using an MS2-tethering approach in combination with small RNA sequencing, a number of putative miRNAs binding to the CDS of human leukocyte antigen (HLA)-G were identified. These candidate miRNAs were extensively screened for their effects in the HLA-G-positive JEG3 cell line. Due to the high sequence similarity between HLA-G and classical MHC class I molecules, the impact of HLA-G candidate miRNAs on HLA class I surface expression was also analyzed. The Cancer Genome Atlas data were used to correlate candidate miRNAs and HLA class I gene expression. Results Transfection of candidate miRNAs revealed that miR-744 significantly downregulates HLA-G protein levels. In contrast, overexpression of the candidate miRNAs miR-15, miR-16, and miR-424 sharing the same seed sequence resulted in an unexpected upregulation of HLA-G. Comparable results were obtained for classical MHC class I members after transfection of miRNA mimics into HEK293T cells. Analyses of The Cancer Genome Atlas data sets for miRNA and MHC class I expression further validated the results. Conclusions Our data expand the knowledge about MHC class I regulation and showed for the first time an miRNA-dependent control of MHC class I antigens mediated by the CDS. CDS-located miRNA binding sites could improve the general use of miRNA-based therapeutic approaches as these sites are highly independent of structural variations (e.g. mutations) in the gene body. Surprisingly, miR-16 family members promoted MHC class I expression potentially in a gene activation-like mechanism.
Collapse
Affiliation(s)
- Michael Friedrich
- Medical Immunology, Martin Luther University Halle Wittenberg, Halle, Sachsen-Anhalt, Germany
| | | | - Katharina Biehl
- Medical Immunology, Martin Luther University Halle Wittenberg, Halle, Sachsen-Anhalt, Germany
| | - Anja Mueller
- Medical Immunology, Martin Luther University Halle Wittenberg, Halle, Sachsen-Anhalt, Germany
| | - Barbara Seliger
- Medical Immunology, Martin Luther University Halle Wittenberg, Halle, Sachsen-Anhalt, Germany
| |
Collapse
|
7
|
Camacho-Bydume C, Wang T, Sees JA, Fernandez-Viña M, Abid MB, Askar M, Beitinjaneh A, Brown V, Castillo P, Chhabra S, Gadalla SM, Hsu JM, Kamoun M, Lazaryan A, Nishihori T, Page K, Schetelig J, Fleischhauer K, Marsh SGE, Paczesny S, Spellman SR, Lee SJ, Hsu KC. Specific Class I HLA Supertypes but Not HLA Zygosity or Expression Are Associated with Outcomes following HLA-Matched Allogeneic Hematopoietic Cell Transplant: HLA Supertypes Impact Allogeneic HCT Outcomes. Transplant Cell Ther 2020; 27:142.e1-142.e11. [PMID: 33053450 DOI: 10.1016/j.bbmt.2020.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/30/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022]
Abstract
Maximizing the probability of antigen presentation to T cells through diversity in HLAs can enhance immune responsiveness and translate into improved clinical outcomes, as evidenced by the association of heterozygosity and supertypes at HLA class I loci with improved survival in patients with advanced solid tumors treated with immune checkpoint inhibitors. We investigated the impact of HLA heterozygosity, supertypes, and surface expression on outcomes in adult and pediatric patients with acute myeloid leukemia (AML), myelodysplastic syndrome, acute lymphoblastic leukemia, and non-Hodgkin lymphoma who underwent 8/8 HLA-matched, T cell replete, unrelated, allogeneic hematopoietic cell transplant (HCT) from 2000 to 2015 using patient data reported to the Center for International Blood and Marrow Transplant Research. HLA class I heterozygosity and HLA expression were not associated with overall survival, relapse, transplant-related mortality (TRM), disease-free survival (DFS), and acute graft-versus-host disease following HCT. The HLA-B62 supertype was associated with decreased TRM in the entire patient cohort (hazard ratio [HR], 0.79; 95% CI, 0.69 to 0.90; P = .00053). The HLA-B27 supertype was associated with worse DFS in patients with AML (HR = 1.21; 95% CI, 1.10 to 1.32; P = .00005). These findings suggest that the survival benefit of HLA heterozygosity seen in solid tumor patients receiving immune checkpoint inhibitors does not extend to patients undergoing allogeneic HCT. Certain HLA supertypes, however, are associated with TRM and DFS, suggesting that similarities in peptide presentation between supertype members play a role in these outcomes. Beyond implications for prognosis following HCT, these findings support the further investigation of these HLA supertypes and the specific immune peptides important for transplant outcomes.
Collapse
Affiliation(s)
| | - Tao Wang
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI
| | - Jennifer A Sees
- Center for International Blood and Marrow Transplant Research, National Marrow Donor Program/Be The Match, Minneapolis, MN
| | | | - Muhammad Bilal Abid
- Divisions of Hematology/Oncology and Infectious Diseases, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Medhat Askar
- Department of Pathology and Laboratory Medicine, Baylor University Medical Center, Dallas, Texas
| | - Amer Beitinjaneh
- Department of Medicine, Division of Transplantation and Cellular Therapy, University of Miami, Miami, Florida
| | - Valerie Brown
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Penn State Hershey Children's Hospital and College of Medicine, Hershey, Pennsylvania
| | - Paul Castillo
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Florida Health Shands Children's Hospital, Gainesville, FL
| | - Saurabh Chhabra
- Division of Hematology/Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Shahinaz M Gadalla
- Division of Cancer Epidemiology & Genetics, NIH-NCI Clinical Genetics Branch, Rockville, Maryland
| | - Jing-Mei Hsu
- Division of Hematology/Oncology, Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine/New York Presbyterian Hospital, New York, NY
| | - Malek Kamoun
- Deparment of Pathology and Laboratory Medicine, Perelman School of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Aleksandr Lazaryan
- Department of Blood and Marrow Transplant and Cellular Immunotherapy (BMT CI), Moffitt Cancer Center, Tampa, Florida
| | - Taiga Nishihori
- Department of Blood and Marrow Transplant and Cellular Immunotherapy (BMT CI), Moffitt Cancer Center, Tampa, Florida
| | - Kristin Page
- Division of Pediatric Blood and Marrow Transplantation, Duke University Medical Center, Durham, North Carolina
| | - Johannes Schetelig
- Department of Internal Medicine I, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| | | | - Steven G E Marsh
- Anthony Nolan Research Institute, Royal Free Hospital, London, UK; UCL Cancer Institute, London, UK
| | - Sophie Paczesny
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC
| | - Stephen R Spellman
- Center for International Blood and Marrow Transplant Research, National Marrow Donor Program/Be The Match, Minneapolis, MN
| | - Stephanie J Lee
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Medicine, University of Washington, Seattle, WA
| | - Katharine C Hsu
- Department of Medicine, Adult Bone Marrow Transplantation Service, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Medicine, Weill Cornell Medical College, New York, New York; Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
8
|
Thompson JC, Davis C, Deshpande C, Hwang WT, Jeffries S, Huang A, Mitchell TC, Langer CJ, Albelda SM. Gene signature of antigen processing and presentation machinery predicts response to checkpoint blockade in non-small cell lung cancer (NSCLC) and melanoma. J Immunother Cancer 2020; 8:jitc-2020-000974. [PMID: 33028693 PMCID: PMC7542663 DOI: 10.1136/jitc-2020-000974] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2020] [Indexed: 12/31/2022] Open
Abstract
Background Limited data exist on the role of alterations in HLA Class I antigen processing and presentation machinery in mediating response to immune checkpoint blockade (ICB). Methods This retrospective cohort study analyzed transcriptional profiles from pre-treatment tumor samples of 51 chemotherapy-refractory advanced non-small cell lung cancer (NSCLC) patients and two independent melanoma cohorts treated with ICB. An antigen processing machinery (APM) score was generated utilizing eight genes associated with APM (B2M, CALR, NLRC5, PSMB9, PSME1, PSME3, RFX5, and HSP90AB1). Associations were made for therapeutic response, progression-free survival (PFS) and overall survival (OS). Results In NSCLC, the APM score was significantly higher in responders compared with non-responders (p=0.0001). An APM score above the median value for the cohort was associated with improved PFS (HR 0.34 (0.18 to 0.64), p=0.001) and OS (HR 0.44 (0.23 to 0.83), p=0.006). The APM score was correlated with an inflammation score based on the established T-cell-inflamed resistance gene expression profile (Pearson’s r=0.58, p<0.0001). However, the APM score better predicted response to ICB relative to the inflammation score with area under a receiving operating characteristics curve of 0.84 and 0.70 for PFS and OS, respectively. In a cohort of 14 high-risk resectable stage III/IV melanoma patients treated with neoadjuvant anti-PD1 ICB, a higher APM score was associated with improved disease-free survival (HR: 0.08 (0.01 to 0.50), p=0.0065). In an additional independent melanoma cohort of 27 metastatic patients treated with ICB, a higher APM score was associated with improved OS (HR 0.29 (0.09 to 0.89), p=0.044). Conclusion Our data demonstrate that defects in antigen presentation may be an important feature in predicting outcomes to ICB in both lung cancer and melanoma.
Collapse
Affiliation(s)
- Jeffrey C Thompson
- Pulmonary and Critical Care, Thoracic Oncology Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Christiana Davis
- Hematology/Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Charuhas Deshpande
- Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Wei-Ting Hwang
- Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Seth Jeffries
- Hematology/Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Alexander Huang
- Hematology/Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Tara C Mitchell
- Hematology/Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Corey J Langer
- Hematology/Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Steven M Albelda
- Pulmonary and Critical Care, Thoracic Oncology Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
9
|
Bruijnesteijn J, de Groot NG, Bontrop RE. The Genetic Mechanisms Driving Diversification of the KIR Gene Cluster in Primates. Front Immunol 2020; 11:582804. [PMID: 33013938 PMCID: PMC7516082 DOI: 10.3389/fimmu.2020.582804] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/18/2020] [Indexed: 12/26/2022] Open
Abstract
The activity and function of natural killer (NK) cells are modulated through the interactions of multiple receptor families, of which some recognize MHC class I molecules. The high level of MHC class I polymorphism requires their ligands either to interact with conserved epitopes, as is utilized by the NKG2A receptor family, or to co-evolve with the MHC class I allelic variation, which task is taken up by the killer cell immunoglobulin-like receptor (KIR) family. Multiple molecular mechanisms are responsible for the diversification of the KIR gene system, and include abundant chromosomal recombination, high mutation rates, alternative splicing, and variegated expression. The combination of these genetic mechanisms generates a compound array of diversity as is reflected by the contraction and expansion of KIR haplotypes, frequent birth of fusion genes, allelic polymorphism, structurally distinct isoforms, and variegated expression, which is in contrast to the mainly allelic nature of MHC class I polymorphism in humans. A comparison of the thoroughly studied human and macaque KIR gene repertoires demonstrates a similar evolutionarily conserved toolbox, through which selective forces drove and maintained the diversified nature of the KIR gene cluster. This hypothesis is further supported by the comparative genetics of KIR haplotypes and genes in other primate species. The complex nature of the KIR gene system has an impact upon the education, activity, and function of NK cells in coherence with an individual’s MHC class I repertoire and pathogenic encounters. Although selection operates on an individual, the continuous diversification of the KIR gene system in primates might protect populations against evolving pathogens.
Collapse
Affiliation(s)
- Jesse Bruijnesteijn
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Natasja G de Groot
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Ronald E Bontrop
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, Netherlands.,Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
10
|
Using Nanopore Whole-Transcriptome Sequencing for Human Leukocyte Antigen Genotyping and Correlating Donor Human Leukocyte Antigen Expression with Flow Cytometric Crossmatch Results. J Mol Diagn 2020; 22:101-110. [DOI: 10.1016/j.jmoldx.2019.09.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/27/2019] [Accepted: 09/11/2019] [Indexed: 01/07/2023] Open
|
11
|
Ritz D, Kinzi J, Neri D, Fugmann T. Data-Independent Acquisition of HLA Class I Peptidomes on the Q Exactive Mass Spectrometer Platform. Proteomics 2018; 17. [PMID: 28834231 DOI: 10.1002/pmic.201700177] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/07/2017] [Indexed: 12/18/2022]
Abstract
The characterization of peptides presented by human leukocyte antigen (HLA) class I molecules is crucial for understanding immune processes, biomarker discovery, and the development of novel immunotherapies or vaccines. Mass spectrometry allows the direct identification of thousands of HLA-bound peptides from cell lines, blood, or tissue. In recent years, data-independent acquisition (DIA) mass spectrometry methods have evolved, promising to increase reproducibility and sensitivity over classical data-dependent acquisition (DDA) workflows. Here, we describe a DIA setup on the Q Exactive mass spectrometer, optimized regarding the unique properties of HLA class I peptides. The methodology enables sensitive and highly reproducible characterization of HLA peptidomes from individual cell lines. From up to 16 DDA analyses of 100 million human cells, more than 10 000 peptides could be confidently identified, serving as basis for the generation of spectral libraries. This knowledge enabled the subsequent interrogation of DIA data, leading to the identification of peptide sets with >90% overlap between replicate samples, a prerequisite for the comparative study of closely related specimens. Furthermore, >3000 peptides could be identified from just one million cells after DIA analysis using a library generated from 300 million cells. The reduction in sample quantity and the high reproducibility of DIA-based HLA peptidome analysis should facilitate personalized medicine applications.
Collapse
Affiliation(s)
| | - Jonny Kinzi
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Dario Neri
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | | |
Collapse
|
12
|
Ramsuran V, Hernández-Sanchez PG, O'hUigin C, Sharma G, Spence N, Augusto DG, Gao X, García-Sepúlveda CA, Kaur G, Mehra NK, Carrington M. Sequence and Phylogenetic Analysis of the Untranslated Promoter Regions for HLA Class I Genes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 198:2320-2329. [PMID: 28148735 PMCID: PMC5340644 DOI: 10.4049/jimmunol.1601679] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 01/02/2017] [Indexed: 01/09/2023]
Abstract
Polymorphisms located within the MHC have been linked to many disease outcomes by mechanisms not yet fully understood in most cases. Variants located within untranslated regions of HLA genes are involved in allele-specific expression and may therefore underlie some of these disease associations. We determined sequences extending nearly 2 kb upstream of the transcription start site for 68 alleles from 57 major lineages of classical HLA class I genes. The nucleotide diversity within this promoter segment roughly follows that seen within the coding regions, with HLA-B showing the highest (∼1.9%), followed by HLA-A (∼1.8%), and HLA-C showing the lowest diversity (∼0.9%). Despite its greater diversity, HLA-B mRNA expression levels determined in 178 European Americans do not vary in an allele- or lineage-specific manner, unlike the differential expression levels of HLA-A or HLA-C reported previously. Close proximity of promoter sequences in phylogenetic trees is roughly reflected by similarity of expression pattern for most HLA-A and -C loci. Although promoter sequence divergence might impact promoter activity, we observed no clear link between the phylogenetic structures as represented by pairwise nucleotide differences in the promoter regions with estimated differences in mRNA expression levels for the classical class I loci. Further, no pair of class I loci showed coordinated expression levels, suggesting that distinct mechanisms across loci determine their expression level under nonstimulated conditions. These data serve as a foundation for more in-depth analysis of the functional consequences of promoter region variation within the classical HLA class I loci.
Collapse
Affiliation(s)
- Veron Ramsuran
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139
| | - Pedro G Hernández-Sanchez
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702
- Laboratorio de Genómica Viral y Humana, Facultad de Medicina de la Universidad Autónoma de San Luis Potosi, 78210 San Luis Potosi, Mexico
| | - Colm O'hUigin
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Gaurav Sharma
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, New Delhi 110029, India
- Laboratory Oncology, Dr. B.R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi 110029, India; and
| | - Niamh Spence
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702
- Laboratory Oncology, Dr. B.R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi 110029, India; and
| | - Danillo G Augusto
- Laboratório de Genética Molecular Humana, Departamento de Genética, Universidade Federal do Paraná, Curitiba, CEP 81531-980, Brazil
| | - Xiaojiang Gao
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Christian A García-Sepúlveda
- Laboratorio de Genómica Viral y Humana, Facultad de Medicina de la Universidad Autónoma de San Luis Potosi, 78210 San Luis Potosi, Mexico
| | - Gurvinder Kaur
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Narinder K Mehra
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Mary Carrington
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702;
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139
| |
Collapse
|
13
|
Nayak DK, Saravanan PB, Bansal S, Naziruddin B, Mohanakumar T. Autologous and Allogenous Antibodies in Lung and Islet Cell Transplantation. Front Immunol 2016; 7:650. [PMID: 28066448 PMCID: PMC5179571 DOI: 10.3389/fimmu.2016.00650] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 12/14/2016] [Indexed: 01/02/2023] Open
Abstract
The field of organ transplantation has undoubtedly made great strides in recent years. Despite the advances in donor-recipient histocompatibility testing, improvement in transplantation procedures, and development of aggressive immunosuppressive regimens, graft-directed immune responses still pose a major problem to the long-term success of organ transplantation. Elicitation of immune responses detected as antibodies to mismatched donor antigens (alloantibodies) and tissue-restricted self-antigens (autoantibodies) are two major risk factors for the development of graft rejection that ultimately lead to graft failure. In this review, we describe current understanding on genesis and pathogenesis of antibodies in two important clinical scenarios: lung transplantation and transplantation of islet of Langerhans. It is evident that when compared to any other clinical solid organ or cellular transplant, lung and islet transplants are more susceptible to rejection by combination of allo- and autoimmune responses.
Collapse
Affiliation(s)
- Deepak Kumar Nayak
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center , Phoenix, AZ , USA
| | | | - Sandhya Bansal
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center , Phoenix, AZ , USA
| | | | | |
Collapse
|
14
|
Dellgren C, Ekwelum VAC, Ormhøj M, Pallesen N, Knudsen J, Nehlin JO, Barington T. Low Constitutive Cell Surface Expression of HLA-B Is Caused by a Posttranslational Mechanism Involving Glu180 and Arg239. THE JOURNAL OF IMMUNOLOGY 2016; 197:4807-4816. [PMID: 27821669 DOI: 10.4049/jimmunol.1502546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 10/11/2016] [Indexed: 12/18/2022]
Abstract
HLA class I cell surface expression is crucial for normal immune responses, and variability in HLA expression may influence the course of infections. We have previously shown that classical HLA class I expression on many human cell types is biased with greatly reduced expression of HLA-B compared with HLA-A in the absence of inflammatory signals. In the search for the mechanisms responsible for this discrepancy, we have recently reported that the regulation is mainly posttranslational and that the C-terminal part of the α2 domain and the α3 domain contain the molecular determinants that explain most of the variability of expression between common HLA-A and -B allomorphs. In this study, we present a fine mapping of the structural determinants that allow such variability by exchanging key amino acids located within the C-terminal part of the α2 domain and the α3 domain of HLA-A2 and -B8, including Glu/Asp at position 177, Gln/Glu at position 180, Gly/Arg at position 239, and Pro/Ser at position 280. We found that the HLA-A2 and -B8 expression profiles could be interconverted to a large extent by mutual exchange of Gln/Glu at position 180 or by Gly/Arg at position 239. The presence of Gln180 and Gly239, as in HLA-A2, led to higher cell surface expression levels when compared with the presence of Glu180 and Arg239, as in HLA-B8. This indicates that the amino acids at positions 180 and 239 determine the level of cell surface expression of common HLA-A and -B allomorphs, probably by affecting HLA processing in the Ag presentation pathway.
Collapse
Affiliation(s)
- Christoffer Dellgren
- Department of Clinical Immunology, Odense University Hospital, 5000 Odense, Denmark
| | - Vanessa A C Ekwelum
- Department of Clinical Immunology, Odense University Hospital, 5000 Odense, Denmark
| | - Maria Ormhøj
- Department of Clinical Immunology, Odense University Hospital, 5000 Odense, Denmark
| | - Nicole Pallesen
- Department of Clinical Immunology, Odense University Hospital, 5000 Odense, Denmark
| | - Julie Knudsen
- Department of Clinical Immunology, Odense University Hospital, 5000 Odense, Denmark
| | - Jan O Nehlin
- Department of Clinical Immunology, Odense University Hospital, 5000 Odense, Denmark
| | - Torben Barington
- Department of Clinical Immunology, Odense University Hospital, 5000 Odense, Denmark
| |
Collapse
|
15
|
Kametani Y, Ohshima S, Miyamoto A, Shigenari A, Takasu M, Imaeda N, Matsubara T, Tanaka M, Shiina T, Kamiguchi H, Suzuki R, Kitagawa H, Kulski JK, Hirayama N, Inoko H, Ando A. Production of a Locus- and Allele-Specific Monoclonal Antibody for the Characterization of SLA-1*0401 mRNA and Protein Expression Levels in MHC-Defined Microminipigs. PLoS One 2016; 11:e0164995. [PMID: 27760184 PMCID: PMC5070868 DOI: 10.1371/journal.pone.0164995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 10/04/2016] [Indexed: 12/17/2022] Open
Abstract
The class I major histocompatibility complex (MHC) presents self-developed peptides to specific T cells to induce cytotoxity against infection. The MHC proteins are encoded by multiple loci that express numerous alleles to preserve the variability of the antigen-presenting ability in each species. The mechanism regulating MHC mRNA and protein expression at each locus is difficult to analyze because of the structural and sequence similarities between alleles. In this study, we examined the correlation between the mRNA and surface protein expression of swine leukocyte antigen (SLA)-1*0401 after the stimulation of peripheral blood mononuclear cells (PBMCs) by Staphylococcus aureus superantigen toxic shock syndrome toxin-1 (TSST-1). We prepared a monoclonal antibody (mAb) against a domain composed of Y102, L103 and L109 in the α2 domain. The Hp-16.0 haplotype swine possess only SLA-1*0401, which has the mAb epitope, while other haplotypes possess 0 to 3 SLA classical class I loci with the mAb epitopes. When PBMCs from SLA-1*0401 homozygous pigs were stimulated, the SLA-1*0401 mRNA expression level increased until 24 hrs and decreased at 48 hrs. The kinetics of the interferon regulatory transcription factor-1 (IRF-1) mRNA level were similar to those of the SLA-1*0401 mRNA. However, the surface protein expression level continued to increase until 72 hrs. Similar results were observed in the Hp-10.0 pigs with three mAb epitopes. These results suggest that TSST-1 stimulation induced both mRNA and surface protein expression of class I SLA in the swine PBMCs differentially and that the surface protein level was sustained independently of mRNA regulation.
Collapse
Affiliation(s)
- Yoshie Kametani
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
- Institute of Advanced Biosciences, Tokai University, Kanagawa, Japan
- * E-mail:
| | - Shino Ohshima
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Asuka Miyamoto
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Atsuko Shigenari
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Masaki Takasu
- Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu, Gifu, Japan
| | - Noriaki Imaeda
- Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu, Gifu, Japan
| | - Tatsuya Matsubara
- Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu, Gifu, Japan
| | - Masafumi Tanaka
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Takashi Shiina
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Hiroshi Kamiguchi
- Teaching and Research Support Center, Tokai University School of Medicine, Isehara, Japan
| | - Ryuji Suzuki
- Department of Rheumatology and Clinical Immunology, Clinical Research Center for Allergy and Rheumatology, Sagamihara National Hospital, National Hospital Organization, Sagamihara, Kanagawa, Japan
| | - Hitoshi Kitagawa
- Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu, Gifu, Japan
| | - Jerzy K. Kulski
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
- School of Psychiatry and Clinical Neurosciences, The University of Western Australia, Crawley WA, Australia
| | - Noriaki Hirayama
- Institute of Glycoscience, Tokai University, Hiratsuka, Kanagawa, Japan
| | - Hidetoshi Inoko
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Asako Ando
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| |
Collapse
|
16
|
Hickey MJ, Valenzuela NM, Reed EF. Alloantibody Generation and Effector Function Following Sensitization to Human Leukocyte Antigen. Front Immunol 2016; 7:30. [PMID: 26870045 PMCID: PMC4740371 DOI: 10.3389/fimmu.2016.00030] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 01/20/2016] [Indexed: 02/06/2023] Open
Abstract
Allorecognition is the activation of the adaptive immune system to foreign human leukocyte antigen (HLA) resulting in the generation of alloantibodies. Due to a high polymorphism, foreign HLA is recognized by the immune system following transplant, transfusion, or pregnancy resulting in the formation of the germinal center and the generation of long-lived alloantibody-producing memory B cells. Alloantibodies recognize antigenic epitopes displayed by the HLA molecule on the transplanted allograft and contribute to graft damage through multiple mechanisms, including (1) activation of the complement cascade resulting in the formation of the MAC complex and inflammatory anaphylatoxins, (2) transduction of intracellular signals leading to cytoskeletal rearrangement, growth, and proliferation of graft vasculature, and (3) immune cell infiltration into the allograft via FcγR interactions with the FC portion of the antibody. This review focuses on the generation of HLA alloantibody, routes of sensitization, alloantibody specificity, and mechanisms of antibody-mediated graft damage.
Collapse
Affiliation(s)
- Michelle J Hickey
- Department of Pathology and Laboratory Medicine, UCLA Immunogenetics Center, University of California Los Angeles , Los Angeles, CA , USA
| | - Nicole M Valenzuela
- Department of Pathology and Laboratory Medicine, UCLA Immunogenetics Center, University of California Los Angeles , Los Angeles, CA , USA
| | - Elaine F Reed
- Department of Pathology and Laboratory Medicine, UCLA Immunogenetics Center, University of California Los Angeles , Los Angeles, CA , USA
| |
Collapse
|