1
|
Sengar D, Pathan NS, Gajbhiye V. D-bait: A siDNA for regulation of DNA-protein kinases against DNA damage and its implications in cancer. Int J Pharm 2025; 673:125416. [PMID: 40024452 DOI: 10.1016/j.ijpharm.2025.125416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/31/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
siDNA fragments, also called Dbait and Pbait, are small DNA oligonucleotides of 30-32 base pairs that cause impairment in DNA repair pathways. Like siRNA and miRNA molecules, which lead to the degradation of mRNA molecules through the Argonaute and Drosha machinery, respectively, Dbait molecules act as false DNA damage signals and trigger and exhaust the DNA repair machinery. In normal cells with no significant DNA damage, the influence of these molecules is negligible. However, in cancer, when there is heavy DNA damage due to replication and anticancer therapies, the cancer cell is heavily dependent on DNA repair proteins to keep the genome intact and limit breaks. This phenomenon primarily occurs during radiation therapy, as significant DNA damage surpasses several DNA repair mechanisms, causing an accumulation of unrepaired lesions and ultimately leading to cell death. This review explores the therapeutic capacity of siDNA molecules in cancer treatment by stimulating the repair mechanisms in cells that depend on DNA repair pathways. For aggressive malignancies such as glioblastoma, prostate cancer, and colorectal cancer, the use of siDNA as a radiosensitizer, especially when combined with other treatments, increases the vulnerability of tumor cells to radiation-induced DNA damage, hence potentially enhancing therapy results.
Collapse
Affiliation(s)
- Devyani Sengar
- Nanobioscience Group, Agharkar Research Institute, Pune 411004, India; Savitribai Phule Pune University, Pune 411007, India
| | - Nida Sayed Pathan
- Nanobioscience Group, Agharkar Research Institute, Pune 411004, India; Savitribai Phule Pune University, Pune 411007, India
| | - Virendra Gajbhiye
- Nanobioscience Group, Agharkar Research Institute, Pune 411004, India; Savitribai Phule Pune University, Pune 411007, India.
| |
Collapse
|
2
|
Jiang J, Man T, Kirsch M, Knoedler S, Andersen K, Reiser J, Werner J, Trautz B, Cong X, Forster S, Alageel S, Dornseifer U, Schilling AF, Machens HG, Kükrek H, Moog P. Hypoxia Preconditioned Serum Hydrogel (HPS-H) Accelerates Dermal Regeneration in a Porcine Wound Model. Gels 2024; 10:748. [PMID: 39590104 PMCID: PMC11593443 DOI: 10.3390/gels10110748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/07/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Harnessing the body's intrinsic resources for wound healing is becoming a rapidly advancing field in regenerative medicine research. This study investigates the effects of the topical application of a novel porcine Hypoxia Preconditioned Serum Hydrogel (HPS-H) on wound healing using a minipig model over a 21-day period. Porcine HPS exhibited up to 2.8× elevated levels of key angiogenic growth factors (VEGF-A, PDGF-BB, and bFGF) and demonstrated a superior angiogenic effect in a tube formation assay with human umbilical endothelial cells (HUVECs) in comparison to porcine normal serum (NS). Incorporating HPS into a hydrogel carrier matrix (HPS-H) facilitated the sustained release of growth factors for up to 5 days. In the in vivo experiment, wounds treated with HPS-H were compared to those treated with normal serum hydrogel (NS-H), hydrogel only (H), and no treatment (NT). At day 10 post-wounding, the HPS-H group was observed to promote up to 1.7× faster wound closure as a result of accelerated epithelialization and wound contraction. Hyperspectral imaging revealed up to 12.9% higher superficial tissue oxygenation and deep perfusion in HPS-H-treated wounds at day 10. The immunohistochemical staining of wound biopsies detected increased formation of blood vessels (CD31), lymphatic vessels (LYVE-1), and myofibroblasts (alpha-SMA) in the HPS-H group. These findings suggest that the topical application of HPS-H can significantly accelerate dermal wound healing in an autologous porcine model.
Collapse
Affiliation(s)
- Jun Jiang
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Tanita Man
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Manuela Kirsch
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Samuel Knoedler
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Kirstin Andersen
- Center for Preclinical Research, Klinikum Rechts der Isar, TUM School of Medicine and Health, 81675 Munich, Germany
| | - Judith Reiser
- Center for Preclinical Research, Klinikum Rechts der Isar, TUM School of Medicine and Health, 81675 Munich, Germany
| | - Julia Werner
- Center for Preclinical Research, Klinikum Rechts der Isar, TUM School of Medicine and Health, 81675 Munich, Germany
| | - Benjamin Trautz
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Xiaobin Cong
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Selma Forster
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Sarah Alageel
- Cellular Therapy and Immunobiology, Research and Innovation, King Faisal Specialist Hospital & Research Center, Al Mathar Ash Shamali, Riyadh 11564, Saudi Arabia
| | - Ulf Dornseifer
- Department of Plastic, Reconstructive and Aesthetic Surgery, Isar Klinikum, 80331 Munich, Germany
| | - Arndt F. Schilling
- Department of Trauma Surgery, Orthopedics and Plastic Surgery, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Hans-Günther Machens
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Haydar Kükrek
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Philipp Moog
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| |
Collapse
|
3
|
Singh Y, Ahmad R, Raza A, Warsi MS, Mustafa M, Khan H, Hassan MI, Khan R, Moinuddin, Habib S. Exploring the effects of 4-chloro-o-phenylenediamine on human fibrinogen: A comprehensive investigation via biochemical, biophysical and computational approaches. Int J Biol Macromol 2024; 280:135825. [PMID: 39313050 DOI: 10.1016/j.ijbiomac.2024.135825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/28/2024] [Accepted: 09/18/2024] [Indexed: 09/25/2024]
Abstract
Fibrinogen (Fg), an essential plasma glycoprotein involved in the coagulation cascade, undergoes structural alterations upon exposure to various chemicals, impacting its functionality and contributing to pathological conditions. This research article explored the effects of 4-Chloro-o-phenylenediamine (4-Cl-o-PD), a common hair dye component (IUPAC = 1-Chloro-3,4-diaminobenzene), on human fibrinogen through comprehensive computational, biophysical, and biochemical approaches. The formation of a stable ligand-protein complex is confirmed through molecular docking and molecular dynamics simulations, revealing possible interaction having a favorable -4.8 kcal/mol binding energy. Biophysical results, including UV-vis and fluorescence spectroscopies, corroborated with the computational findings, whereas Fourier transform infrared spectroscopy (FT-IR) and circular dichroism spectroscopy (CD) provide insights into the alterations of secondary structures upon interaction with 4-Cl-o-PD. Anilinonaphthalene-sulfonic acid (ANS) fluorescence showed a partially unfolded protein, with enhanced α to β-sheet transition as evidenced by thioflavin T (ThT) spectroscopy and microscopy. Moreover, biochemical assays confirmed the formation of carbonyl compounds that may be responsible for the oxidation of methionine residues in fibrinogen. Electrophoresis and electron microscopy confirmed the formation of aggregates. Our findings elucidate the interaction pattern of 4-Cl-o-PD with Fg, leading to structural perturbation, which may have potential implications for fibrinogen misfolding or its aggregation. Protein aggregation or its misfolded products affect peripheral tissues and the central nervous system. Many chronic progressive diseases, like type II diabetes mellitus, Alzheimer's disease, Parkison's disease, and Creutzfeldt-Jakob disease are associated with intrinsically aberrant disordered proteins. Understanding these interactions may offer new perspectives on the safety and biocompatibility of dye compounds, which may contribute to developing improved strategies for acquired amyloidogenesis.
Collapse
Affiliation(s)
- Yogendra Singh
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Rizwan Ahmad
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Ali Raza
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Mohd Sharib Warsi
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Mohd Mustafa
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Hamda Khan
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Md Imtaiyaz Hassan
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Ruhi Khan
- Department of Medicine, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Moinuddin
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Safia Habib
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India.
| |
Collapse
|
4
|
Jiang J, Röper L, Fuchs F, Hanschen M, Failer S, Alageel S, Cong X, Dornseifer U, Schilling AF, Machens HG, Moog P. Bone Regenerative Effect of Injectable Hypoxia Preconditioned Serum-Fibrin (HPS-F) in an Ex Vivo Bone Defect Model. Int J Mol Sci 2024; 25:5315. [PMID: 38791352 PMCID: PMC11121588 DOI: 10.3390/ijms25105315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/06/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
Biofunctionalized hydrogels are widely used in tissue engineering for bone repair. This study examines the bone regenerative effect of the blood-derived growth factor preparation of Hypoxia Preconditioned Serum (HPS) and its fibrin-hydrogel formulation (HPS-F) on drilled defects in embryonic day 19 chick femurs. Measurements of bone-related growth factors in HPS reveal significant elevations of Osteopontin, Osteoprotegerin, and soluble-RANKL compared with normal serum (NS) but no detection of BMP-2/7 or Osteocalcin. Growth factor releases from HPS-F are measurable for at least 7 days. Culturing drilled femurs organotypically on a liquid/gas interface with HPS media supplementation for 10 days demonstrates a 34.6% increase in bone volume and a 52.02% increase in bone mineral density (BMD) within the defect area, which are significantly higher than NS and a basal-media-control, as determined by microcomputed tomography. HPS-F-injected femur defects implanted on a chorioallantoic membrane (CAM) for 7 days exhibit an increase in bone mass of 123.5% and an increase in BMD of 215.2%, which are significantly higher than normal-serum-fibrin (NS-F) and no treatment. Histology reveals calcification, proteoglycan, and collagen fiber deposition in the defect area of HPS-F-treated femurs. Therefore, HPS-F may offer a promising and accessible therapeutic approach to accelerating bone regeneration by a single injection into the bone defect site.
Collapse
Affiliation(s)
- Jun Jiang
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, D-81675 Munich, Germany; (J.J.); (L.R.); (F.F.); (S.A.); (X.C.)
| | - Lynn Röper
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, D-81675 Munich, Germany; (J.J.); (L.R.); (F.F.); (S.A.); (X.C.)
| | - Finja Fuchs
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, D-81675 Munich, Germany; (J.J.); (L.R.); (F.F.); (S.A.); (X.C.)
| | - Marc Hanschen
- Department of Trauma Surgery, Klinikum Rechts der Isar, Technical University of Munich, D-81675 Munich, Germany; (M.H.); (S.F.)
| | - Sandra Failer
- Department of Trauma Surgery, Klinikum Rechts der Isar, Technical University of Munich, D-81675 Munich, Germany; (M.H.); (S.F.)
| | - Sarah Alageel
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, D-81675 Munich, Germany; (J.J.); (L.R.); (F.F.); (S.A.); (X.C.)
| | - Xiaobin Cong
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, D-81675 Munich, Germany; (J.J.); (L.R.); (F.F.); (S.A.); (X.C.)
| | - Ulf Dornseifer
- Department of Plastic, Reconstructive and Aesthetic Surgery, Isar Klinikum, D-80331 Munich, Germany;
| | - Arndt F. Schilling
- Department of Trauma Surgery, Orthopedics and Plastic Surgery, University Medical Center Göttingen, D-37075 Göttingen, Germany;
| | - Hans-Günther Machens
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, D-81675 Munich, Germany; (J.J.); (L.R.); (F.F.); (S.A.); (X.C.)
| | - Philipp Moog
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, D-81675 Munich, Germany; (J.J.); (L.R.); (F.F.); (S.A.); (X.C.)
| |
Collapse
|
5
|
Heidari Z, Naeimzadeh Y, Fallahi J, Savardashtaki A, Razban V, Khajeh S. The Role of Tissue Factor In Signaling Pathways of Pathological Conditions and Angiogenesis. Curr Mol Med 2024; 24:1135-1151. [PMID: 37817529 DOI: 10.2174/0115665240258746230919165935] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/10/2023] [Accepted: 07/27/2023] [Indexed: 10/12/2023]
Abstract
Tissue factor (TF) is an integral transmembrane protein associated with the extrinsic coagulation pathway. TF gene expression is regulated in response to inflammatory cytokines, bacterial lipopolysaccharides, and mechanical injuries. TF activity may be affected by phosphorylation of its cytoplasmic domain and alternative splicing. TF acts as the primary initiator of physiological hemostasis, which prevents local bleeding at the injury site. However, aberrant expression of TF, accompanied by the severity of diseases and infections under various pathological conditions, triggers multiple signaling pathways that support thrombosis, angiogenesis, inflammation, and metastasis. Protease-activated receptors (PARs) are central in the downstream signaling pathways of TF. In this study, we have reviewed the TF signaling pathways in different pathological conditions, such as wound injury, asthma, cardiovascular diseases (CVDs), viral infections, cancer and pathological angiogenesis. Angiogenic activities of TF are critical in the repair of wound injuries and aggressive behavior of tumors, which are mainly performed by the actions of vascular endothelial growth factor (VEGF) and hypoxia-inducible factor-1 (HIF1-α). Pro-inflammatory effects of TF have been reported in asthma, CVDs and viral infections, including COVID-19, which result in tissue hypertrophy, inflammation, and thrombosis. TF-FVII induces angiogenesis via clotting-dependent and -independent mechanisms. Clottingdependent angiogenesis is induced via the generation of thrombin and cross-linked fibrin network, which facilitate vessel infiltration and also act as a reservoir for endothelial cells (ECs) growth factors. Expression of TF in tumor cells and ECs triggers clotting-independent angiogenesis through induction of VEGF, urokinase-type plasminogen activator (uPAR), early growth response 1 (EGR1), IL8, and cysteine-rich angiogenic inducer 61 (Cyr61).
Collapse
Affiliation(s)
- Zahra Heidari
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Yasaman Naeimzadeh
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jafar Fallahi
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahid Razban
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sahar Khajeh
- Bone and Joint Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
6
|
Tresson P, Pialoux V, Millon A, Lermusiaux P. Type II Endoleaks After Endovascular Aneurysm Repair: A Lack of Oxygen? Ann Vasc Surg 2023; 97:419-421. [PMID: 37454892 DOI: 10.1016/j.avsg.2023.06.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 07/18/2023]
Affiliation(s)
- Philippe Tresson
- Department of Vascular and Endovascular Surgery, Hôpital Louis Pradel, Hospices Civils de Lyon, Bron, France.
| | - Vincent Pialoux
- Team Atherosclerosis, Thrombosis and Physical Activity, LIBM EA7424, Université Claude Bernard Lyon 1, Université de Lyon, Faculty of Medicine, Lyon, France
| | - Antoine Millon
- Department of Vascular and Endovascular Surgery, Hôpital Louis Pradel, Hospices Civils de Lyon, Bron, France; Team Atherosclerosis, Thrombosis and Physical Activity, LIBM EA7424, Université Claude Bernard Lyon 1, Université de Lyon, Faculty of Medicine, Lyon, France
| | - Patrick Lermusiaux
- Department of Vascular and Endovascular Surgery, Hôpital Louis Pradel, Hospices Civils de Lyon, Bron, France; Université Claude Bernard Lyon 1, Université de Lyon, Faculty of Medicine, Lyon, France
| |
Collapse
|
7
|
Jiang J, Altammar J, Cong X, Ramsauer L, Steinbacher V, Dornseifer U, Schilling AF, Machens HG, Moog P. Hypoxia Preconditioned Serum (HPS) Promotes Proliferation and Chondrogenic Phenotype of Chondrocytes In Vitro. Int J Mol Sci 2023; 24:10441. [PMID: 37445617 PMCID: PMC10341616 DOI: 10.3390/ijms241310441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Autologous chondrocyte implantation (ACI) for the treatment of articular cartilage defects remains challenging in terms of maintaining chondrogenic phenotype during in vitro chondrocyte expansion. Growth factor supplementation has been found supportive in improving ACI outcomes by promoting chondrocyte redifferentiation. Here, we analysed the chondrogenic growth factor concentrations in the human blood-derived secretome of Hypoxia Preconditioned Serum (HPS) and assessed the effect of HPS-10% and HPS-40% on human articular chondrocytes from osteoarthritic cartilage at different time points compared to normal fresh serum (NS-10% and NS-40%) and FCS-10% culture conditions. In HPS, the concentrations of TGF-beta1, IGF-1, bFGF, PDGF-BB and G-CSF were found to be higher than in NS. Chondrocyte proliferation was promoted with higher doses of HPS (HPS-40% vs. HPS-10%) and longer stimulation (4 vs. 2 days) compared to FCS-10%. On day 4, immunostaining of the HPS-10%-treated chondrocytes showed increased levels of collagen type II compared to the other conditions. The promotion of the chondrogenic phenotype was validated with quantitative real-time PCR for the expression of collagen type II (COL2A1), collagen type I (COL1A1), SOX9 and matrix metalloproteinase 13 (MMP13). We demonstrated the highest differentiation index (COL2A1/COL1A1) in HPS-10%-treated chondrocytes on day 4. In parallel, the expression of differentiation marker SOX9 was elevated on day 4, with HPS-10% higher than NS-10/40% and FCS-10%. The expression of the cartilage remodelling marker MMP13 was comparable across all culture conditions. These findings implicate the potential of HPS-10% to improve conventional FCS-based ACI culture protocols by promoting the proliferation and chondrogenic phenotype of chondrocytes during in vitro expansion.
Collapse
Affiliation(s)
- Jun Jiang
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, D-81675 Munich, Germany
| | - Jannat Altammar
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, D-81675 Munich, Germany
| | - Xiaobin Cong
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, D-81675 Munich, Germany
| | - Lukas Ramsauer
- Institute of Molecular Immunology and Experimental Oncology, Klinikum Rechts der Isar, Technical University of Munich, D-81675 Munich, Germany
| | - Vincent Steinbacher
- Institute of Molecular Immunology and Experimental Oncology, Klinikum Rechts der Isar, Technical University of Munich, D-81675 Munich, Germany
| | - Ulf Dornseifer
- Department of Plastic, Reconstructive and Aesthetic Surgery, Isar Klinikum, D-80331 Munich, Germany
| | - Arndt F. Schilling
- Department of Trauma Surgery, Orthopedics and Plastic Surgery, University Medical Center Göttingen, D-37075 Göttingen, Germany
| | - Hans-Günther Machens
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, D-81675 Munich, Germany
| | - Philipp Moog
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, D-81675 Munich, Germany
| |
Collapse
|
8
|
Dasgupta S, Gope A, Mukhopadhyay A, Kumar P, Chatterjee J, Barui A. Chitosan-collagen-fibrinogen uncrosslinked scaffolds possessing skin regeneration and vascularization potential. J Biomed Mater Res A 2023; 111:725-739. [PMID: 36573698 DOI: 10.1002/jbm.a.37488] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/15/2022] [Accepted: 12/15/2022] [Indexed: 12/28/2022]
Abstract
Clinical success of regenerative medicine for treating deep-tissue skin injuries depends on the availability of skin grafts. Though bioengineered constructs are tested clinically, lack of neovascularization provide only superficial healing. Thus constructs, which promotes wound healing and supports vascularization has gained priority in tissue engineering. In this study, chitosan-collagen-fibrinogen (CCF) scaffold was fabricated using freeze-drying method without using any chemical crosslinkers. CCF scaffolds proved cytocompatibility and faster healing in in vitro scratch assay of primary human adult dermal fibroblasts cells with progressively increasing vascular endothelial growth factor-A and reducing vascular endothelial growth factor receptor 1 expressions. Skin regeneration evaluated on in vivo full thickness wound model confirmed faster remodeling with angiogenic signatures in CCF scaffold-implanted mice. Histopathological observations corroborated with stereo-zoom and SS-optical coherence tomography images of wound sites to prove the maturation of healing-bed, after 12 days of CCF implantation. Therefore, it is concluded that CCF scaffolds are promising for skin tissue regeneration and demonstrates pro-angiogenic potential.
Collapse
Affiliation(s)
- Shalini Dasgupta
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, India
| | - Ayan Gope
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, India
| | - Anurup Mukhopadhyay
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, India
| | - Prashant Kumar
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, India
| | - Jyotirmoy Chatterjee
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, India
| | - Ananya Barui
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, India
| |
Collapse
|
9
|
Comparison of the Effect of Different Conditioning Media on the Angiogenic Potential of Hypoxia Preconditioned Blood-Derived Secretomes: Towards Engineering Next-Generation Autologous Growth Factor Cocktails. Int J Mol Sci 2023; 24:ijms24065485. [PMID: 36982558 PMCID: PMC10049474 DOI: 10.3390/ijms24065485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023] Open
Abstract
Hypoxia Preconditioned Plasma (HPP) and Serum (HPS) are regenerative blood-derived growth factor compositions that have been extensively examined for their angiogenic and lymphangiogenic activity towards wound healing and tissue repair. Optimization of these secretomes’ growth factor profile, through adjustments of the conditioning parameters, is a key step towards clinical application. In this study, the autologous liquid components (plasma/serum) of HPP and HPS were replaced with various conditioning media (NaCl, PBS, Glucose 5%, AIM V medium) and were analyzed in terms of key pro- (VEGF-A, EGF) and anti-angiogenic (TSP-1, PF-4) protein factors, as well as their ability to promote microvessel formation in vitro. We found that media substitution resulted in changes in the concentration of the aforementioned growth factors, and also influenced their ability to induce angiogenesis. While NaCl and PBS led to a lower concentration of all growth factors examined, and consequently an inferior tube formation response, replacement with Glucose 5% resulted in increased growth factor concentrations in anticoagulated blood-derived secretomes, likely due to stimulation of platelet factor release. Medium substitution with Glucose 5% and specialized peripheral blood cell-culture AIM V medium generated comparable tube formation to HPP and HPS controls. Altogether, our data suggest that medium replacement of plasma and serum may significantly influence the growth factor profile of hypoxia-preconditioned blood-derived secretomes and, therefore, their potential application as tools for promoting therapeutic angiogenesis.
Collapse
|
10
|
POTENTIAL BENEFITS OF USING CHITOSAN AND SILK FIBROIN TOPICAL HYDROGEL FOR MANAGING WOUND HEALING AND COAGULATION. Saudi Pharm J 2023; 31:462-471. [PMID: 37026047 PMCID: PMC10071364 DOI: 10.1016/j.jsps.2023.01.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Background & Objectives The intricate process of wound healing involves replacing the cellular or tissue structure that has been destroyed. In recent years various wound dressings were launched but reported several limitations. The topical gel preparations are intended for certain skin wound conditions for local action. Chitosan-based hemostatic materials are the most effective in halting acute hemorrhage, and naturally occurring silk fibroin is widely utilized for tissue regeneration. So, this study was conducted to evaluate the potential of chitosan hydrogel(CHI-HYD) and chitosan silk fibroin hydrogel (CHI-SF-HYD) on blood clotting and wound healing. Methods Hydrogel was prepared using various concentrations of silk fibroin with guar gum as a gelling agent. The optimized formulations were evaluated for visual appearance, Fourier transforms infrared spectroscopy (FT-IR), pH, spreadability, viscosity, antimicrobial activity, HR-TEM analysis, ex vivo skin permeation, skin irritation, stability studies, and in vivo studies by using adult male Wistar albino rats. Results Based on the outcome of FT-IR, no chemical interaction between the components was noticed. The developed hydrogels exhibited a viscosity of 79.2 ± 4.2 Pa.s (CHI-HYD), 79.8 ± 3.8 Pa.s (CHI-SF-HYD), and pH of 5.87 ± 0.2 (CHI-HYD), 5.96 ± 0.1 (CHI-SF-HYD). The prepared hydrogels were sterile and non-irritant to the skin. The in vivo study outcomes show that the CHI-SF-HYD treated group has significantly shortened the span of tissue reformation than other groups. This demonstrated that the CHI-SF-HYD could consequently accelerate the regeneration of the damaged area. Interpretation & Conclusion Overall, the positive outcomes revealed improved blood coagulation and re-epithelialization. This indicates that the CHI-SF-HYD could be used to develop novel wound-healing devices.
Collapse
|
11
|
Lim J, Lee MS, Jeon J, Yang HS. Fibrinogen-based cell and spheroid sheets manipulating and delivery for mouse hindlimb ischemia. Biofabrication 2023; 15. [PMID: 36630715 DOI: 10.1088/1758-5090/acb233] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/11/2023] [Indexed: 01/12/2023]
Abstract
In this research, we introduced a novel strategy for fabricating cell sheets (CSs) prepared by simply adding a fibrinogen solution to growth medium without using any synthetic polymers or chemical agents. We confirmed that the fibrinogen-based CS could be modified for target tissue regardless of size, shape, and cell types. Also, fibrinogen-based CSs were versatile and could be used to form three-dimensional (3D) CSs such as multi-layered CSs and those mimicking native blood vessels. We also prepared fibrinogen-based spheroid sheets for the treatment of ischemic disease. The fibrinogen-based spheroid sheets had much higherin vitrotubule formation and released more angiogenic factors compared to other types of platform in this research. We transplanted fibrinogen-based spheroid sheets into a mouse hindlimb ischemia model and found that fibrinogen-based spheroid sheets showed significantly improved physiological function and blood perfusion rates compared to the other types of platform in this research.
Collapse
Affiliation(s)
- Juhan Lim
- Department of Nanobiomedical Science & BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Min Suk Lee
- Department of Nanobiomedical Science & BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea.,Medical Laser Research Center, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Jin Jeon
- Department of Nanobiomedical Science & BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Hee Seok Yang
- Department of Nanobiomedical Science & BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea.,Bio-Medical Engineering Research Center, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
12
|
Jiang J, Cong X, Alageel S, Dornseifer U, Schilling AF, Hadjipanayi E, Machens HG, Moog P. In Vitro Comparison of Lymphangiogenic Potential of Hypoxia Preconditioned Serum (HPS) and Platelet-Rich Plasma (PRP). Int J Mol Sci 2023; 24:ijms24031961. [PMID: 36768283 PMCID: PMC9916704 DOI: 10.3390/ijms24031961] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/09/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Strategies for therapeutic lymphangiogenesis are gradually directed toward the use of growth factor preparations. In particular, blood-derived growth factor products, including Hypoxia Preconditioned Serum (HPS) and Platelet-rich Plasma (PRP), are both clinically employed for accelerating tissue repair and have received considerable attention in the field of regenerative medicine research. In this study, a comparative analysis of HPS and PRP was conducted to explore their lymphangiogenic potential. We found higher pro-lymphangiogenic growth factor concentrations of VEGF-C, PDGF-BB, and bFGF in HPS in comparison to normal serum (NS) and PRP. The proliferation and migration of lymphatic endothelial cells (LECs) were promoted considerably with both HPS and PRP, but the strongest effect was achieved with HPS-40% dilution. Tube formation of LECs showed the highest number of tubes, branching points, greater tube length, and cell-covered area with HPS-10%. Finally, the effects were double-validated using an ex vivo lymphatic ring assay, in which the highest number of sprouts and the greatest sprout length were achieved with HPS-10%. Our findings demonstrate the superior lymphangiogenic potential of a new generation blood-derived secretome obtained by hypoxic preconditioning of peripheral blood cells-a method that offers a novel alternative to PRP.
Collapse
Affiliation(s)
- Jun Jiang
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technische Universität München, D-81675 Munich, Germany
| | - Xiaobin Cong
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technische Universität München, D-81675 Munich, Germany
| | - Sarah Alageel
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technische Universität München, D-81675 Munich, Germany
| | - Ulf Dornseifer
- Department of Plastic, Reconstructive and Aesthetic Surgery, Isar Klinikum, D-80331 Munich, Germany
| | - Arndt F. Schilling
- Department of Trauma Surgery, Orthopedics and Plastic Surgery, Universitätsmedizin Göttingen, D-37075 Göttingen, Germany
| | - Ektoras Hadjipanayi
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technische Universität München, D-81675 Munich, Germany
| | - Hans-Günther Machens
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technische Universität München, D-81675 Munich, Germany
- Correspondence: (H.-G.M.); (P.M.)
| | - Philipp Moog
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technische Universität München, D-81675 Munich, Germany
- Correspondence: (H.-G.M.); (P.M.)
| |
Collapse
|
13
|
Air-Pressure-Supported Application of Cultured Human Keratinocytes in a Fibrin Sealant Suspension as a Potential Clinical Tool for Large-Scale Wounds. J Clin Med 2022; 11:jcm11175032. [PMID: 36078961 PMCID: PMC9456662 DOI: 10.3390/jcm11175032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/12/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
The treatment of large-scale skin wounds remains a therapeutic challenge. In most cases there is not enough autologous material available for full coverage. Cultured epithelial autografts are efficient in restoring the lost epidermal cover; however, they have some disadvantages, such as difficult application and protracted cell cultivation periods. Transplanting a sprayed keratinocyte suspension in fibrin sealant as biological carrier is an option to overcome those disadvantages. Here, we studied different seeding techniques regarding their applicability and advantages on cell survival, attachment, and outgrowth in vitro and thereby improve the cell transfer to the wound bed. Human primary keratinocytes were suspended in a fibrin sealant. WST-8 assay was used to evaluate the vitality for 7 days. Furthermore, the cells were labeled with CellTracker™ CM-Di-I and stained with a life/dead staining. Cell morphology, shape, and distribution were microscopically analyzed. There was a significant increase in vitality while cultivating the cells in fibrin. Sprayed cells were considerably more homogenously distributed. Sprayed cells reached the confluent state earlier than dripped cells. There was no difference in the vitality and morphology in both groups over the observation period. These findings indicate that the sprayed keratinocytes are superior to the application of the cells as droplets. The sprayed application may offer a promising therapeutic option in the treatment of large chronic wounds.
Collapse
|
14
|
Jiang J, Röper L, Alageel S, Dornseifer U, Schilling AF, Hadjipanayi E, Machens HG, Moog P. Hypoxia Preconditioned Serum (HPS) Promotes Osteoblast Proliferation, Migration and Matrix Deposition. Biomedicines 2022; 10:biomedicines10071631. [PMID: 35884936 PMCID: PMC9313157 DOI: 10.3390/biomedicines10071631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 11/21/2022] Open
Abstract
Interest in discovering new methods of employing natural growth factor preparations to promote bone fracture healing is becoming increasingly popular in the field of regenerative medicine. In this study, we were able to demonstrate the osteogenic potential of hypoxia preconditioned serum (HPS) on human osteoblasts in vitro. Human osteoblasts were stimulated with two HPS concentrations (10% and 40%) and subsequently analyzed at time points of days 2 and 4. In comparison to controls, a time- and dose-dependent (up to 14.2× higher) proliferation of osteoblasts was observed after 4 days of HPS-40% stimulation with lower lactate dehydrogenase (LDH)-levels detected than controls, indicating the absence of cytotoxic/stress effects of HPS on human osteoblasts. With regards to cell migration, it was found to be significantly faster with HPS-10% application after 72 h in comparison to controls. Further osteogenic response to HPS treatment was evaluated by employing culture supernatant analysis, which exhibited significant upregulation of OPG (Osteoprotegerin) with higher dosage (HPS-10% vs. HPS-40%) and longer duration (2 d vs. 4 d) of HPS stimulation. There was no detection of anti-osteogenic sRANKL (soluble Receptor Activator of NF-κB Ligand) after 4 days of HPS stimulation. In addition, ALP (alkaline phosphatase)-enzyme activity, was found to be upregulated, dose-dependently, after 4 days of HPS-40% application. When assessing ossification through Alizarin-Red staining, HPS dose-dependently achieved greater (up to 2.8× higher) extracellular deposition of calcium-phosphate with HPS-40% in comparison to controls. These findings indicate that HPS holds the potential to accelerate bone regeneration by osteogenic promotion of human osteoblasts.
Collapse
Affiliation(s)
- Jun Jiang
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technische Universität München, D-81675 Munich, Germany; (J.J.); (L.R.); (S.A.); (E.H.)
| | - Lynn Röper
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technische Universität München, D-81675 Munich, Germany; (J.J.); (L.R.); (S.A.); (E.H.)
| | - Sarah Alageel
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technische Universität München, D-81675 Munich, Germany; (J.J.); (L.R.); (S.A.); (E.H.)
| | - Ulf Dornseifer
- Department of Plastic, Reconstructive and Aesthetic Surgery, Isar Klinikum, D-80331 Munich, Germany;
| | - Arndt F. Schilling
- Department of Trauma Surgery, Orthopedics and Plastic Surgery, Universitätsmedizin Göttingen, D-37075 Göttingen, Germany;
| | - Ektoras Hadjipanayi
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technische Universität München, D-81675 Munich, Germany; (J.J.); (L.R.); (S.A.); (E.H.)
| | - Hans-Günther Machens
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technische Universität München, D-81675 Munich, Germany; (J.J.); (L.R.); (S.A.); (E.H.)
- Correspondence: (H.-G.M.); (P.M.)
| | - Philipp Moog
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technische Universität München, D-81675 Munich, Germany; (J.J.); (L.R.); (S.A.); (E.H.)
- Correspondence: (H.-G.M.); (P.M.)
| |
Collapse
|
15
|
Abstract
Intraoperative bleeding and postoperative bleeding are major surgical complications. Tissue sealants, hemostats, and adhesives provide the armamentarium for establishing hemostatic balance, including the tissue sealant fibrin. Fibrin sealants combine advantages including instantaneous effect, biocompatibility, and biodegradability. However, several challenges remain. This review summarizes current fibrin product generations and highlights new trends and potential strategies for future improvement.
Collapse
Affiliation(s)
- Matthias Beudert
- Institute of Pharmacy and Food Chemistry, Julius-Maximilians-University Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Marcus Gutmann
- Institute of Pharmacy and Food Chemistry, Julius-Maximilians-University Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Tessa Lühmann
- Institute of Pharmacy and Food Chemistry, Julius-Maximilians-University Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Lorenz Meinel
- Institute of Pharmacy and Food Chemistry, Julius-Maximilians-University Würzburg, Am Hubland, 97074 Würzburg, Germany.,Helmholtz Institute for RNA-based Infection Research, Josef-Schneider-Straße 2, 97080 Würzburg, Germany
| |
Collapse
|
16
|
Singer AJ. Healing Mechanisms in Cutaneous Wounds: Tipping the Balance. TISSUE ENGINEERING. PART B, REVIEWS 2022; 28:1151-1167. [PMID: 34915757 PMCID: PMC9587785 DOI: 10.1089/ten.teb.2021.0114] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Acute and chronic cutaneous wounds pose a significant health and economic burden. Cutaneous wound healing is a complex process that occurs in four distinct, yet overlapping, highly coordinated stages: hemostasis, inflammation, proliferation, and remodeling. Postnatal wound healing is reparative, which can lead to the formation of scar tissue. Regenerative wound healing occurs during fetal development and in restricted postnatal tissues. This process can restore the wound to an uninjured state by producing new skin cells from stem cell reservoirs, resulting in healing with minimal or no scarring. Focusing on the pathophysiology of acute burn wounds, this review highlights reparative and regenerative healing mechanisms (including the role of cells, signaling molecules, and the extracellular matrix) and discusses how components of regenerative healing are being used to drive the development of novel approaches and therapeutics aimed at improving clinical outcomes. Important components of regenerative healing, such as stem cells, growth factors, and decellularized dermal matrices, are all being evaluated to recapitulate more closely the natural regenerative healing process.
Collapse
Affiliation(s)
- Adam J Singer
- Department of Emergency Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
17
|
CCR2 monocytes repair cerebrovascular damage caused by chronic social defeat stress. Brain Behav Immun 2022; 101:346-358. [PMID: 35063606 DOI: 10.1016/j.bbi.2022.01.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/21/2021] [Accepted: 01/10/2022] [Indexed: 11/23/2022] Open
Abstract
Immune surveillance of the brain plays an important role in health and disease. Peripheral leukocytes patrol blood-brain barrier interfaces, and after injury, monocytes cross the cerebrovasculature and follow a pattern of pro- and anti-inflammatory activity leading to tissue repair. We have shown that chronic social defeat (CSD) causes scattered vasculature disruptions. Here, we assessed CCR2+ monocyte trafficking to the vascular injury sites in Ccr2wt/rfp reporter mice both during CSD and one week following CSD cessation. We found that CSD for 14 days induced microhemorrhages where plasma fibrinogen leaked into perivascular spaces, but it did not affect the distribution or density of CCR2rfp+ monocytes in the brain. However, after recovery from CSD, many vascularly adhered CCR2+ cells were detected, and gene expression of the CCR2 chemokine receptor ligands CCL7 and CCL12, but not CCL2, was elevated in endothelial cells. Adhered CCR2+ cells were mostly the non-classical, anti-inflammatory Ly6Clo type, and they phagocytosed fibrinogen in perivascular spaces. In CCR2-deficient Ccr2rfp/rfp mice, fibrinogen levels remained elevated in recovery. Fibrinogen infused intracerebroventricularly induced CCR2+ cells to adhere to the vasculature and phagocytose perivascular fibrinogen in Ccr2wt/rfp but not Ccr2rfp/rfp mice. Depletion of monocytes with clodronate liposomes during CSD recovery prevented fibrinogen clearance and blocked behavioral recovery. We hypothesize that peripheral CCR2+ monocytes are not elevated in the brain on day 14 at the end of CSD and do not contribute to its behavioral effects at that time, but in recovery following cessation of stress, they enter the brain and exert restorative functions mediating vascular repair and normalization of behavior.
Collapse
|
18
|
Floriano JF, Emanueli C, Vega S, Barbosa AMP, Oliveira RGD, Floriano EAF, Graeff CFDO, Abbade JF, Herculano RD, Sobrevia L, Rudge MVC. Pro-angiogenic approach for skeletal muscle regeneration. Biochim Biophys Acta Gen Subj 2022; 1866:130059. [PMID: 34793875 DOI: 10.1016/j.bbagen.2021.130059] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/01/2021] [Indexed: 12/19/2022]
Abstract
The angiogenesis process is a phenomenon in which numerous molecules participate in the stimulation of the new vessels' formation from pre-existing vessels. Angiogenesis is a crucial step in tissue regeneration and recovery of organ and tissue function. Muscle diseases affect millions of people worldwide overcome the ability of skeletal muscle to self-repair. Pro-angiogenic therapies are key in skeletal muscle regeneration where both myogenesis and angiogenesis occur. These therapies have been based on mesenchymal stem cells (MSCs), exosomes, microRNAs (miRs) and delivery of biological factors. The use of different calls of biomaterials is another approach, including ceramics, composites, and polymers. Natural polymers are use due its bioactivity and biocompatibility in addition to its use as scaffolds and in drug delivery systems. One of these polymers is the natural rubber latex (NRL) which is biocompatible, bioactive, versatile, low-costing, and capable of promoting tissue regeneration and angiogenesis. In this review, the advances in the field of pro-angiogenic therapies are discussed.
Collapse
Affiliation(s)
- Juliana Ferreira Floriano
- São Paulo State University (UNESP), Botucatu Medical School, Botucatu, São Paulo 18.618-687, Brazil; National Heart and Lung Institute, Imperial College London, London, UK.
| | - Costanza Emanueli
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Sofia Vega
- São Paulo State University (UNESP), Botucatu Medical School, Botucatu, São Paulo 18.618-687, Brazil; Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | | | | | | | | | - Joelcio Francisco Abbade
- São Paulo State University (UNESP), Botucatu Medical School, Botucatu, São Paulo 18.618-687, Brazil
| | | | - Luis Sobrevia
- São Paulo State University (UNESP), Botucatu Medical School, Botucatu, São Paulo 18.618-687, Brazil; Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville E-41012, Spain; University of Queensland, Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, QLD, 4029, Queensland, Australia; Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713GZ Groningen, the Netherlands.
| | | |
Collapse
|
19
|
Jiang J, Kraneburg U, Dornseifer U, Schilling AF, Hadjipanayi E, Machens HG, Moog P. Hypoxia Preconditioned Serum (HPS)-Hydrogel Can Accelerate Dermal Wound Healing in Mice—An In Vivo Pilot Study. Biomedicines 2022; 10:biomedicines10010176. [PMID: 35052855 PMCID: PMC8773663 DOI: 10.3390/biomedicines10010176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 02/04/2023] Open
Abstract
The ability to use the body’s resources to promote wound repair is increasingly becoming an interesting area of regenerative medicine research. Here, we tested the effect of topical application of blood-derived hypoxia preconditioned serum (HPS) on wound healing in a murine wound model. Alginate hydrogels loaded with two different HPS concentrations (10 and 40%) were applied topically on full-thickness wounds created on the back of immunocompromised mice. We achieved a significant dose-dependent wound area reduction after 5 days in HPS-treated groups compared with no treatment (NT). On average, both HPS-10% and HPS-40% -treated wounds healed 1.4 days faster than NT. Healed tissue samples were investigated on post-operative day 15 (POD 15) by immunohistology and showed an increase in lymphatic vessels (LYVE-1) up to 45% with HPS-40% application, while at this stage, vascularization (CD31) was comparable in the HPS-treated and NT groups. Furthermore, the expression of proliferation marker Ki67 was greater on POD 15 in the NT-group compared to HPS-treated groups, in accordance with the earlier completion of wound healing observed in the latter. Collagen deposition was similar in all groups, indicating lack of scar tissue hypertrophy as a result of HPS-hydrogel treatment. These findings show that topical HPS application is safe and can accelerate dermal wound healing in mice.
Collapse
Affiliation(s)
- Jun Jiang
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technische Universität München, D-81675 Munich, Germany; (J.J.); (U.K.); (E.H.)
| | - Ursula Kraneburg
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technische Universität München, D-81675 Munich, Germany; (J.J.); (U.K.); (E.H.)
| | - Ulf Dornseifer
- Department of Plastic, Reconstructive and Aesthetic Surgery, Isar Klinikum, D-80331 Munich, Germany;
| | - Arndt F. Schilling
- Department of Trauma Surgery, Orthopedics and Plastic Surgery, Universitätsmedizin Göttingen, D-37075 Gottingen, Germany;
| | - Ektoras Hadjipanayi
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technische Universität München, D-81675 Munich, Germany; (J.J.); (U.K.); (E.H.)
| | - Hans-Günther Machens
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technische Universität München, D-81675 Munich, Germany; (J.J.); (U.K.); (E.H.)
- Correspondence: (H.-G.M.); (P.M.)
| | - Philipp Moog
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technische Universität München, D-81675 Munich, Germany; (J.J.); (U.K.); (E.H.)
- Correspondence: (H.-G.M.); (P.M.)
| |
Collapse
|
20
|
Mohd Yunus MH, Rashidbenam Z, Fauzi MB, Bt Hj Idrus R, Bin Saim A. Evaluating Feasibility of Human Tissue Engineered Respiratory Epithelium Construct as a Potential Model for Tracheal Mucosal Reconstruction. Molecules 2021; 26:molecules26216724. [PMID: 34771136 PMCID: PMC8587409 DOI: 10.3390/molecules26216724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/30/2021] [Accepted: 11/03/2021] [Indexed: 12/15/2022] Open
Abstract
The normal function of the airway epithelium is vital for the host’s well-being. Conditions that might compromise the structure and functionality of the airway epithelium include congenital tracheal anomalies, infection, trauma and post-intubation injuries. Recently, the onset of COVID-19 and its complications in managing respiratory failure further intensified the need for tracheal tissue replacement. Thus far, plenty of naturally derived, synthetic or allogeneic materials have been studied for their applicability in tracheal tissue replacement. However, a reliable tracheal replacement material is missing. Therefore, this study used a tissue engineering approach for constructing tracheal tissue. Human respiratory epithelial cells (RECs) were isolated from nasal turbinate, and the cells were incorporated into a calcium chloride-polymerized human blood plasma to form a human tissue respiratory epithelial construct (HTREC). The quality of HTREC in vitro, focusing on the cellular proliferation, differentiation and distribution of the RECs, was examined using histological, gene expression and immunocytochemical analysis. Histological analysis showed a homogenous distribution of RECs within the HTREC, with increased proliferation of the residing RECs within 4 days of investigation. Gene expression analysis revealed a significant increase (p < 0.05) in gene expression level of proliferative and respiratory epithelial-specific markers Ki67 and MUC5B, respectively, within 4 days of investigation. Immunohistochemical analysis also confirmed the expression of Ki67 and MUC5AC markers in residing RECs within the HTREC. The findings show that calcium chloride-polymerized human blood plasma is a suitable material, which supports viability, proliferation and mucin secreting phenotype of RECs, and this suggests that HTREC can be a potential candidate for respiratory epithelial tissue reconstruction.
Collapse
Affiliation(s)
- Mohd Heikal Mohd Yunus
- Department of Physiology, Faculty of Medicine, UKM Medical Centre, Jalan Yaacob Latiff, Cheras, Kuala Lumpur 56000, Malaysia;
- Correspondence: ; Tel.: +60-123-137-644
| | - Zahra Rashidbenam
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, UKM Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (Z.R.); (M.B.F.)
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, UKM Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (Z.R.); (M.B.F.)
| | - Ruszymah Bt Hj Idrus
- Department of Physiology, Faculty of Medicine, UKM Medical Centre, Jalan Yaacob Latiff, Cheras, Kuala Lumpur 56000, Malaysia;
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, UKM Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (Z.R.); (M.B.F.)
| | - Aminuddin Bin Saim
- Ear, Nose & Throat Consultation Clinic, Ampang Puteri Specialist Hospital, Ampang 68000, Selangor, Malaysia;
| |
Collapse
|
21
|
Soheilifar MH, Masoudi-Khoram N, Madadi S, Nobari S, Maadi H, Keshmiri Neghab H, Amini R, Pishnamazi M. Angioregulatory microRNAs in breast cancer: Molecular mechanistic basis and implications for therapeutic strategies. J Adv Res 2021; 37:235-253. [PMID: 35499045 PMCID: PMC9039675 DOI: 10.1016/j.jare.2021.06.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/13/2021] [Accepted: 06/23/2021] [Indexed: 12/20/2022] Open
Abstract
Cancer-associated angiogenesis is a fundamental process in tumor growth and metastasis. Angioregulatory miRNA–target gene interaction is not only involved in sprouting vessels of breast tumors but also, trans-differentiation of breast cancer cells to endothelial cells in a process termed vasculogenic mimicry. Successful targeting of tumor angiogenesis is still a missing link in the treatment of Breast cancer (BC) due to the low effectiveness of anti-angiogenic therapies in this cancer. Response to anti-angiogenic therapeutics are controlled by a miRNAs, so the identification of interaction networks of miRNAs–targets can be applicable in determining anti-angiogeneic therapy and new biomarkers in BC. Angioregulatory miRNAs in breast cancer cells and their microenvironment have therapeutic potential in cancer treatment.
Background Cancer-associated angiogenesis is a fundamental process in tumor growth and metastasis. A variety of signaling regulators and pathways contribute to establish neovascularization, among them as small endogenous non-coding RNAs, microRNAs (miRNAs) play prominent dual regulatory function in breast cancer (BC) angiogenesis. Aim of Review This review aims at describing the current state-of-the-art in BC angiogenesis-mediated by angioregulatory miRNAs, and an overview of miRNAs dysregulation association with the anti-angiogenic response in addition to potential clinical application of miRNAs-based therapeutics. Key Scientific Concepts of Review Angioregulatory miRNA–target gene interaction is not only involved in sprouting vessels of breast tumors but also, trans-differentiation of BC cells to endothelial cells (ECs) in a process termed vasculogenic mimicry. Using canonical and non-canonical angiogenesis pathways, the tumor cell employs the oncogenic characteristics such as miRNAs dysregulation to increase survival, proliferation, oxygen and nutrient supply, and treatment resistance. Angioregulatory miRNAs in BC cells and their microenvironment have therapeutic potential in cancer treatment. Although, miRNAs dysregulation can serve as tumor biomarker nevertheless, due to the association of miRNAs dysregulation with anti-angiogenic resistant phenotype, clinical benefits of anti-angiogenic therapy might be challenging in BC. Hence, unveiling the molecular mechanism underlying angioregulatory miRNAs sparked a booming interest in finding new treatment strategies such as miRNA-based therapies in BC.
Collapse
Affiliation(s)
- Mohammad Hasan Soheilifar
- Department of Medical Laser, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
- Research Center for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Corresponding authorsat: Yara Institute, Academic Center for Education, Culture and Research (ACECR), Enghelab St, Tehran 1315795613, Iran (Mohammad Hasan Soheilifar). University of Limerick, Limerick V94 T9PX, Ireland (Mahboubeh Pishnamazi).
| | - Nastaran Masoudi-Khoram
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Soheil Madadi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sima Nobari
- Research Center for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hamid Maadi
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Hoda Keshmiri Neghab
- Department of Photo Healing and Regeneration, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Razieh Amini
- Research Center for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mahboubeh Pishnamazi
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
- Corresponding authorsat: Yara Institute, Academic Center for Education, Culture and Research (ACECR), Enghelab St, Tehran 1315795613, Iran (Mohammad Hasan Soheilifar). University of Limerick, Limerick V94 T9PX, Ireland (Mahboubeh Pishnamazi).
| |
Collapse
|
22
|
Hameed P, Manivasagam G. An overview of bio-actuation in collagen hydrogels: a mechanobiological phenomenon. Biophys Rev 2021; 13:387-403. [PMID: 34178172 PMCID: PMC8214648 DOI: 10.1007/s12551-021-00804-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 05/04/2021] [Indexed: 12/26/2022] Open
Abstract
Due to their congruity with the native extracellular matrix and their ability to assist in soft tissue repair, hydrogels have been touted as a matrix mimicking biomaterial. Hydrogels are one of the prevalent scaffolds used for 3D cell culture. They can exhibit actuation in response to various stimuli like a magnetic field, electric field, mechanical force, temperature, or pH. In 3D cell culture, the traction exerted by cells on hydrogel can induce non-periodic mechanobiological movements (shrinking or folding) called 'bio-actuation'. Interestingly, this hydrogel 'tropism' phenomenon in 3D cell cultures can be exploited to devise hydrogel-cell-based actuators for tissue engineering. This review briefs about the discrepancies in 2D vs. 3D cell culturing on hydrogels and discusses on different types of cell migration occurring inside the hydrogel matrix. It substantiates the role of mechanical stimuli (such as stiffness) exhibited by the collagen-based hydrogel used for 3D cell culture and its influence in governing the lineage commitment of stem cells. Lastly, the review also audits the cytoskeleton proteins present in cells responsible for influencing the actuation of collagen hydrogel and also elaborates on the cellular signaling pathways responsible for actuation of collagen hydrogels.
Collapse
Affiliation(s)
- Pearlin Hameed
- Centre for Biomaterials Cellular and Molecular Theranostics, Vellore Institute of Technology, Vellore, 632014 India
| | - Geetha Manivasagam
- Centre for Biomaterials Cellular and Molecular Theranostics, Vellore Institute of Technology, Vellore, 632014 India
| |
Collapse
|
23
|
Egorikhina MN, Rubtsova YP, Charykova IN, Bugrova ML, Bronnikova II, Mukhina PA, Sosnina LN, Aleynik DY. Biopolymer Hydrogel Scaffold as an Artificial Cell Niche for Mesenchymal Stem Cells. Polymers (Basel) 2020; 12:polym12112550. [PMID: 33143320 PMCID: PMC7692241 DOI: 10.3390/polym12112550] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/24/2020] [Accepted: 10/28/2020] [Indexed: 02/07/2023] Open
Abstract
The activity of stem cell processes is regulated by internal and external signals of the cell "niche". In general, the niche of stem cells can be represented as the microenvironment of the cells, providing a signal complex, determining the properties of the cells. At the same time, the "niche" concept implies feedback. Cells can modify their microenvironment, supporting homeostasis or remodeling the composition and structure of the extracellular matrix. To ensure the regenerative potential of tissue engineering products the "niche" concept should be taken into account. To investigate interactions in an experimental niche, an original hydrogel biopolymer scaffold with encapsulated mesenchymal adipose-derived stem cells (ASCs) was used in this study. The scaffold provides for cell adhesion, active cell growth, and proliferative activity. Cells cultured within a scaffold are distinguished by the presence of a developed cytoskeleton and they form a cellular network. ASCs cultured within a scaffold change their microenvironment by secreting VEGF-A and remodeling the scaffold structure. Scaffold biodegradation processes were evaluated after previous culturing of the ASCs in the scaffolds for periods of either 24 h or six days. The revealed differences confirmed that changes had occurred in the properties of scaffolds remodeled by cells during cultivation. The mechanisms of the identified changes and the possibility of considering the presented scaffold as an appropriate artificial niche for ASCs are discussed.
Collapse
|
24
|
Effect of Hypoxia Preconditioned Secretomes on Lymphangiogenic and Angiogenic Sprouting: An in Vitro Analysis. Biomedicines 2020; 8:biomedicines8090365. [PMID: 32962277 PMCID: PMC7555444 DOI: 10.3390/biomedicines8090365] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/17/2020] [Accepted: 09/19/2020] [Indexed: 12/22/2022] Open
Abstract
Hypoxia Preconditioned Plasma (HPP) and Serum (HPS) are two blood-derived autologous growth factor compositions that are being clinically employed as tools for promoting tissue regeneration, and have been extensively examined for their angiogenic activity. As yet, their ability to stimulate/support lymphangiogenesis remains unknown, although this is an important but often-neglected process in wound healing and tissue repair. Here we set out to characterize the potential of hypoxia preconditioned secretomes as promoters of angiogenic and lymphangiogenic sprouting in vitro. We first analysed HPP/HPS in terms of pro- (VEGF-C) and anti- (TSP-1, PF-4) angiogenic/lymphangiogenic growth factor concentration, before testing their ability to stimulate microvessel sprouting in the mouse aortic ring assay and lymphatic sprouting in the thoracic duct ring assay. The origin of lymphatic structures was validated with lymph-specific immunohistochemical staining (Anti-LYVE-1) and lymphatic vessel-associated protein (polydom) quantification in culture supernatants. HPP/HPS induced greater angiogenic and lymphatic sprouting compared to non-hypoxia preconditioned samples (normal plasma/serum), a response that was compatible with their higher VEGF-C concentration. These findings demonstrate that hypoxia preconditioned blood-derived secretomes have the ability to not only support sprouting angiogenesis, but also lymphangiogenesis, which underlines their multimodal regenerative potential.
Collapse
|
25
|
Use of Oral Anticoagulation and Diabetes Do Not Inhibit the Angiogenic Potential of Hypoxia Preconditioned Blood-Derived Secretomes. Biomedicines 2020; 8:biomedicines8080283. [PMID: 32796694 PMCID: PMC7459715 DOI: 10.3390/biomedicines8080283] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/08/2020] [Accepted: 08/09/2020] [Indexed: 02/07/2023] Open
Abstract
Patients suffering from tissue ischemia, who would greatly benefit from angiogenesis-promoting therapies such as hypoxia preconditioned blood-derived secretomes commonly receive oral anticoagulation (OA) and/or have diabetes mellitus (DM). In this study, we investigated the effect of OA administration on the in vitro angiogenic potential of hypoxia preconditioned plasma (HPP) and serum (HPS), prepared from nondiabetic/diabetic subjects who did not receive OA (n = 5) or were treated with acetylsalicylic acid (ASA, n = 8), ASA + clopidogrel (n = 10), or nonvitamin K antagonist oral anticoagulants (n = 7) for longer than six months. The effect of DM was differentially assessed by comparing HPP/HPS obtained from nondiabetic (n = 8) and diabetic (n = 16) subjects who had not received OA in the past six months. The concentration of key proangiogenic (vascular endothelial growth factor or VEGF) and antiangiogenic (thrombospondin-1 or TSP-1 and platelet factor-4 or PF-4) protein factors in HPP/HPS was analyzed via ELISA, while their ability to induce microvessel formations was examined in endothelial cell cultures. We found that OA use significantly reduced VEGF levels in HPP, but not HPS, compared to non-OA controls. While HPP and HPS TSP-1 levels remained largely unchanged as a result of OA usage, HPS PF-4 levels were significantly reduced in samples obtained from OA-treated subjects. Neither OA administration nor DM appeared to significantly reduce the ability of HPP or HPS to induce microvessel formations in vitro. These findings indicate that OA administration does not limit the angiogenic potential of hypoxia preconditioned blood-derived secretomes, and therefore, it does not prohibit the application of these therapies for supporting tissue vascularization and wound healing in healthy or diabetic subjects.
Collapse
|
26
|
Lehmann ML, Poffenberger CN, Elkahloun AG, Herkenham M. Analysis of cerebrovascular dysfunction caused by chronic social defeat in mice. Brain Behav Immun 2020; 88:735-747. [PMID: 32413560 PMCID: PMC7416466 DOI: 10.1016/j.bbi.2020.05.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 12/20/2022] Open
Abstract
Psychological stress and affective disorders are clinically associated with hypertension and vascular disease, but the biological links between the conditions have not been fully explored. To examine this relationship, we used chronic social defeat (CSD) stress, which produces anxiety-like and depressive-like behavioral declines in susceptible mice. In such mice, CSD also produces cerebrovascular microbleeds in scattered locations. Here, we showed further evidence of vascular pathology and blood-brain barrier breakdown by visualizing plasma immunoglobulins and erythrocytes within the parenchyma and perivascular spaces of CSD brains. To further characterize the impact of stress on the cerebrovasculature, brain endothelial cells (bECs) were isolated, and global gene expression profiles were generated. Bioinformatic analysis of CSD-induced transcriptional changes in bECs showed enrichment in pathways that delineate the vascular response to injury. These pathways followed a temporal sequence of inflammation, oxidative stress, growth factor signaling, and wound healing (i.e., platelet aggregation, hemostasis, fibrinogen deposition, and angiogenesis). Immunohistochemical staining for markers of fibrinogen deposition and angiogenesis confirmed the existence of the markers at the sites of vascular disruptions. Recovery after CSD cessation was marked by recruitment of leukocytes perhaps participating in vascular repair. The data suggest that co-morbidity of affective disorders and vascular diseases may be attributed in part to a common link in altered endothelial cell function.
Collapse
Affiliation(s)
- Michael L Lehmann
- Section on Functional Neuroanatomy, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Chelsie N Poffenberger
- Section on Functional Neuroanatomy, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Abdel G Elkahloun
- Division of Intramural Research Programs Microarray Core Facility, National Institutes of Health, Bethesda, MD 20892, USA
| | - Miles Herkenham
- Section on Functional Neuroanatomy, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
27
|
Plasma Fibrin Clot Properties as Determinants of Bleeding Time in Human Subjects: Association with Histidine-Rich Glycoprotein. DISEASE MARKERS 2020; 2020:7190828. [PMID: 32076463 PMCID: PMC7008283 DOI: 10.1155/2020/7190828] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/05/2019] [Accepted: 12/24/2019] [Indexed: 11/23/2022]
Abstract
Aims Fibrin formation and histidine-rich glycoprotein (HRG) are involved in primary hemostasis and wound healing. Little is known regarding the relationship of clot characteristics, bleeding time, and wound healing. Methods and Results We studied 154 patients with coronary artery disease (CAD) and 154 subjects free of CAD matched for age, obesity, and current smoking. We evaluated bleeding time (BT) using standardized skin incisions on a forearm, along with plasma clot permeability (Ks), clot lysis time (CLT), and histidine-rich glycoprotein (HRG). Compared with controls, BT was 45% shorter in CAD cases. CAD patients had 32% lower Ks), clot lysis time (CLT), and histidine-rich glycoprotein (HRG). Compared with controls, BT was 45% shorter in CAD cases. CAD patients had 32% lower p < 0.001). After adjusting for potential confounders, Ks), clot lysis time (CLT), and histidine-rich glycoprotein (HRG). Compared with controls, BT was 45% shorter in CAD cases. CAD patients had 32% lower n = 79, 25.6%) was independently predicted by both short and prolonged BT in CAD cases (OR 21.87, 95% CI 7.41-64.55 and OR 10.17, 95% CI 2.88-35.97) and controls (OR 5.94, 95% CI 2.29-15.41 and OR 14.76, 95% CI 4.29-50.77, respectively). Conclusions The study shows that plasma fibrin clot density and HRG may influence BT and that appropriate skin wound healing is associated with medium BT. Translational Perspective. Elucidation of the complex relationships between plasma fibrin clot phenotype and wound healing might have important practical implications.
Collapse
|
28
|
Comparative Evaluation of the Angiogenic Potential of Hypoxia Preconditioned Blood-Derived Secretomes and Platelet-Rich Plasma: An In Vitro Analysis. Biomedicines 2020; 8:biomedicines8010016. [PMID: 31963131 PMCID: PMC7168246 DOI: 10.3390/biomedicines8010016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 12/24/2022] Open
Abstract
Blood-derived factor preparations are being clinically employed as tools for promoting tissue repair and regeneration. Here we set out to characterize the in vitro angiogenic potential of two types of frequently used autologous blood-derived secretomes: platelet-rich plasma (PRP) and hypoxia preconditioned plasma (HPP)/serum (HPS). The concentration of key pro-angiogenic (VEGF) and anti-angiogenic (TSP-1, PF-4) protein factors in these secretomes was analyzed via ELISA, while their ability to induce microvessel formation and sprouting was examined in endothelial cell and aortic ring cultures, respectively. We found higher concentrations of VEGF in PRP and HPP/HPS compared to normal plasma and serum. This correlated with improved induction of microvessel formation by PRP and HPP/HPS. HPP had a significantly lower TSP-1 and PF-4 concentration than PRP and HPS. PRP and HPP/HPS appeared to induce similar levels of microvessel sprouting; however, the length of these sprouts was greater in HPP/HPS than in PRP cultures. A bell-shaped angiogenic response profile was observed with increasing HPP/HPS dilutions, with peak values significantly exceeding the PRP response. Our findings demonstrate that optimization of peripheral blood cell-derived angiogenic factor signalling through hypoxic preconditioning offers an improved alternative to simple platelet concentration and release of growth factors pre-stored in platelets.
Collapse
|
29
|
Kohli N, Sawadkar P, Ho S, Sharma V, Snow M, Powell S, Woodruff MA, Hook L, García-Gareta E. Pre-screening the intrinsic angiogenic capacity of biomaterials in an optimised ex ovo chorioallantoic membrane model. J Tissue Eng 2020; 11:2041731420901621. [PMID: 32110373 PMCID: PMC7000866 DOI: 10.1177/2041731420901621] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 12/23/2019] [Indexed: 12/12/2022] Open
Abstract
Biomaterial development for clinical applications is currently on the rise. This necessitates adequate in vitro testing, where the structure and composition of biomaterials must be specifically tailored to withstand in situ repair and regeneration responses for a successful clinical outcome. The chorioallantoic membrane of chicken embryos has been previously used to study angiogenesis, a prerequisite for most tissue repair and regeneration. In this study, we report an optimised ex ovo method using a glass-cling film set-up that yields increased embryo survival rates and has an improved protocol for harvesting biomaterials. Furthermore, we used this method to examine the intrinsic angiogenic capacity of a variety of biomaterials categorised as natural, synthetic, natural/synthetic and natural/natural composites with varying porosities. We detected significant differences in biomaterials' angiogenesis with natural polymers and polymers with a high overall porosity showing a greater vascularisation compared to synthetic polymers. Therefore, our proposed ex ovo chorioallantoic membrane method can be effectively used to pre-screen biomaterials intended for clinical application.
Collapse
Affiliation(s)
- Nupur Kohli
- Regenerative Biomaterials Group, RAFT
Institute, Mount Vernon Hospital, Northwood, UK
- Department of Mechanical Engineering,
Imperial College London, London, UK
| | - Prasad Sawadkar
- Regenerative Biomaterials Group, RAFT
Institute, Mount Vernon Hospital, Northwood, UK
| | - Sonia Ho
- Regenerative Biomaterials Group, RAFT
Institute, Mount Vernon Hospital, Northwood, UK
| | - Vaibhav Sharma
- Regenerative Biomaterials Group, RAFT
Institute, Mount Vernon Hospital, Northwood, UK
| | - Martyn Snow
- Royal Orthopaedic Hospital NHS
Foundation Trust, Birmingham, UK
| | - Sean Powell
- Institute of Health and Biomedical
Innovation, Queensland University of Technology, Brisbane, Australia
| | - Maria A Woodruff
- Institute of Health and Biomedical
Innovation, Queensland University of Technology, Brisbane, Australia
| | - Lilian Hook
- Smart Matrix Limited, Leopold Muller
Building, Mount Vernon Hospital, Northwood, UK
| | - Elena García-Gareta
- Regenerative Biomaterials Group, RAFT
Institute, Mount Vernon Hospital, Northwood, UK
| |
Collapse
|
30
|
Egorikhina MN, Aleynik DY, Rubtsova YP, Levin GY, Charykova IN, Semenycheva LL, Bugrova ML, Zakharychev EA. Hydrogel scaffolds based on blood plasma cryoprecipitate and collagen derived from various sources: Structural, mechanical and biological characteristics. Bioact Mater 2019; 4:334-345. [PMID: 31720490 PMCID: PMC6838346 DOI: 10.1016/j.bioactmat.2019.10.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/04/2019] [Accepted: 10/13/2019] [Indexed: 01/19/2023] Open
Abstract
At present there is a growing need for tissue engineering products, including the products of scaffold-technologies. Biopolymer hydrogel scaffolds have a number of advantages and are increasingly being used to provide means of cell transfer for therapeutic treatments and for inducing tissue regeneration. This work presents original hydrogel biopolymer scaffolds based on a blood plasma cryoprecipitate and collagen and formed under conditions of enzymatic hydrolysis. Two differently originated collagens were used for the scaffold formation. During this work the structural and mechanical characteristics of the scaffold were studied. It was found that, depending on the origin of collagen, scaffolds possess differences in their structural and mechanical characteristics. Both types of hydrogel scaffolds have good biocompatibility and provide conditions that maintain the three-dimensional growth of adipose tissue stem cells. Hence, scaffolds based on such a blood plasma cryoprecipitate and collagen have good prospects as cell carriers and can be widely used in regenerative medicine.
Collapse
Affiliation(s)
- Marfa N. Egorikhina
- Federal State Budgetary Educational Institution of Higher Education «Privolzhsky Research Medical University» of the Ministry of Health of the Russian Federation, Nizhny Novgorod, Russian Federation
| | - Diana Ya Aleynik
- Federal State Budgetary Educational Institution of Higher Education «Privolzhsky Research Medical University» of the Ministry of Health of the Russian Federation, Nizhny Novgorod, Russian Federation
| | - Yulia P. Rubtsova
- Federal State Budgetary Educational Institution of Higher Education «Privolzhsky Research Medical University» of the Ministry of Health of the Russian Federation, Nizhny Novgorod, Russian Federation
| | - Grigory Ya Levin
- Federal State Budgetary Educational Institution of Higher Education «Privolzhsky Research Medical University» of the Ministry of Health of the Russian Federation, Nizhny Novgorod, Russian Federation
| | - Irina N. Charykova
- Federal State Budgetary Educational Institution of Higher Education «Privolzhsky Research Medical University» of the Ministry of Health of the Russian Federation, Nizhny Novgorod, Russian Federation
| | | | - Marina L. Bugrova
- Federal State Budgetary Educational Institution of Higher Education «Privolzhsky Research Medical University» of the Ministry of Health of the Russian Federation, Nizhny Novgorod, Russian Federation
| | | |
Collapse
|
31
|
Roberts IV, Bukhary D, Valdivieso CYL, Tirelli N. Fibrin Matrices as (Injectable) Biomaterials: Formation, Clinical Use, and Molecular Engineering. Macromol Biosci 2019; 20:e1900283. [PMID: 31769933 DOI: 10.1002/mabi.201900283] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/14/2019] [Indexed: 12/19/2022]
Abstract
This review focuses on fibrin, starting from biological mechanisms (its production from fibrinogen and its enzymatic degradation), through its use as a medical device and as a biomaterial, and finally discussing the techniques used to add biological functions and/or improve its mechanical performance through its molecular engineering. Fibrin is a material of biological (human, and even patient's own) origin, injectable, adhesive, and remodellable by cells; further, it is nature's most common choice for an in situ forming, provisional matrix. Its widespread use in the clinic and in research is therefore completely unsurprising. There are, however, areas where its biomedical performance can be improved, namely achieving a better control over mechanical properties (and possibly higher modulus), slowing down degradation or incorporating cell-instructive functions (e.g., controlled delivery of growth factors). The authors here specifically review the efforts made in the last 20 years to achieve these aims via biomimetic reactions or self-assembly, as much via formation of hybrid materials.
Collapse
Affiliation(s)
- Iwan Vaughan Roberts
- Division of Pharmacy and Optometry, School of Health Science, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Deena Bukhary
- Division of Pharmacy and Optometry, School of Health Science, University of Manchester, Oxford Road, Manchester, M13 9PT, UK.,Department of Pharmaceutical Science, Faculty of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | | | - Nicola Tirelli
- Division of Pharmacy and Optometry, School of Health Science, University of Manchester, Oxford Road, Manchester, M13 9PT, UK.,Laboratory of Polymers and Biomaterials, Fondazione Istituto Italiano di Tecnologia, via Morego 30, 16163, Genova, Italy
| |
Collapse
|
32
|
In Vitro Characterization of Hypoxia Preconditioned Serum (HPS)-Fibrin Hydrogels: Basis for an Injectable Biomimetic Tissue Regeneration Therapy. J Funct Biomater 2019; 10:jfb10020022. [PMID: 31086048 PMCID: PMC6616457 DOI: 10.3390/jfb10020022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 04/26/2019] [Accepted: 05/05/2019] [Indexed: 01/03/2023] Open
Abstract
Blood-derived growth factor preparations have long been employed to improve perfusion and aid tissue repair. Among these, platelet-rich plasma (PRP)-based therapies have seen the widest application, albeit with mixed clinical results to date. Hypoxia-preconditioned blood products present an alternative to PRP, by comprising the complete wound healing factor-cascade, i.e., hypoxia-induced peripheral blood cell signaling, in addition to platelet-derived factors. This study set out to characterize the preparation of hypoxia preconditioned serum (HPS), and assess the utility of HPS–fibrin hydrogels as vehicles for controlled factor delivery. Our findings demonstrate the positive influence of hypoxic incubation on HPS angiogenic potential, and the individual variability of HPS angiogenic factor concentration. HPS–fibrin hydrogels can rapidly retain HPS factor proteins and gradually release them over time, while both functions appear to depend on the fibrin matrix mass. This offers a means of controlling factor retention/release, through adjustment of HPS fibrinogen concentration, thus allowing modulation of cellular angiogenic responses in a growth factor dose-dependent manner. This study provides the first evidence that HPS–fibrin hydrogels could constitute a new generation of autologous/bioactive injectable compositions that provide biochemical and biomaterial signals analogous to those mediating physiological wound healing. This therefore establishes a rational foundation for their application towards biomimetic tissue regeneration.
Collapse
|
33
|
|
34
|
Occlusive dressing-induced secretomes influence the migration and proliferation of mesenchymal stem cells and fibroblasts differently. Eur J Med Res 2018; 23:60. [PMID: 30585140 PMCID: PMC6306003 DOI: 10.1186/s40001-018-0357-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 12/15/2018] [Indexed: 01/14/2023] Open
Abstract
Background Fingertip injuries treated with occlusive dressings (ODs) lead to nearly scar-free, functionally, and aesthetically pleasing results. We hypothesized that paracrine factors in the wound fluid (secretome) may influence migration and proliferation of mesenchymal stem cells (MSCs) and fibroblasts and modulate the wound-healing process. Methods We could collect wound fluid samples from 4 fingertip injuries and 7 split skin donor sites at the 5th day during dressing change. Blood serum samples served as controls. The proliferation rate of MSCs and fibroblasts (HS27) was continuously measured through impedance analysis for 60 h and by Alamarblue analysis after 72 h. Cell migration was evaluated continuously for 15 h and confirmed by the in vitro wound-healing assay. Results Migration of MSCs under the influence of both wound fluids was significantly faster than controls from 4 to 6 h after incubation and reversed after 9 h. MSC proliferation in wound fluid groups showed a significant increase at 5 and 10 h and was significantly decreased after 45 h. Fibroblasts in wound fluid groups showed overall a significant increase in migration and a significant decrease in proliferation compared to controls. Conclusion OD-induced secretomes influence MSCs and fibroblasts and thereby possibly modulate wound healing and scar tissue formation.
Collapse
|
35
|
Joseph CA, McCarthy CW, Tyo AG, Hubbard KR, Fisher HC, Altscheffel JA, He W, Pinnaratip R, Liu Y, Lee BP, Rajachar RM. Development of an Injectable Nitric Oxide Releasing Poly(ethylene) Glycol-Fibrin Adhesive Hydrogel. ACS Biomater Sci Eng 2018; 5:959-969. [PMID: 31650030 DOI: 10.1021/acsbiomaterials.8b01331] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fibrin microparticles were incorporated into poly(ethylene) glycol (PEG)-fibrinogen hydrogels to create an injectable, composite that could serve as a wound healing support and vehicle to deliver therapeutic factors for tissue engineering. Nitric oxide (NO), a therapeutic agent in wound healing, was loaded into fibrin microparticles by blending S-Nitroso-N-acetyl penicillamine (SNAP) with a fibrinogen solution. The incorporation of microparticles affected swelling behavior and improved tissue adhesivity of composite hydrogels. Controlled NO release was induced via photolytic and thermal activation, and modulated by weight percent of particles incorporated. These NO-releasing composites were non-cytotoxic in culture. Cells maintained morphology, viability, and proliferative character. Fibrin microparticles loaded with SNAP and incorporated into a PEG-fibrinogen matrix, creates a novel injectable composite hydrogel that offers improved tissue adhesivity and inducible NO-release for use as a regenerative support for wound healing and tissue engineering applications.
Collapse
Affiliation(s)
- Carly A Joseph
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931
| | - Connor W McCarthy
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931
| | - Ariana G Tyo
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931
| | - Kenneth R Hubbard
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931
| | - Hannah C Fisher
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931
| | - Jacob A Altscheffel
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931
| | - Weilue He
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931
| | - Rattapol Pinnaratip
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931
| | - Yuan Liu
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931
| | - Bruce P Lee
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931
| | - Rupak M Rajachar
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931
| |
Collapse
|
36
|
Andia I, Maffulli N. A contemporary view of platelet-rich plasma therapies: moving toward refined clinical protocols and precise indications. Regen Med 2018; 13:717-728. [PMID: 30246605 DOI: 10.2217/rme-2018-0042] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The positive extensive clinical experience with platelet-rich plasma (PRP) in different medical areas has prompted researchers to explore clinical opportunities for optimized PRP therapies. PRP is safe but we have to make it more effective. The growing diversity of formulations and presentations enrich the field of PRP research and offer hope to refine clinical indications. Moving toward targeting the right disease phenotypes with the right PRP formulation or combination product (PRP + cell products) can offer opportunities to change treatment options in osteoarthritis and nonhealing wounds. Both are active areas of research that could offer opportunities, although cost efficacy is still an open question. Our position is to believe that these serious disease areas are likely to benefit from PRP therapies.
Collapse
Affiliation(s)
- Isabel Andia
- Regenerative Medicine Laboratory, BioCruces Health Research Institute, Cruces University Hospital, 48903 Barakaldo, Spain
| | - Nicola Maffulli
- Department of Musculoskeletal Disorders, University of Salerno School of Medicine & Dentristry, Salerno, Italy.,Queen Mary University of London, Barts & the London School of Medicine & Dentistry, London, UK
| |
Collapse
|
37
|
Kim HD, Amirthalingam S, Kim SL, Lee SS, Rangasamy J, Hwang NS. Biomimetic Materials and Fabrication Approaches for Bone Tissue Engineering. Adv Healthc Mater 2017; 6. [PMID: 29171714 DOI: 10.1002/adhm.201700612] [Citation(s) in RCA: 192] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 10/09/2017] [Indexed: 01/14/2023]
Abstract
Various strategies have been explored to overcome critically sized bone defects via bone tissue engineering approaches that incorporate biomimetic scaffolds. Biomimetic scaffolds may provide a novel platform for phenotypically stable tissue formation and stem cell differentiation. In recent years, osteoinductive and inorganic biomimetic scaffold materials have been optimized to offer an osteo-friendly microenvironment for the osteogenic commitment of stem cells. Furthermore, scaffold structures with a microarchitecture design similar to native bone tissue are necessary for successful bone tissue regeneration. For this reason, various methods for fabricating 3D porous structures have been developed. Innovative techniques, such as 3D printing methods, are currently being utilized for optimal host stem cell infiltration, vascularization, nutrient transfer, and stem cell differentiation. In this progress report, biomimetic materials and fabrication approaches that are currently being utilized for biomimetic scaffold design are reviewed.
Collapse
Affiliation(s)
- Hwan D. Kim
- School of Chemical and Biological Engineering; The Institute of Chemical Processes; Seoul National University; Seoul 151-742 Republic of Korea
| | | | - Seunghyun L. Kim
- Interdisciplinary Program in Bioengineering; Seoul National University; Seoul 151-742 Republic of Korea
| | - Seunghun S. Lee
- Interdisciplinary Program in Bioengineering; Seoul National University; Seoul 151-742 Republic of Korea
| | - Jayakumar Rangasamy
- Centre for Nanosciences and Molecular Medicine; Amrita University; Kochi 682041 India
| | - Nathaniel S. Hwang
- School of Chemical and Biological Engineering; The Institute of Chemical Processes; Seoul National University; Seoul 151-742 Republic of Korea
- Interdisciplinary Program in Bioengineering; Seoul National University; Seoul 151-742 Republic of Korea
- The BioMax Institute of Seoul National University; Seoul 151-742 Republic of Korea
| |
Collapse
|
38
|
Izadifar M, Babyn P, Chapman D, Kelly ME, Chen X. Potential of propagation-based synchrotron X-ray phase-contrast computed tomography for cardiac tissue engineering. JOURNAL OF SYNCHROTRON RADIATION 2017; 24:842-853. [PMID: 28664892 DOI: 10.1107/s1600577517006208] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 04/24/2017] [Indexed: 06/07/2023]
Abstract
Hydrogel-based cardiac tissue engineering offers great promise for myocardial infarction repair. The ability to visualize engineered systems in vivo in animal models is desired to monitor the performance of cardiac constructs. However, due to the low density and weak X-ray attenuation of hydrogels, conventional radiography and micro-computed tomography are unable to visualize the hydrogel cardiac constructs upon their implantation, thus limiting their use in animal systems. This paper presents a study on the optimization of synchrotron X-ray propagation-based phase-contrast imaging computed tomography (PCI-CT) for three-dimensional (3D) visualization and assessment of the hydrogel cardiac patches. First, alginate hydrogel was 3D-printed into cardiac patches, with the pores filled by fibrin. The hydrogel patches were then surgically implanted on rat hearts. A week after surgery, the hearts including patches were excised and embedded in a soft-tissue-mimicking gel for imaging by using PCI-CT at an X-ray energy of 25 keV. During imaging, the sample-to-detector distances, CT-scan time and the region of interest (ROI) were varied and examined for their effects on both imaging quality and radiation dose. The results showed that phase-retrieved PCI-CT images provided edge-enhancement fringes at a sample-to-detector distance of 147 cm that enabled visualization of anatomical and microstructural features of the myocardium and the implanted patch in the tissue-mimicking gel. For visualization of these features, PCI-CT offered a significantly higher performance than the dual absorption-phase and clinical magnetic resonance (3 T) imaging techniques. Furthermore, by reducing the total CT-scan time and ROI, PCI-CT was examined for lowering the effective dose, meanwhile without much loss of imaging quality. In effect, the higher soft tissue contrast and low-dose potential of PCI-CT has been used along with an acceptable overall animal dose to achieve the high spatial resolution needed for cardiac implant visualization. As a result, PCI-CT at the identified imaging parameters offers great potential for 3D assessment of microstructural features of hydrogel cardiac patches.
Collapse
Affiliation(s)
- Mohammad Izadifar
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Paul Babyn
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Dean Chapman
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Michael E Kelly
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Xiongbiao Chen
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
39
|
Perisic T, Zhang Z, Foehr P, Hopfner U, Klutz K, Burgkart RH, Slobodianski A, Goeldner M, Machens HG, Schilling AF. Biodegradable poly (lactic acid-co-glycolic acid) scaffolds as carriers for genetically-modified fibroblasts. PLoS One 2017; 12:e0174860. [PMID: 28380080 PMCID: PMC5381796 DOI: 10.1371/journal.pone.0174860] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 03/16/2017] [Indexed: 01/01/2023] Open
Abstract
Recent advances in gene delivery into cells allow improved therapeutic effects in gene therapy trials. To increase the bioavailability of applied cells, it is of great interest that transfected cells remain at the application site and systemic spread is minimized. In this study, we tested clinically used biodegradable poly(lactic acid-co-glycolic acid) (PLGA) scaffolds (Vicryl & Ethisorb) as transient carriers for genetically modified cells. To this aim, we used human fibroblasts and examined attachment and proliferation of untransfected cells on the scaffolds in vitro, as well as the mechanical properties of the scaffolds at four time points (1, 3, 6 and 9 days) of cultivation. Furthermore, the adherence of cells transfected with green fluorescent protein (GFP) and vascular endothelial growth factor (VEGF165) and also VEGF165 protein secretion were investigated. Our results show that human fibroblasts adhere on both types of PLGA scaffolds. However, proliferation and transgene expression capacity were higher on Ethisorb scaffolds most probably due to a different architecture of the scaffold. Additionally, cultivation of the cells on the scaffolds did not alter their biomechanical properties. The results of this investigation could be potentially exploited in therapeutic regiments with areal delivery of transiently transfected cells and may open the way for a variety of applications of cell-based gene therapy, tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Tatjana Perisic
- Experimental Plastic Surgery, Department for Plastic Surgery and Hand Surgery, Klinikum rechts der Isar, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Ziyang Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Peter Foehr
- Department of Orthopaedics and Sportsorthopaedics, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Ursula Hopfner
- Experimental Plastic Surgery, Department for Plastic Surgery and Hand Surgery, Klinikum rechts der Isar, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Kathrin Klutz
- Experimental Plastic Surgery, Department for Plastic Surgery and Hand Surgery, Klinikum rechts der Isar, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Rainer H. Burgkart
- Department of Orthopaedics and Sportsorthopaedics, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Alexei Slobodianski
- Experimental Plastic Surgery, Department for Plastic Surgery and Hand Surgery, Klinikum rechts der Isar, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | | | - Hans-Günther Machens
- Experimental Plastic Surgery, Department for Plastic Surgery and Hand Surgery, Klinikum rechts der Isar, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Arndt F. Schilling
- Experimental Plastic Surgery, Department for Plastic Surgery and Hand Surgery, Klinikum rechts der Isar, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- Klinik für Unfallchirurgie, Orthopädie und Plastische Chirurgie, University Medical Center Göttingen, Göttingen, Germany
- * E-mail:
| |
Collapse
|
40
|
Dong C, Lv Y. Application of Collagen Scaffold in Tissue Engineering: Recent Advances and New Perspectives. Polymers (Basel) 2016; 8:polym8020042. [PMID: 30979136 PMCID: PMC6432532 DOI: 10.3390/polym8020042] [Citation(s) in RCA: 446] [Impact Index Per Article: 49.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 01/24/2016] [Accepted: 01/27/2016] [Indexed: 12/11/2022] Open
Abstract
Collagen is the main structural protein of most hard and soft tissues in animals and the human body, which plays an important role in maintaining the biological and structural integrity of the extracellular matrix (ECM) and provides physical support to tissues. Collagen can be extracted and purified from a variety of sources and offers low immunogenicity, a porous structure, good permeability, biocompatibility and biodegradability. Collagen scaffolds have been widely used in tissue engineering due to these excellent properties. However, the poor mechanical property of collagen scaffolds limits their applications to some extent. To overcome this shortcoming, collagen scaffolds can be cross-linked by chemical or physical methods or modified with natural/synthetic polymers or inorganic materials. Biochemical factors can also be introduced to the scaffold to further improve its biological activity. This review will summarize the structure and biological characteristics of collagen and introduce the preparation methods and modification strategies of collagen scaffolds. The typical application of a collagen scaffold in tissue engineering (including nerve, bone, cartilage, tendon, ligament, blood vessel and skin) will be further provided. The prospects and challenges about their future research and application will also be pointed out.
Collapse
Affiliation(s)
- Chanjuan Dong
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China.
- Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing 400044, China.
| | - Yonggang Lv
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China.
- Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing 400044, China.
| |
Collapse
|