1
|
Song C, Jung D, Kendi AT, Rho JK, Kim EJ, Horn I, Curran GL, Ghattamaneni S, Shim JY, Kang PS, Kang D, Thakkar JB, Dewan S, Lowe VJ, Lee SB. Metformin Prevents Tumor Cell Growth and Invasion of Human Hormone Receptor-Positive Breast Cancer (HR+ BC) Cells via FOXA1 Inhibition. Int J Mol Sci 2024; 25:7494. [PMID: 39000600 PMCID: PMC11242876 DOI: 10.3390/ijms25137494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
Women with type 2 diabetes (T2D) have a higher risk of being diagnosed with breast cancer and have worse survival than non-diabetic women if they do develop breast cancer. However, more research is needed to elucidate the biological underpinnings of these relationships. Here, we found that forkhead box A1 (FOXA1), a forkhead family transcription factor, and metformin (1,1-dimethylbiguanide hydrochloride), a medication used to treat T2D, may impact hormone-receptor-positive (HR+) breast cancer (BC) tumor cell growth and metastasis. Indeed, fourteen diabetes-associated genes are highly expressed in only three HR+ breast cancer cell lines but not the other subtypes utilizing a 53,805 gene database obtained from NCBI GEO. Among the diabetes-related genes, FOXA1, MTA3, PAK4, FGFR3, and KIF22 were highly expressed in HR+ breast cancer from 4032 breast cancer patient tissue samples using the Breast Cancer Gene Expression Omnibus. Notably, elevated FOXA1 expression correlated with poorer overall survival in patients with estrogen-receptor-positive/progesterone-receptor-positive (ER+/PR+) breast cancer. Furthermore, experiments demonstrated that loss of the FOXA1 gene inhibited tumor proliferation and invasion in vitro using MCF-7 and T47D HR+ breast cancer cell lines. Metformin, an anti-diabetic medication, significantly suppressed tumor cell growth in MCF-7 cells. Additionally, either metformin treatment or FOXA1 gene deletion enhanced tamoxifen-induced tumor growth inhibition in HR+ breast cancer cell lines within an ex vivo three-dimensional (3D) organoid model. Therefore, the diabetes-related medicine metformin and FOXA1 gene inhibition might be a new treatment for patients with HR+ breast cancer when combined with tamoxifen, an endocrine therapy.
Collapse
Affiliation(s)
- Christine Song
- Division of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (C.S.); (D.J.); (A.T.K.); (I.H.); (G.L.C.); (S.G.); (D.K.); (J.B.T.); (S.D.)
- Harvard University, Cambridge, MA 02138, USA
| | - Dawa Jung
- Division of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (C.S.); (D.J.); (A.T.K.); (I.H.); (G.L.C.); (S.G.); (D.K.); (J.B.T.); (S.D.)
| | - Ayse Tuba Kendi
- Division of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (C.S.); (D.J.); (A.T.K.); (I.H.); (G.L.C.); (S.G.); (D.K.); (J.B.T.); (S.D.)
| | - Jin Kyung Rho
- Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea;
| | - Eun-Joo Kim
- Department of Molecular Biology, Dankook University, Cheonan 31116, Chungcheongnam, Republic of Korea;
| | - Ian Horn
- Division of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (C.S.); (D.J.); (A.T.K.); (I.H.); (G.L.C.); (S.G.); (D.K.); (J.B.T.); (S.D.)
| | - Geoffry L. Curran
- Division of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (C.S.); (D.J.); (A.T.K.); (I.H.); (G.L.C.); (S.G.); (D.K.); (J.B.T.); (S.D.)
| | - Sujala Ghattamaneni
- Division of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (C.S.); (D.J.); (A.T.K.); (I.H.); (G.L.C.); (S.G.); (D.K.); (J.B.T.); (S.D.)
| | - Ji Yeon Shim
- College of Nursing, Dankook University, Cheonan 31116, Chungcheongnam, Republic of Korea;
| | - Pil Soo Kang
- U&Hang Clinic, Asan 31514, Chungcheongnam, Republic of Korea;
| | - Daehun Kang
- Division of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (C.S.); (D.J.); (A.T.K.); (I.H.); (G.L.C.); (S.G.); (D.K.); (J.B.T.); (S.D.)
| | - Jay B. Thakkar
- Division of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (C.S.); (D.J.); (A.T.K.); (I.H.); (G.L.C.); (S.G.); (D.K.); (J.B.T.); (S.D.)
| | - Sannidhi Dewan
- Division of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (C.S.); (D.J.); (A.T.K.); (I.H.); (G.L.C.); (S.G.); (D.K.); (J.B.T.); (S.D.)
| | - Val J. Lowe
- Division of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (C.S.); (D.J.); (A.T.K.); (I.H.); (G.L.C.); (S.G.); (D.K.); (J.B.T.); (S.D.)
| | - Seung Baek Lee
- Division of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (C.S.); (D.J.); (A.T.K.); (I.H.); (G.L.C.); (S.G.); (D.K.); (J.B.T.); (S.D.)
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
2
|
Bernal YA, Durán E, Solar I, Sagredo EA, Armisén R. ADAR-Mediated A>I(G) RNA Editing in the Genotoxic Drug Response of Breast Cancer. Int J Mol Sci 2024; 25:7424. [PMID: 39000531 PMCID: PMC11242177 DOI: 10.3390/ijms25137424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/13/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Epitranscriptomics is a field that delves into post-transcriptional changes. Among these modifications, the conversion of adenosine to inosine, traduced as guanosine (A>I(G)), is one of the known RNA-editing mechanisms, catalyzed by ADARs. This type of RNA editing is the most common type of editing in mammals and contributes to biological diversity. Disruption in the A>I(G) RNA-editing balance has been linked to diseases, including several types of cancer. Drug resistance in patients with cancer represents a significant public health concern, contributing to increased mortality rates resulting from therapy non-responsiveness and disease progression, representing the greatest challenge for researchers in this field. The A>I(G) RNA editing is involved in several mechanisms over the immunotherapy and genotoxic drug response and drug resistance. This review investigates the relationship between ADAR1 and specific A>I(G) RNA-edited sites, focusing particularly on breast cancer, and the impact of these sites on DNA damage repair and the immune response over anti-cancer therapy. We address the underlying mechanisms, bioinformatics, and in vitro strategies for the identification and validation of A>I(G) RNA-edited sites. We gathered databases related to A>I(G) RNA editing and cancer and discussed the potential clinical and research implications of understanding A>I(G) RNA-editing patterns. Understanding the intricate role of ADAR1-mediated A>I(G) RNA editing in breast cancer holds significant promise for the development of personalized treatment approaches tailored to individual patients' A>I(G) RNA-editing profiles.
Collapse
Affiliation(s)
- Yanara A Bernal
- Centro de Genética y Genómica, Instituto de Ciencias e Innovación en Medicina (ICIM), Facultad de Medicina Clínica Alemana Universidad del Desarrollo, Santiago 7610658, Chile
| | - Eduardo Durán
- Subdepartamento de Genómica y Genética Molecular, Sección Genética Humana, Instituto de Salud Pública de Chile, Avenida Marathon 1000, Ñuñoa, Santiago 7780050, Chile
| | - Isidora Solar
- Centro de Genética y Genómica, Instituto de Ciencias e Innovación en Medicina (ICIM), Facultad de Medicina Clínica Alemana Universidad del Desarrollo, Santiago 7610658, Chile
| | - Eduardo A Sagredo
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, SE-171 77 Stockholm, Sweden
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-171 77 Stockholm, Sweden
| | - Ricardo Armisén
- Centro de Genética y Genómica, Instituto de Ciencias e Innovación en Medicina (ICIM), Facultad de Medicina Clínica Alemana Universidad del Desarrollo, Santiago 7610658, Chile
| |
Collapse
|
3
|
Sileikaite-Morvaközi I, Hansen WH, Davies MJ, Mandrup-Poulsen T, Hawkins CL. Detrimental Actions of Chlorinated Nucleosides on the Function and Viability of Insulin-Producing Cells. Int J Mol Sci 2023; 24:14585. [PMID: 37834034 PMCID: PMC10572493 DOI: 10.3390/ijms241914585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Neutrophils are innate immune cells that play a key role in pathogen clearance. They contribute to inflammatory diseases, including diabetes, by releasing pro-inflammatory cytokines, reactive oxygen species, and extracellular traps (NETs). NETs contain a DNA backbone and catalytically active myeloperoxidase (MPO), which produces hypochlorous acid (HOCl). Chlorination of the DNA nucleoside 8-chloro-deoxyguanosine has been reported as an early marker of inflammation in diabetes. In this study, we examined the reactivity of different chlorinated nucleosides, including 5-chloro-(deoxy)cytidine (5ClC, 5CldC), 8-chloro-(deoxy)adenosine (8ClA, 8CldA) and 8-chloro-(deoxy)guanosine (8ClG, 8CldG), with the INS-1E β-cell line. Exposure of INS-1E cells to 5CldC, 8CldA, 8ClA, and 8CldG decreased metabolic activity and intracellular ATP, and, together with 8ClG, induced apoptotic cell death. Exposure to 8ClA, but not the other nucleosides, resulted in sustained endoplasmic reticulum stress, activation of the unfolded protein response, and increased expression of thioredoxin-interacting protein (TXNIP) and heme oxygenase 1 (HO-1). Exposure of INS-1E cells to 5CldC also increased TXNIP and NAD(P)H dehydrogenase quinone 1 (NQO1) expression. In addition, a significant increase in the mRNA expression of NQO1 and GPx4 was seen in INS-1E cells exposed to 8ClG and 8CldA, respectively. However, a significant decrease in intracellular thiols was only observed in INS-1E cells exposed to 8ClG and 8CldG. Finally, a significant decrease in the insulin stimulation index was observed in experiments with all the chlorinated nucleosides, except for 8ClA and 8ClG. Together, these results suggest that increased formation of chlorinated nucleosides during inflammation in diabetes could influence β-cell function and may contribute to disease progression.
Collapse
Affiliation(s)
| | | | | | | | - Clare L. Hawkins
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (I.S.-M.); (M.J.D.); (T.M.-P.)
| |
Collapse
|
4
|
Venetoclax in combination with nucleoside analogs in acute myelogenous leukemia. Curr Opin Oncol 2022; 34:531-539. [PMID: 35855507 DOI: 10.1097/cco.0000000000000868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Venetoclax in combination with nucleoside analogs such as hypomethylating agents (HMA) and low-dose cytarabine (LDAC) has led to unprecedented response and survival outcomes in patients with acute myeloid leukemia (AML). This has spurred the development of regimens combining venetoclax with other nucleoside analogs with distinct mechanisms of action. Here, we review older and newer nucleoside analogs, the rationale for their combination with venetoclax, and clinical evidence for the combination when available. RECENT FINDINGS Venetoclax with HMA prolonged survival in a phase 3 study. Additionally, biologic correlates of response and resistance to venetoclax with HMA have been identified. The addition of venetoclax to standard intensive regimens containing higher doses of cytarabine and purine nucleoside analogs are safe and induce very high rates of remission and measurable residual disease negativity (MRD) negativity in newly diagnosed and relapsed/refractory AML. Investigational nucleoside analogs aim to improve upon the safety, bioavailability, or efficacy of approved venetoclax combinations and are currently being evaluated in clinical studies. SUMMARY The development of venetoclax with HMA has transformed care for elderly adults with AML and opened the door for novel combinations of venetoclax with other nucleoside analogs. Further clinical studies are needed to see if these novel combinations further improve outcomes in AML particularly for patients with high-risk disease.
Collapse
|
5
|
Teakell S, Chen LS, Stellrecht CM, Gandhi V. The role of p53 and p21 on 8-chloro-adenosine-induced cellular response. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2022; 41:1359-1374. [PMID: 35227162 DOI: 10.1080/15257770.2022.2038200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
8-Chloro-adenosine (8-Cl-Ado) is currently in phase I clinical trial. Activation of p53 and transactivation of p21 regulate cell fate after genotoxic insult. Using HCT-116-isogenic-cell-lines, we evaluated the role of p53/p21 after 8-Cl-Ado-mediated response. Following 30 µM 8-Cl-Ado treatment, RNA synthesis was inhibited, p53 protein was stabilized, and p21 expression was activated. None of the cell types were arrested in G1/S phase, however, cells lacking p53 were blocked in G2/M. These cells had the least increase in apoptotic cells, although clonogenic survival demonstrated equal inhibition in all 4 cell types. Collectively, irrespective of p53 and p21 status, 8-Cl-Ado-induced cytotoxicity was similar.
Collapse
Affiliation(s)
- Scott Teakell
- Department of Experimental Therapeutics, University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA.,Graduate School of Biomedical Sciences, University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Lisa S Chen
- Department of Experimental Therapeutics, University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Christine M Stellrecht
- Department of Experimental Therapeutics, University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Varsha Gandhi
- Department of Experimental Therapeutics, University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA.,Graduate School of Biomedical Sciences, University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA.,Department of Leukemia, University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
6
|
Cottrell KA, Soto-Torres L, Dizon MG, Weber JD. 8-azaadenosine and 8-chloroadenosine are not selective inhibitors of ADAR. CANCER RESEARCH COMMUNICATIONS 2021; 1:56-64. [PMID: 35586115 PMCID: PMC9113518 DOI: 10.1158/2767-9764.crc-21-0027] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The RNA editing enzyme ADAR, is an attractive therapeutic target for multiple cancers. Through its deaminase activity, ADAR edits adenosine to inosine in dsRNAs. Loss of ADAR in some cancer cell lines causes activation of the type I interferon pathway and the PKR translational repressor, leading to inhibition of proliferation and stimulation of cell death. As such, inhibition of ADAR function is a viable therapeutic strategy for many cancers. However, there are no FDA approved inhibitors of ADAR. Two small molecules have been previously shown to inhibit ADAR or reduce its expression: 8-azaadenosine and 8-chloroadenosine. Here we show that neither molecule is a selective inhibitor of ADAR. Both 8-azaadenosine and 8-chloroadenosine show similar toxicity to ADAR-dependent and independent cancer cell lines. Furthermore, the toxicity of both small molecules is comparable between cell lines with either knockdown or overexpression of ADAR, and cells with unperturbed ADAR expression. Treatment with neither molecule causes activation of PKR. Finally, treatment with either molecule has no effect on A-to-I editing of multiple ADAR substrates. Together these data show that 8-azaadenosine and 8-chloroadenosine are not suitable small molecules for therapies that require selective inhibition of ADAR, and neither should be used in preclinical studies as ADAR inhibitors.
Collapse
Affiliation(s)
- Kyle A. Cottrell
- Department of Medicine, Division of Molecular Oncology, Siteman Cancer Center, Washington University School of Medicine, Saint Louis, Missouri
| | - Luisangely Soto-Torres
- Department of Medicine, Division of Molecular Oncology, Siteman Cancer Center, Washington University School of Medicine, Saint Louis, Missouri
| | - Michael G. Dizon
- Department of Medicine, Division of Molecular Oncology, Siteman Cancer Center, Washington University School of Medicine, Saint Louis, Missouri
| | - Jason D. Weber
- Department of Medicine, Division of Molecular Oncology, Siteman Cancer Center, Washington University School of Medicine, Saint Louis, Missouri.,Department of Cell Biology and Physiology, Siteman Cancer Center, Washington University School of Medicine, Saint Louis, Missouri.,Corresponding Author: Jason D. Weber, Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8069, St. Louis, MO 63110. Phone: 314-747-3896; E-mail:
| |
Collapse
|
7
|
Buettner R, Nguyen LXT, Morales C, Chen MH, Wu X, Chen LS, Hoang DH, Hernandez Vargas S, Pullarkat V, Gandhi V, Marcucci G, Rosen ST. Targeting the metabolic vulnerability of acute myeloid leukemia blasts with a combination of venetoclax and 8-chloro-adenosine. J Hematol Oncol 2021; 14:70. [PMID: 33902674 PMCID: PMC8074444 DOI: 10.1186/s13045-021-01076-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/03/2021] [Indexed: 12/15/2022] Open
Abstract
Background BCL‐2 inhibition through venetoclax (VEN) targets acute myeloid leukemia (AML) blast cells and leukemic stem cells (LSCs). Although VEN-containing regimens yield 60–70% clinical response rates, the vast majority of patients inevitably suffer disease relapse, likely because of the persistence of drug-resistant LSCs. We previously reported preclinical activity of the ribonucleoside analog 8-chloro-adenosine (8-Cl-Ado) against AML blast cells and LSCs. Moreover, our ongoing phase I clinical trial of 8-Cl-Ado in patients with refractory/relapsed AML demonstrates encouraging clinical benefit. Of note, LSCs uniquely depend on amino acid-driven and/or fatty acid oxidation (FAO)-driven oxidative phosphorylation (OXPHOS) for survival. VEN inhibits OXPHOS in LSCs, which eventually may escape the antileukemic activity of this drug. FAO is activated in LSCs isolated from patients with relapsed AML.
Methods Using AML cell lines and LSC-enriched blast cells from pre-treatment AML patients, we evaluated the effects of 8-Cl-Ado, VEN and the 8-Cl-Ado/VEN combination on fatty acid metabolism, glycolysis and OXPHOS using liquid scintillation counting, a Seahorse XF Analyzer and gene set enrichment analysis (GSEA). Western blotting was used to validate results from GSEA. HPLC was used to measure intracellular accumulation of 8-Cl-ATP, the cytotoxic metabolite of 8-Cl-Ado. To quantify drug synergy, we created combination index plots using CompuSyn software. The log-rank Kaplan–Meier survival test was used to compare the survival distributions of the different treatment groups in a xenograft mouse model of AML. Results We here report that VEN and 8-Cl-Ado synergistically inhibited in vitro growth of AML cells. Furthermore, immunodeficient mice engrafted with MV4-11-Luc AML cells and treated with the combination of VEN plus 8-Cl-Ado had a significantly longer survival than mice treated with either drugs alone (p ≤ 0.006). We show here that 8-Cl-Ado in the LSC-enriched population suppressed FAO by downregulating gene expression of proteins involved in this pathway and significantly inhibited the oxygen consumption rate (OCR), an indicator of OXPHOS. By combining 8-Cl-Ado with VEN, we observed complete inhibition of OCR, suggesting this drug combination cooperates in targeting OXPHOS and the metabolic homeostasis of AML cells. Conclusion Taken together, the results suggest that 8-Cl-Ado enhances the antileukemic activity of VEN and that this combination represents a promising therapeutic regimen for treatment of AML. Supplementary Information The online version contains supplementary material available at 10.1186/s13045-021-01076-4.
Collapse
Affiliation(s)
- Ralf Buettner
- Hematology Malignancies Research Institute, Gehr Family Center for Leukemia Research, City of Hope Medical Center, Kaplan CRB, 1026, 1500 East Duarte Road, Duarte, CA, 91010, USA.
| | - Le Xuan Truong Nguyen
- Hematology Malignancies Research Institute, Gehr Family Center for Leukemia Research, City of Hope Medical Center, Kaplan CRB, 1026, 1500 East Duarte Road, Duarte, CA, 91010, USA.
| | - Corey Morales
- Hematology Malignancies Research Institute, Gehr Family Center for Leukemia Research, City of Hope Medical Center, Kaplan CRB, 1026, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | - Min-Hsuan Chen
- Integrative Genomics Core, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, USA
| | - Xiwei Wu
- Integrative Genomics Core, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, USA
| | - Lisa S Chen
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dinh Hoa Hoang
- Hematology Malignancies Research Institute, Gehr Family Center for Leukemia Research, City of Hope Medical Center, Kaplan CRB, 1026, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | - Servando Hernandez Vargas
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vinod Pullarkat
- Hematology Malignancies Research Institute, Gehr Family Center for Leukemia Research, City of Hope Medical Center, Kaplan CRB, 1026, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | - Varsha Gandhi
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Guido Marcucci
- Hematology Malignancies Research Institute, Gehr Family Center for Leukemia Research, City of Hope Medical Center, Kaplan CRB, 1026, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | - Steven T Rosen
- Hematology Malignancies Research Institute, Gehr Family Center for Leukemia Research, City of Hope Medical Center, Kaplan CRB, 1026, 1500 East Duarte Road, Duarte, CA, 91010, USA
| |
Collapse
|
8
|
Man S, Lu Y, Yin L, Cheng X, Ma L. Potential and promising anticancer drugs from adenosine and its analogs. Drug Discov Today 2021; 26:1490-1500. [PMID: 33639248 DOI: 10.1016/j.drudis.2021.02.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/03/2021] [Accepted: 02/16/2021] [Indexed: 02/07/2023]
Abstract
In recent years, many studies have shown that adenosine has efficacy for treating cancer. More importantly, some adenosine analogs have been successfully marketed to fulfill anticancer purposes. In this review, we summarize the anticancer effects of adenosine and its analogs in clinical trials and preclinical studies, with focus on their anticancer mechanisms. In addition, we link the anticancer activities of adenosine analogs with their structures through structure-activity relationship (SAR) analysis, and highlight additional promising anticancer drug candidates. We hope that this review will be of help in understanding the importance of adenosine and its analogs with anticancer activities and directing future research and development of such compounds.
Collapse
Affiliation(s)
- Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yingying Lu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Lijuan Yin
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xinkuan Cheng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
9
|
Dugourd A, Kuppe C, Sciacovelli M, Gjerga E, Gabor A, Emdal KB, Vieira V, Bekker‐Jensen DB, Kranz J, Bindels E, Costa AS, Sousa A, Beltrao P, Rocha M, Olsen JV, Frezza C, Kramann R, Saez‐Rodriguez J. Causal integration of multi-omics data with prior knowledge to generate mechanistic hypotheses. Mol Syst Biol 2021; 17:e9730. [PMID: 33502086 PMCID: PMC7838823 DOI: 10.15252/msb.20209730] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 01/07/2023] Open
Abstract
Multi-omics datasets can provide molecular insights beyond the sum of individual omics. Various tools have been recently developed to integrate such datasets, but there are limited strategies to systematically extract mechanistic hypotheses from them. Here, we present COSMOS (Causal Oriented Search of Multi-Omics Space), a method that integrates phosphoproteomics, transcriptomics, and metabolomics datasets. COSMOS combines extensive prior knowledge of signaling, metabolic, and gene regulatory networks with computational methods to estimate activities of transcription factors and kinases as well as network-level causal reasoning. COSMOS provides mechanistic hypotheses for experimental observations across multi-omics datasets. We applied COSMOS to a dataset comprising transcriptomics, phosphoproteomics, and metabolomics data from healthy and cancerous tissue from eleven clear cell renal cell carcinoma (ccRCC) patients. COSMOS was able to capture relevant crosstalks within and between multiple omics layers, such as known ccRCC drug targets. We expect that our freely available method will be broadly useful to extract mechanistic insights from multi-omics studies.
Collapse
Affiliation(s)
- Aurelien Dugourd
- Faculty of Medicine, and Heidelberg University HospitalInstitute for Computational BiomedicineHeidelberg UniversityHeidelbergGermany
- Faculty of MedicineJoint Research Centre for Computational Biomedicine (JRC‐COMBINE)RWTH Aachen UniversityAachenGermany
- Faculty of MedicineInstitute of Experimental Medicine and Systems BiologyRWTH Aachen UniversityAachenGermany
- Division of Nephrology and Clinical ImmunologyFaculty of MedicineRWTH Aachen UniversityAachenGermany
| | - Christoph Kuppe
- Faculty of MedicineInstitute of Experimental Medicine and Systems BiologyRWTH Aachen UniversityAachenGermany
- Division of Nephrology and Clinical ImmunologyFaculty of MedicineRWTH Aachen UniversityAachenGermany
- Department of Internal Medicine, Nephrology and TransplantationErasmus Medical CenterRotterdamThe Netherlands
| | - Marco Sciacovelli
- MRC Cancer UnitHutchison/MRC Research CentreUniversity of CambridgeCambridgeUK
| | - Enio Gjerga
- Faculty of Medicine, and Heidelberg University HospitalInstitute for Computational BiomedicineHeidelberg UniversityHeidelbergGermany
- Faculty of MedicineJoint Research Centre for Computational Biomedicine (JRC‐COMBINE)RWTH Aachen UniversityAachenGermany
| | - Attila Gabor
- Faculty of Medicine, and Heidelberg University HospitalInstitute for Computational BiomedicineHeidelberg UniversityHeidelbergGermany
| | - Kristina B. Emdal
- Faculty of Health and Medical SciencesProteomics ProgramNovo Nordisk Foundation Center for Protein ResearchUniversity of CopenhagenCopenhagenDenmark
| | - Vitor Vieira
- Centre of Biological EngineeringUniversity of Minho ‐ Campus de GualtarBragaPortugal
| | - Dorte B. Bekker‐Jensen
- Faculty of Health and Medical SciencesProteomics ProgramNovo Nordisk Foundation Center for Protein ResearchUniversity of CopenhagenCopenhagenDenmark
| | - Jennifer Kranz
- Faculty of MedicineInstitute of Experimental Medicine and Systems BiologyRWTH Aachen UniversityAachenGermany
- Department of Urology and Pediatric UrologySt. Antonius Hospital EschweilerAcademic Teaching Hospital of RWTH AachenEschweilerGermany
- Department of Urology and Kidney TransplantationMartin Luther UniversityHalle (Saale)Germany
| | | | - Ana S.H. Costa
- MRC Cancer UnitHutchison/MRC Research CentreUniversity of CambridgeCambridgeUK
- Present address:
Cold Spring Harbor LaboratoryCold Spring HarborNYUSA
| | - Abel Sousa
- Institute for Research and Innovation in Health (i3s)PortoPortugal
- European Molecular Biology LaboratoryEuropean Bioinformatics Institute (EMBL‐EBI)HinxtonUK
| | - Pedro Beltrao
- European Molecular Biology LaboratoryEuropean Bioinformatics Institute (EMBL‐EBI)HinxtonUK
| | - Miguel Rocha
- Centre of Biological EngineeringUniversity of Minho ‐ Campus de GualtarBragaPortugal
| | - Jesper V. Olsen
- Faculty of Health and Medical SciencesProteomics ProgramNovo Nordisk Foundation Center for Protein ResearchUniversity of CopenhagenCopenhagenDenmark
| | - Christian Frezza
- MRC Cancer UnitHutchison/MRC Research CentreUniversity of CambridgeCambridgeUK
| | - Rafael Kramann
- Faculty of MedicineInstitute of Experimental Medicine and Systems BiologyRWTH Aachen UniversityAachenGermany
- Division of Nephrology and Clinical ImmunologyFaculty of MedicineRWTH Aachen UniversityAachenGermany
- Department of Internal Medicine, Nephrology and TransplantationErasmus Medical CenterRotterdamThe Netherlands
| | - Julio Saez‐Rodriguez
- Faculty of Medicine, and Heidelberg University HospitalInstitute for Computational BiomedicineHeidelberg UniversityHeidelbergGermany
- Faculty of MedicineJoint Research Centre for Computational Biomedicine (JRC‐COMBINE)RWTH Aachen UniversityAachenGermany
- Molecular Medicine Partnership Unit, European Molecular Biology LaboratoryHeidelberg UniversityHeidelbergGermany
| |
Collapse
|
10
|
Natural products and other inhibitors of F 1F O ATP synthase. Eur J Med Chem 2020; 207:112779. [PMID: 32942072 DOI: 10.1016/j.ejmech.2020.112779] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 12/19/2022]
Abstract
F1FO ATP synthase is responsible for the production of >95% of all ATP synthesis within the cell. Dysregulation of its expression, activity or localization is linked to various human diseases including cancer, diabetes, and Alzheimer's and Parkinson's disease. In addition, ATP synthase is a novel and viable drug target for the development of antimicrobials as evidenced by bedaquiline, which was approved in 2012 for the treatment of tuberculosis. Historically, natural products have been a rich source of ATP synthase inhibitors that help unravel the role of F1FO ATP synthase in cellular bioenergetics. During the last decade, new modulators of ATP synthase have been discovered through the isolation of novel natural products as well as through a ligand-based drug design process. In addition, new data has been obtained with regards to the structure and function of ATP synthase under physiological and pathological conditions. Crystal structure studies have provided a significant insight into the rotary function of the enzyme and may provide additional opportunities to design a new generation of inhibitors. This review provides an update on recently discovered ATP synthase modulators as well as an update on existing scaffolds.
Collapse
|
11
|
Yang Y, Gao J, Zhang Y, Xu W, Hao Y, Xu Z, Tao L. Natural pyrethrins induce autophagy of HepG2 cells through the activation of AMPK/mTOR pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 241:1091-1097. [PMID: 30029317 DOI: 10.1016/j.envpol.2018.06.049] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/29/2018] [Accepted: 06/16/2018] [Indexed: 06/08/2023]
Abstract
Natural pyrethrins, one kind of insects' neural toxin, have been used worldwide for the control of pests of crops, livestock, and human beings. However, their specific mechanisms of action are incompletely understood and hence further investigation is required. Here we used a series of experiments including colony formation, fluorescent staining, western blotting, enzyme activity detection, immunofluorescence analysis, and real-time quantitative PCR (QPCR) to investigate whether natural pyrethrins (0-40 μg/mL) are able to modulate autophagy process through AMPK/mTOR signaling pathway, in order to reveal their cytotoxic mechanisms. The results showed that natural pyrethrins markedly inhibited the proliferation of HepG2 cells in both concentration- and time-dependent manners. Particularly, natural pyrethrins could induce the resulting autophagosome, and the intensification of LC3-II formation and translocation, the accumulation of Beclin-1 and the reduction of p62 and thus autophagy. We clarified that natural pyrethrins induced the abnormal level of oxidation reduction metabolism, leading to mitochondrial permeability transition pore (mPTP) opening, ATP depletion and mitochondria eliminating by autophagy. Moreover, the phosphorylation levels of AMPK were significantly enhanced, and the mTOR and p70s6k phosphorylation were drastically decreased. These results showed that natural pyrethrins induced autophagy of HepG2 cells and activation of the AMPK/mTOR signaling pathway might have potential risk to human health.
Collapse
Affiliation(s)
- Yun Yang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Jufang Gao
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yang Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Wenping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Youwu Hao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhiping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Liming Tao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
12
|
Vaden RM, Oswald NW, Potts MB, MacMillan JB, White MA. FUSION-Guided Hypothesis Development Leads to the Identification of N⁶,N⁶-Dimethyladenosine, a Marine-Derived AKT Pathway Inhibitor. Mar Drugs 2017; 15:md15030075. [PMID: 28294973 PMCID: PMC5367032 DOI: 10.3390/md15030075] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/02/2017] [Accepted: 03/11/2017] [Indexed: 12/12/2022] Open
Abstract
Chemicals found in nature have evolved over geological time scales to productively interact with biological molecules, and thus represent an effective resource for pharmaceutical development. Marine-derived bacteria are rich sources of chemically diverse, bioactive secondary metabolites, but harnessing this diversity for biomedical benefit is limited by challenges associated with natural product purification and determination of biochemical mechanism. Using Functional Signature Ontology (FUSION), we report the parallel isolation and characterization of a marine-derived natural product, N6,N6-dimethyladenosine, that robustly inhibits AKT signaling in a variety of non-small cell lung cancer cell lines. Upon validation of the elucidated structure by comparison with a commercially available sample, experiments were initiated to understand the small molecule’s breadth of effect in a biological setting. One such experiment, a reverse phase protein array (RPPA) analysis of >50 kinases, indicated a specific cellular response to treatment. In all, leveraging the FUSION platform allowed for the rapid generation and validation of a biological mechanism of action hypothesis for an unknown natural product and permitted accelerated purification of the bioactive component from a chemically complex fraction.
Collapse
Affiliation(s)
- Rachel M Vaden
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA.
| | - Nathaniel W Oswald
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA.
| | - Malia B Potts
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA.
- Cell & Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - John B MacMillan
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA.
| | - Michael A White
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA.
| |
Collapse
|
13
|
Patel D, Salloum D, Saqcena M, Chatterjee A, Mroz V, Ohh M, Foster DA. A Late G1 Lipid Checkpoint That Is Dysregulated in Clear Cell Renal Carcinoma Cells. J Biol Chem 2016; 292:936-944. [PMID: 27956548 DOI: 10.1074/jbc.m116.757864] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 12/09/2016] [Indexed: 12/14/2022] Open
Abstract
Lipids are important nutrients that proliferating cells require to maintain energy homeostasis as well as to build plasma membranes for newly synthesized cells. Previously, we identified nutrient-sensing checkpoints that exist in the latter part of the G1 phase of the cell cycle that are dependent upon essential amino acids, Gln, and finally, a checkpoint mediated by mammalian target of rapamycin (mTOR), which integrates signals from both nutrients and growth factors. In this study, we have identified and temporally mapped a lipid-mediated G1 checkpoint. This checkpoint is located after the Gln checkpoint and before the mTOR-mediated cell cycle checkpoint. Intriguingly, clear cell renal cell carcinoma cells (ccRCC) have a dysregulated lipid-mediated checkpoint due in part to defective phosphatase and tensin homologue (PTEN). When deprived of lipids, instead of arresting in G1, these cells continue to cycle and utilize lipid droplets as a source of lipids. Lipid droplets have been known to maintain endoplasmic reticulum homeostasis and prevent cytotoxic endoplasmic reticulum stress in ccRCC. Dysregulation of the lipid-mediated checkpoint forces these cells to utilize lipid droplets, which could potentially lead to therapeutic opportunities that exploit this property of ccRCC.
Collapse
Affiliation(s)
- Deven Patel
- From the Department of Biological Sciences, Hunter College of the City University of New York, New York, New York 10065.,the Biochemistry Program and
| | - Darin Salloum
- From the Department of Biological Sciences, Hunter College of the City University of New York, New York, New York 10065.,Biology Program, Graduate Center of the City University of New York, New York, New York 10016
| | - Mahesh Saqcena
- From the Department of Biological Sciences, Hunter College of the City University of New York, New York, New York 10065.,the Biochemistry Program and
| | - Amrita Chatterjee
- From the Department of Biological Sciences, Hunter College of the City University of New York, New York, New York 10065.,Biology Program, Graduate Center of the City University of New York, New York, New York 10016
| | - Victoria Mroz
- From the Department of Biological Sciences, Hunter College of the City University of New York, New York, New York 10065
| | - Michael Ohh
- the Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - David A Foster
- From the Department of Biological Sciences, Hunter College of the City University of New York, New York, New York 10065, .,the Biochemistry Program and.,Biology Program, Graduate Center of the City University of New York, New York, New York 10016.,the Department of Pharmacology, Weill Cornell Medicine, New York, New York 10021, and
| |
Collapse
|
14
|
Chinello C, L'imperio V, Stella M, Smith AJ, Bovo G, Grasso A, Grasso M, Raimondo F, Pitto M, Pagni F, Magni F. The proteomic landscape of renal tumors. Expert Rev Proteomics 2016; 13:1103-1120. [PMID: 27748142 DOI: 10.1080/14789450.2016.1248415] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Renal cell carcinoma (RCC) is the most fatal of the common urologic cancers, with approximately 35% of patients dying within 5 years following diagnosis. Therefore, there is a need for non-invasive markers that are capable of detecting and determining the severity of small renal masses at an early stage in order to tailor treatment and follow-up. Proteomic studies have proved to be very useful in the study of tumors. Areas covered: In this review, we will detail the current knowledge obtained by the different proteomic approaches, focusing on MS-based strategies, used to investigate RCC biology in order to identify diagnostic, prognostic and predictive biomarkers on tissue, cultured cells and biological fluids. Expert commentary: Currently, no reliable biomarkers or targets for RCC have been translated into the clinical setting. Moreover, despite the efforts of proteomics and other -omics disciplines, only a small number of them have been observed as shared targets between the different analytical platforms and biological specimens. The difficulty to define a specific molecular pattern for RCC and its subtypes highlights a peculiar profile and a heterogeneity that must be taken into account in future studies.
Collapse
Affiliation(s)
- Clizia Chinello
- a Department of Medicine and Surgery , University Milan Bicocca , Monza , Italy
| | - Vincenzo L'imperio
- a Department of Medicine and Surgery , University Milan Bicocca , Monza , Italy
| | - Martina Stella
- a Department of Medicine and Surgery , University Milan Bicocca , Monza , Italy
| | - Andrew James Smith
- a Department of Medicine and Surgery , University Milan Bicocca , Monza , Italy
| | - Giorgio Bovo
- b Pathology unit , San Gerardo Hospital , Monza , Italy
| | - Angelica Grasso
- c Department of Specialistic Surgical Sciences, Urology unit , Ospedale Maggiore Policlinico Foundation , Milano , Italy
| | - Marco Grasso
- d Department of Urology , San Gerardo Hospital , Monza , Italy
| | - Francesca Raimondo
- a Department of Medicine and Surgery , University Milan Bicocca , Monza , Italy
| | - Marina Pitto
- a Department of Medicine and Surgery , University Milan Bicocca , Monza , Italy
| | - Fabio Pagni
- a Department of Medicine and Surgery , University Milan Bicocca , Monza , Italy
| | - Fulvio Magni
- a Department of Medicine and Surgery , University Milan Bicocca , Monza , Italy
| |
Collapse
|