1
|
Jayasekera LP, Ranasinghe R, Senathilake KS, Kotelawala JT, de Silva K, Abeygunasekara PH, Goonesinghe R, Tennekoon KH. Mitochondrial genome in sporadic breast cancer: A case control study and a proteomic analysis in a Sinhalese cohort from Sri Lanka. PLoS One 2023; 18:e0281620. [PMID: 36758048 PMCID: PMC9910733 DOI: 10.1371/journal.pone.0281620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/27/2023] [Indexed: 02/10/2023] Open
Abstract
Breast cancer is the commonest malignancy in women and the majority occurs sporadically with no hereditary predisposition. However, sporadic breast cancer has been studied less intensively than the hereditary form and to date hardly any predictive biomarkers exist for the former. Furthermore, although mitochondrial DNA variants have been reported to be associated with breast cancer, findings have been inconsistent across populations. Thus we carried out a case control study on sporadic breast cancer patients and healthy controls of Sinhalese ethnicity (N = 60 matched pairs) in order to characterize coding region variants associated with the disease and to identify any potential biomarkers. Mitochondrial genome was fully sequenced in 30 pairs and selected regions were sequenced in the remaining 30 pairs. Several in-silico tools were used to assess functional significance of the variants observed. A number of variants were identified among the patients and the controls. Missense variants identified were either polymorphisms or rare variants. Their prevalence did not significantly differ between patients and the healthy controls (matched for age, body mass index and menopausal status). MT-CYB, MT-ATP6 and MT-ND2 genes showed a higher mutation rate. A higher proportion of pre-menopausal patients carried missense and pathogenic variants. Unique combinations of missense variants were seen within genes and these occurred mostly in MT-ATP6 and MT-CYB genes. Such unique combinations that occurred exclusively among the patients were common in obese patients. Mitochondrial DNA variants may have a role in breast carcinogenesis in obesity and pre-menopause. Molecular dynamic simulations suggested the mutants, G78S in MT-CO3 gene and T146A in MT-ATP6 gene are likely to be more stable than their wild type counterparts.
Collapse
Affiliation(s)
- Lakshika P. Jayasekera
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo, Sri Lanka
| | - Ruwandi Ranasinghe
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo, Sri Lanka
| | - Kanishka S. Senathilake
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo, Sri Lanka
| | - Joanne T. Kotelawala
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo, Sri Lanka
| | | | | | | | - Kamani H. Tennekoon
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo, Sri Lanka
| |
Collapse
|
2
|
Welch DR, Foster C, Rigoutsos I. Roles of mitochondrial genetics in cancer metastasis. Trends Cancer 2022; 8:1002-1018. [PMID: 35915015 PMCID: PMC9884503 DOI: 10.1016/j.trecan.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/27/2022] [Accepted: 07/07/2022] [Indexed: 01/31/2023]
Abstract
The contributions of mitochondria to cancer have been recognized for decades. However, the focus on the metabolic role of mitochondria and the diminutive size of the mitochondrial genome compared to the nuclear genome have hindered discovery of the roles of mitochondrial genetics in cancer. This review summarizes recent data demonstrating the contributions of mitochondrial DNA (mtDNA) copy-number variants (CNVs), somatic mutations, and germline polymorphisms to cancer initiation, progression, and metastasis. The goal is to summarize accumulating data to establish a framework for exploring the contributions of mtDNA to neoplasia and metastasis.
Collapse
Affiliation(s)
- Danny R Welch
- Department of Cancer Biology, The Kansas University Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA; Department of Internal Medicine (Hematology/Oncology), The Kansas University Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA; Department of Molecular and Integrative Physiology, The Kansas University Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA; Department of Pathology, The Kansas University Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA; The University of Kansas Comprehensive Cancer Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA.
| | - Christian Foster
- Department of Cancer Biology, The Kansas University Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Isidore Rigoutsos
- Computational Medicine Center, Sidney Kimmel College of Medicine, Thomas Jefferson University, 1020 Locust Street, Suite M81, Philadelphia, PA 19107, USA
| |
Collapse
|
3
|
Mitochondrial DNA Changes in Genes of Respiratory Complexes III, IV and V Could Be Related to Brain Tumours in Humans. Int J Mol Sci 2022; 23:ijms232012131. [PMID: 36292984 PMCID: PMC9603055 DOI: 10.3390/ijms232012131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/02/2022] [Accepted: 10/09/2022] [Indexed: 11/17/2022] Open
Abstract
Mitochondrial DNA changes can contribute to both an increased and decreased likelihood of cancer. This process is complex and not fully understood. Polymorphisms and mutations, especially those of the missense type, can affect mitochondrial functions, particularly if the conservative domain of the protein is concerned. This study aimed to identify the possible relationships between brain gliomas and the occurrence of specific mitochondrial DNA polymorphisms and mutations in respiratory complexes III, IV and V. The investigated material included blood and tumour material collected from 30 Caucasian patients diagnosed with WHO grade II, III or IV glioma. The mitochondrial genetic variants were investigated across the mitochondrial genome using next-generation sequencing (MiSeq/FGx system—Illumina). The study investigated, in silico, the effects of missense mutations on the biochemical properties, structure and functioning of the encoded protein, as well as their potential harmfulness. The A14793G (MTCYB), A15758G, (MT-CYB), A15218G (MT-CYB), G7444A (MT-CO1) polymorphisms, and the T15663C (MT-CYB) and G8959A (ATP6) mutations were assessed in silico as harmful alterations that could be involved in oncogenesis. The G8959A (E145K) ATP6 missense mutation has not been described in the literature so far. In light of these results, further research into the role of mtDNA changes in brain tumours should be conducted.
Collapse
|
4
|
Saleh Jaweesh M, Hammadeh ME, Dahadhah FW, Al Zoubi MS, Amor H. Association between the single nucleotide variants of the mitochondrial cytochrome B gene (MT-CYB) and the male infertility. Mol Biol Rep 2022; 49:3609-3616. [PMID: 35118571 PMCID: PMC9174114 DOI: 10.1007/s11033-022-07200-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/26/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Idiopathic male infertility can be attributed to genetic predispositions that affect sperm performance and function. Genetic alterations in the mitochondrial DNA (mtDNA) have been linked to certain types of male infertility and abnormal sperm function. Mutations in the mitochondrial cytochrome B (MT-CYB) gene might lead to some deficiencies in mitochondrial function. Thus, in the current study, we aimed to investigate the effect of mutations in the MT-CYB gene on sperm motility and male infertility. METHODS AND RESULTS Semen specimens were collected from 111 men where 67 men were subfertile and 44 were fertile. QIAamp DNA Mini Kit and REPLI-g Mitochondrial DNA Kit from QIAGEN were used to isolate and amplify the mitochondrial DNA. Followed by PCR and Sanger sequencing for the target sequence in the MT-CYP gene. Sequencing of the MT-CYB gene revealed a total of thirteen single nucleotide polymorphisms (SNPs). Eight SNPs were non-synonymous variant (missense variant) including: rs2853508, rs28357685, rs41518645, rs2853507, rs28357376, rs35070048, rs2853506, and rs28660155. While five SNPs were Synonymous variant: rs527236194, rs28357373, rs28357369, rs41504845, and rs2854124. Among these SNPs, three variants showed a significant difference in the frequency of the genotypes between subfertile and fertile groups: rs527236194 (T15784C) (P = 0.0005), rs28357373 (T15629C) (P = 0.0439), and rs41504845 (C15833T) (P = 0.0038). Moreover, two SNPs showed a significant association between allelic frequencies of rs527236194 (T15784C) (P = 0.0014) and rs41504845 (C15833T) (P = 0.0147) and male subfertility. CONCLUSION The current study showed a significant association between the MT-CYB gene polymorphisms and the development of male infertility. In particular, rs527236194, rs28357373 and rs41504845 variants were found to be the most related to the subfertility group. Further studies on larger and other populations are required to reveal the exact role of this gene in the development of male infertility. In addition, functional studies will be helpful to elucidate the molecular impact of the MT-CYP polymorphisms on mitochondrial function.
Collapse
Affiliation(s)
- Mayyas Saleh Jaweesh
- Department of Obstetrics & Gynaecology, Saarland University, Homburg, Saar, Germany.
| | - Mohamad Eid Hammadeh
- Department of Obstetrics & Gynaecology, Saarland University, Homburg, Saar, Germany
| | - Fatina W Dahadhah
- Department of Obstetrics & Gynaecology, Saarland University, Homburg, Saar, Germany
| | - Mazhar Salim Al Zoubi
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, 21163, Jordan
| | - Houda Amor
- Department of Obstetrics & Gynaecology, Saarland University, Homburg, Saar, Germany
| |
Collapse
|
5
|
Spangenberg L, Graña M, Mansilla S, Martínez J, Tapié A, Greif G, Montano N, Vaglio A, Gueçaimburú R, Robello C, Castro L, Quijano C, Raggio V, Naya H. Deep sequencing discovery of causal mtDNA mutations in a patient with unspecific neurological disease. Mitochondrion 2019; 46:337-344. [DOI: 10.1016/j.mito.2018.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 06/30/2018] [Accepted: 09/11/2018] [Indexed: 11/15/2022]
|
6
|
Beadnell TC, Scheid AD, Vivian CJ, Welch DR. Roles of the mitochondrial genetics in cancer metastasis: not to be ignored any longer. Cancer Metastasis Rev 2018; 37:615-632. [PMID: 30542781 PMCID: PMC6358502 DOI: 10.1007/s10555-018-9772-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Mitochondrial DNA (mtDNA) encodes for only a fraction of the proteins that are encoded within the nucleus, and therefore has typically been regarded as a lesser player in cancer biology and metastasis. Accumulating evidence, however, supports an increased role for mtDNA impacting tumor progression and metastatic susceptibility. Unfortunately, due to this delay, there is a dearth of data defining the relative contributions of specific mtDNA polymorphisms (SNP), which leads to an inability to effectively use these polymorphisms to guide and enhance therapeutic strategies and diagnosis. In addition, evidence also suggests that differences in mtDNA impact not only the cancer cells but also the cells within the surrounding tumor microenvironment, suggesting a broad encompassing role for mtDNA polymorphisms in regulating the disease progression. mtDNA may have profound implications in the regulation of cancer biology and metastasis. However, there are still great lengths to go to understand fully its contributions. Thus, herein, we discuss the recent advances in our understanding of mtDNA in cancer and metastasis, providing a framework for future functional validation and discovery.
Collapse
Affiliation(s)
- Thomas C Beadnell
- Department of Cancer Biology, The Kansas University Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA
| | - Adam D Scheid
- Department of Cancer Biology, The Kansas University Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA
| | - Carolyn J Vivian
- Department of Cancer Biology, The Kansas University Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA
| | - Danny R Welch
- Department of Cancer Biology, The Kansas University Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA.
- The University of Kansas Cancer Center, 3901 Rainbow Blvd., Kansas City, KS, 66160, USA.
| |
Collapse
|
7
|
Jiménez-Morales S, Pérez-Amado CJ, Langley E, Hidalgo-Miranda A. Overview of mitochondrial germline variants and mutations in human disease: Focus on breast cancer (Review). Int J Oncol 2018; 53:923-936. [PMID: 30015870 DOI: 10.3892/ijo.2018.4468] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/18/2018] [Indexed: 11/06/2022] Open
Abstract
High lactate production in cells during growth under oxygen-rich conditions (aerobic glycolysis) is a hallmark of tumor cells, indicating the role of mitochondrial function in tumorigenesis. In fact, enhanced mitochondrial biogenesis and impaired quality control are frequently observed in cancer cells. Mitochondrial DNA (mtDNA) encodes 13 subunits of oxidative phosphorylation (OXPHOS), is present in thousands of copies per cell, and has a very high mutation rate. Mutations in mtDNA and nuclear DNA (nDNA) genes encoding proteins that are important players in mitochondrial biogenesis and function are involved in oncogenic processes. A wide range of germline mtDNA polymorphisms, as well as tumor mtDNA somatic mutations have been identified in diverse cancer types. Approximately 72% of supposed tumor-specific somatic mtDNA mutations reported, have also been found as polymorphisms in the general population. The ATPase 6 and NADH dehydrogenase subunit genes of mtDNA are the most commonly mutated genes in breast cancer (BC). Furthermore, nuclear genes playing a role in mitochondrial biogenesis and function, such as peroxisome proliferators-activated receptor gamma coactivator-1 (PGC-1), fumarate hydratase (FH) and succinate dehydrogenase (SDH) are frequently mutated in cancer. In this review, we provide an overview of the mitochondrial germline variants and mutations in cancer, with particular focus on those found in BC.
Collapse
Affiliation(s)
- Silvia Jiménez-Morales
- Laboratory of Cancer Genomics, National Institute of Genomic Medicine, 14610 Mexico City, Mexico
| | - Carlos J Pérez-Amado
- Biochemistry Sciences Program, National Autonomous University of Mexico, 04510 Mexico City, Mexico
| | - Elizabeth Langley
- Department of Basic Research, National Cancer Institute, 14080 Mexico City, Mexico
| | - Alfredo Hidalgo-Miranda
- Laboratory of Cancer Genomics, National Institute of Genomic Medicine, 14610 Mexico City, Mexico
| |
Collapse
|
8
|
Fiorillo M, Lamb R, Tanowitz HB, Mutti L, Krstic-Demonacos M, Cappello AR, Martinez-Outschoorn UE, Sotgia F, Lisanti MP. Repurposing atovaquone: targeting mitochondrial complex III and OXPHOS to eradicate cancer stem cells. Oncotarget 2018; 7:34084-99. [PMID: 27136895 PMCID: PMC5085139 DOI: 10.18632/oncotarget.9122] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 01/27/2016] [Indexed: 12/15/2022] Open
Abstract
Atovaquone is an FDA-approved anti-malarial drug, which first became clinically available in the year 2000. Currently, its main usage is for the treatment of pneumocystis pneumonia (PCP) and/or toxoplasmosis in immune-compromised patients. Atovaquone is a hydroxy-1,4-naphthoquinone analogue of ubiquinone, also known as Co-enzyme Q10 (CoQ10). It is a well-tolerated drug that does not cause myelo-suppression. Mechanistically, it is thought to act as a potent and selective OXPHOS inhibitor, by targeting the CoQ10-dependence of mitochondrial complex III. Here, we show for the first time that atovaquone also has anti-cancer activity, directed against Cancer Stem-like Cells (CSCs). More specifically, we demonstrate that atovaquone treatment of MCF7 breast cancer cells inhibits oxygen-consumption and metabolically induces aerobic glycolysis (the Warburg effect), as well as oxidative stress. Remarkably, atovaquone potently inhibits the propagation of MCF7-derived CSCs, with an IC-50 of 1 μM, as measured using the mammosphere assay. Atovaquone also maintains this selectivity and potency in mixed populations of CSCs and non-CSCs. Importantly, these results indicate that glycolysis itself is not sufficient to maintain the proliferation of CSCs, which is instead strictly dependent on mitochondrial function. In addition to targeting the proliferation of CSCs, atovaquone also induces apoptosis in both CD44+/CD24low/− CSC and ALDH+ CSC populations, during exposure to anchorage-independent conditions for 12 hours. However, it has no effect on oxygen consumption in normal human fibroblasts and, in this cellular context, behaves as an anti-inflammatory, consistent with the fact that it is well-tolerated in patients treated for infections. Future studies in xenograft models and human clinical trials may be warranted, as the IC-50 of atovaquone's action on CSCs (1 μM) is >50 times less than its average serum concentration in humans.
Collapse
Affiliation(s)
- Marco Fiorillo
- The Breast Cancer Now Research Unit, Institute of Cancer Sciences, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK.,The Manchester Centre for Cellular Metabolism (MCCM), Institute of Cancer Sciences, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK.,The Department of Pharmacy, Health and Nutritional Sciences, The University of Calabria, Cosenza, Italy
| | - Rebecca Lamb
- The Breast Cancer Now Research Unit, Institute of Cancer Sciences, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| | - Herbert B Tanowitz
- Department of Medicine and Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Luciano Mutti
- School of Environment and Life Sciences, University of Salford, Salford, UK
| | | | - Anna Rita Cappello
- The Department of Pharmacy, Health and Nutritional Sciences, The University of Calabria, Cosenza, Italy
| | | | - Federica Sotgia
- The Breast Cancer Now Research Unit, Institute of Cancer Sciences, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK.,The Manchester Centre for Cellular Metabolism (MCCM), Institute of Cancer Sciences, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| | - Michael P Lisanti
- The Breast Cancer Now Research Unit, Institute of Cancer Sciences, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK.,The Manchester Centre for Cellular Metabolism (MCCM), Institute of Cancer Sciences, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| |
Collapse
|
9
|
Spira A, Yurgelun MB, Alexandrov L, Rao A, Bejar R, Polyak K, Giannakis M, Shilatifard A, Finn OJ, Dhodapkar M, Kay NE, Braggio E, Vilar E, Mazzilli SA, Rebbeck TR, Garber JE, Velculescu VE, Disis ML, Wallace DC, Lippman SM. Precancer Atlas to Drive Precision Prevention Trials. Cancer Res 2017; 77:1510-1541. [PMID: 28373404 PMCID: PMC6681830 DOI: 10.1158/0008-5472.can-16-2346] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 01/20/2017] [Accepted: 01/20/2017] [Indexed: 02/07/2023]
Abstract
Cancer development is a complex process driven by inherited and acquired molecular and cellular alterations. Prevention is the holy grail of cancer elimination, but making this a reality will take a fundamental rethinking and deep understanding of premalignant biology. In this Perspective, we propose a national concerted effort to create a Precancer Atlas (PCA), integrating multi-omics and immunity - basic tenets of the neoplastic process. The biology of neoplasia caused by germline mutations has led to paradigm-changing precision prevention efforts, including: tumor testing for mismatch repair (MMR) deficiency in Lynch syndrome establishing a new paradigm, combinatorial chemoprevention efficacy in familial adenomatous polyposis (FAP), signal of benefit from imaging-based early detection research in high-germline risk for pancreatic neoplasia, elucidating early ontogeny in BRCA1-mutation carriers leading to an international breast cancer prevention trial, and insights into the intricate germline-somatic-immunity interaction landscape. Emerging genetic and pharmacologic (metformin) disruption of mitochondrial (mt) respiration increased autophagy to prevent cancer in a Li-Fraumeni mouse model (biology reproduced in clinical pilot) and revealed profound influences of subtle changes in mt DNA background variation on obesity, aging, and cancer risk. The elaborate communication between the immune system and neoplasia includes an increasingly complex cellular microenvironment and dynamic interactions between host genetics, environmental factors, and microbes in shaping the immune response. Cancer vaccines are in early murine and clinical precancer studies, building on the recent successes of immunotherapy and HPV vaccine immune prevention. Molecular monitoring in Barrett's esophagus to avoid overdiagnosis/treatment highlights an important PCA theme. Next generation sequencing (NGS) discovered age-related clonal hematopoiesis of indeterminate potential (CHIP). Ultra-deep NGS reports over the past year have redefined the premalignant landscape remarkably identifying tiny clones in the blood of up to 95% of women in their 50s, suggesting that potentially premalignant clones are ubiquitous. Similar data from eyelid skin and peritoneal and uterine lavage fluid provide unprecedented opportunities to dissect the earliest phases of stem/progenitor clonal (and microenvironment) evolution/diversity with new single-cell and liquid biopsy technologies. Cancer mutational signatures reflect exogenous or endogenous processes imprinted over time in precursors. Accelerating the prevention of cancer will require a large-scale, longitudinal effort, leveraging diverse disciplines (from genetics, biochemistry, and immunology to mathematics, computational biology, and engineering), initiatives, technologies, and models in developing an integrated multi-omics and immunity PCA - an immense national resource to interrogate, target, and intercept events that drive oncogenesis. Cancer Res; 77(7); 1510-41. ©2017 AACR.
Collapse
Affiliation(s)
- Avrum Spira
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
- Department of Pathology and Bioinformatics, Boston University School of Medicine, Boston, Massachusetts
| | - Matthew B Yurgelun
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Ludmil Alexandrov
- Theoretical Division, Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico
| | - Anjana Rao
- Division of Signaling and Gene Expression, La Jolla Institute for Allergy and Immunology, La Jolla, California
| | - Rafael Bejar
- Department of Medicine, Moores Cancer Center, University of California San Diego, La Jolla, California
| | - Kornelia Polyak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Olivera J Finn
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Madhav Dhodapkar
- Department of Hematology and Immunology, Yale Cancer Center, New Haven, Connecticut
| | - Neil E Kay
- Department of Hematology, Mayo Clinic Hospital, Rochester, Minnesota
| | - Esteban Braggio
- Department of Hematology, Mayo Clinic Hospital, Phoenix, Arizona
| | - Eduardo Vilar
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sarah A Mazzilli
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
- Department of Pathology and Bioinformatics, Boston University School of Medicine, Boston, Massachusetts
| | - Timothy R Rebbeck
- Division of Hematology and Oncology, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Judy E Garber
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Victor E Velculescu
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
- Department of Pathology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Mary L Disis
- Department of Medicine, Center for Translational Medicine in Women's Health, University of Washington, Seattle, Washington
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Scott M Lippman
- Department of Medicine, Moores Cancer Center, University of California San Diego, La Jolla, California.
| |
Collapse
|
10
|
Wang S, Liu F, Zhu J, Chen P, Liu H, Liu Q, Han J. DNA Repair Genes ERCC1 and BRCA1 Expression in Non-Small Cell Lung Cancer Chemotherapy Drug Resistance. Med Sci Monit 2016; 22:1999-2005. [PMID: 27289442 PMCID: PMC4913815 DOI: 10.12659/msm.896606] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Surgery combined with chemotherapy is an important therapy for non-small cell lung cancer (NSCLC). However, chemotherapy drug resistance seriously hinders the curative effect. Studies show that DNA repair genes ERCC1 and BRCA1 are associated with NSCLC chemotherapy, but their expression and mechanism in NSCLC chemotherapy drug-resistant cells has not been elucidated. Material/Methods NSCLC cell line A549 and drug resistance cell line A549/DDP were cultured. Real-time PCR and Western blot analyses were used to detect ERCC1 and BRCA1 mRNA expression. A549/DDP cells were randomly divided into 3 groups: the control group; the siRNA-negative control group (scramble group); and the siRNA ERCC1 and BRCA1siRNA transfection group. Real-time PCR and Western blot analyses were used to determine ERCC1 and BRCA1 mRNA and protein expression. MTT was used to detect cell proliferation activity. Caspase 3 activity was tested by use of a kit. Western blot analysis was performed to detect PI3K, AKT, phosphorylated PI3K, and phosphorylated AKT protein expression. Results ERCC1 and BRCA1 were overexpressed in A549/DDP compared with A549 (P<0.05). ERCC1 and BRCA1siRNA transfection can significantly reduce ERCC1 and BRCA1 mRNA and protein expression (P<0.05). Downregulating ERCC1 and BRCA1 expression obviously inhibited cell proliferation and increased caspase 3 activity (P<0.05). Downregulating ERCC1 and BRCA1 significantly decreased PI3K and AKT phosphorylation levels (P<0.05). Conclusions ERCC1 and BRCA1 were overexpressed in NSCLC drug-resistant cells, and they regulated lung cancer occurrence and development through the phosphorylating PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Shuai Wang
- , Shandong University, Jinan, Shandong, China (mainland)
| | - Feng Liu
- , WeiFang Medical University, Weifang, Shandong, China (mainland)
| | - Jingyan Zhu
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, Shandong, China (mainland)
| | - Peng Chen
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, Shandong, China (mainland)
| | - Hongxing Liu
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, Shandong, China (mainland)
| | - Qi Liu
- Institute of Oncology, Provincial Hospital Affiliated to Shandong University, Shandong University, Jinan, Shandong, China (mainland)
| | - Junqing Han
- Department of Tumor Research and Therapy Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China (mainland)
| |
Collapse
|
11
|
Sinilnikova OM, Dondon MG, Eon-Marchais S, Damiola F, Barjhoux L, Marcou M, Verny-Pierre C, Sornin V, Toulemonde L, Beauvallet J, Le Gal D, Mebirouk N, Belotti M, Caron O, Gauthier-Villars M, Coupier I, Buecher B, Lortholary A, Dugast C, Gesta P, Fricker JP, Noguès C, Faivre L, Luporsi E, Berthet P, Delnatte C, Bonadona V, Maugard CM, Pujol P, Lasset C, Longy M, Bignon YJ, Adenis C, Venat-Bouvet L, Demange L, Dreyfus H, Frenay M, Gladieff L, Mortemousque I, Audebert-Bellanger S, Soubrier F, Giraud S, Lejeune-Dumoulin S, Chevrier A, Limacher JM, Chiesa J, Fajac A, Floquet A, Eisinger F, Tinat J, Colas C, Fert-Ferrer S, Penet C, Frebourg T, Collonge-Rame MA, Barouk-Simonet E, Layet V, Leroux D, Cohen-Haguenauer O, Prieur F, Mouret-Fourme E, Cornélis F, Jonveaux P, Bera O, Cavaciuti E, Tardivon A, Lesueur F, Mazoyer S, Stoppa-Lyonnet D, Andrieu N. GENESIS: a French national resource to study the missing heritability of breast cancer. BMC Cancer 2016; 16:13. [PMID: 26758370 PMCID: PMC4711059 DOI: 10.1186/s12885-015-2028-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 12/17/2015] [Indexed: 11/26/2022] Open
Abstract
Background Less than 20 % of familial breast cancer patients who undergo genetic testing for BRCA1 and BRCA2 carry a pathogenic mutation in one of these two genes. The GENESIS (GENE SISter) study was designed to identify new breast cancer susceptibility genes in women attending cancer genetics clinics and with no BRCA1/2 mutation. Methods The study involved the French national network of family cancer clinics. It was based on enrichment in genetic factors of the recruited population through case selection relying on familial criteria, but also on the consideration of environmental factors and endophenotypes like mammary density or tumor characteristics to assess potential genetic heterogeneity. One of the initial aims of GENESIS was to recruit affected sibpairs. Siblings were eligible when index cases and at least one affected sister were diagnosed with infiltrating mammary or ductal adenocarcinoma, with no BRCA1/2 mutation. In addition, unrelated controls and unaffected sisters were recruited. The enrolment of patients, their relatives and their controls, the collection of the clinical, epidemiological, familial and biological data were centralized by a coordinating center. Results Inclusion of participants started in February 2007 and ended in December 2013. A total of 1721 index cases, 826 affected sisters, 599 unaffected sisters and 1419 controls were included. 98 % of participants completed the epidemiological questionnaire, 97 % provided a blood sample, and 76 % were able to provide mammograms. Index cases were on average 59 years old at inclusion, were born in 1950, and were 49.7 years of age at breast cancer diagnosis. The mean age at diagnosis of affected sisters was slightly higher (51.4 years). The representativeness of the control group was verified. Conclusions The size of the study, the availability of biological specimens and the clinical data collection together with the detailed and complete epidemiological questionnaire make this a unique national resource for investigation of the missing heritability of breast cancer, by taking into account environmental and life style factors and stratifying data on endophenotypes to decrease genetic heterogeneity.
Collapse
Affiliation(s)
- Olga M Sinilnikova
- Cancer Research Centre of Lyon, CNRS UMR5286, Inserm U1052, Université Claude Bernard Lyon 1, Centre Léon Bérard, Lyon, France.,Unité Mixte de Génétique Constitutionnelle des Cancers Fréquents, Hospices Civils de Lyon, Centre Léon Bérard, Lyon, France
| | - Marie-Gabrielle Dondon
- Inserm, U900, Paris, France. .,Institut Curie, Paris, France. .,PSL Research University, Paris, France. .,Mines ParisTech, Fontainebleau, France.
| | - Séverine Eon-Marchais
- Inserm, U900, Paris, France. .,Institut Curie, Paris, France. .,PSL Research University, Paris, France. .,Mines ParisTech, Fontainebleau, France.
| | - Francesca Damiola
- Cancer Research Centre of Lyon, CNRS UMR5286, Inserm U1052, Université Claude Bernard Lyon 1, Centre Léon Bérard, Lyon, France.
| | - Laure Barjhoux
- Cancer Research Centre of Lyon, CNRS UMR5286, Inserm U1052, Université Claude Bernard Lyon 1, Centre Léon Bérard, Lyon, France.
| | - Morgane Marcou
- Inserm, U900, Paris, France. .,Institut Curie, Paris, France. .,PSL Research University, Paris, France. .,Mines ParisTech, Fontainebleau, France.
| | - Carole Verny-Pierre
- Cancer Research Centre of Lyon, CNRS UMR5286, Inserm U1052, Université Claude Bernard Lyon 1, Centre Léon Bérard, Lyon, France.
| | - Valérie Sornin
- Cancer Research Centre of Lyon, CNRS UMR5286, Inserm U1052, Université Claude Bernard Lyon 1, Centre Léon Bérard, Lyon, France.
| | - Lucie Toulemonde
- Inserm, U900, Paris, France. .,Institut Curie, Paris, France. .,PSL Research University, Paris, France. .,Mines ParisTech, Fontainebleau, France.
| | - Juana Beauvallet
- Inserm, U900, Paris, France. .,Institut Curie, Paris, France. .,PSL Research University, Paris, France. .,Mines ParisTech, Fontainebleau, France.
| | - Dorothée Le Gal
- Inserm, U900, Paris, France. .,Institut Curie, Paris, France. .,PSL Research University, Paris, France. .,Mines ParisTech, Fontainebleau, France.
| | - Noura Mebirouk
- Inserm, U900, Paris, France. .,Institut Curie, Paris, France. .,PSL Research University, Paris, France. .,Mines ParisTech, Fontainebleau, France.
| | | | - Olivier Caron
- Institut de Cancérologie Gustave Roussy, Service d'Oncologie Génétique, Villejuif, France.
| | | | - Isabelle Coupier
- Hôpital Arnaud de Villeneuve, CHU Montpellier, Service de Génétique médicale et Oncogénétique, Montpellier, France. .,ICM Val d'Aurel, Unité d'Oncogénétique, Montpellier, France.
| | - Bruno Buecher
- Institut Curie, Service de Génétique, Paris, France.
| | - Alain Lortholary
- Centre Catherine de Sienne, Service d'Oncologie Médicale, Nantes, France.
| | | | - Paul Gesta
- CH Georges Renon, Service Oncogénétique pour la consultation oncogénétique régionale Poitou-Charentes, Niort, France.
| | | | | | - Laurence Faivre
- Hôpital d'Enfants, Service de Génétique Médicale, Dijon, France. .,Centre Georges François Leclerc, Oncogénétique, Dijon, France.
| | - Elisabeth Luporsi
- ICL Alexis Vautrin, Unité d'Oncogénétique, Vandœuvre-lès-Nancy, France.
| | - Pascaline Berthet
- Centre François Baclesse, Unité de pathologie gynécologique, Caen, France.
| | - Capucine Delnatte
- Centre René Gauducheau, Unité d'Oncogénétique, Nantes Saint Herblain, France.
| | - Valérie Bonadona
- Université Claude Bernard Lyon 1, Villeurbanne, France. .,CNRS UMR 5558, Lyon, France. .,Centre Léon Bérard, Unité de Prévention et Epidémiologie Génétique, Lyon, France.
| | - Christine M Maugard
- Hôpitaux Universitaires de Strasbourg, UF1422 Oncogénétique moléculaire, Laboratoire de diagnostic génétique, Strasbourg, France. .,Hôpitaux Universitaires de Strasbourg, UF6948 Oncogénétique, Service d'Hémato-Oncologie, Strasbourg, France.
| | - Pascal Pujol
- Hôpital Arnaud de Villeneuve, CHU Montpellier, Service de Génétique médicale et Oncogénétique, Montpellier, France. .,Inserm, U896, CRCM Val d'Aurel, Montpellier, France.
| | - Christine Lasset
- Université Claude Bernard Lyon 1, Villeurbanne, France. .,CNRS UMR 5558, Lyon, France. .,Centre Léon Bérard, Unité de Prévention et Epidémiologie Génétique, Lyon, France.
| | | | | | | | | | | | - Hélène Dreyfus
- Clinique Sainte Catherine, Avignon, France. .,CHU de Grenoble, Hôpital Couple-Enfant, Département de Génétique, Grenoble, France.
| | - Marc Frenay
- Centre Antoine Lacassagne, Unité d'Oncogénétique, Nice, France.
| | - Laurence Gladieff
- Institut Claudius Regaud - IUCT-Oncopole, Service d'Oncologie Médicale, Toulouse, France.
| | | | | | | | - Sophie Giraud
- Hôpital Edouard Herriot, Service de Génétique Moléculaire, Lyon, France.
| | | | - Annie Chevrier
- Hôpital Universitaire de Rouen, Département de Génétique, Rouen, France.
| | | | | | - Anne Fajac
- Hôpital Tenon, Service d'Oncogénétique, Paris, France.
| | | | - François Eisinger
- IPC, Département d'Anticipation et de Suivi des Cancers, Marseille, France. .,Inserm, UMR 912, Marseille, France.
| | - Julie Tinat
- Hôpital Universitaire de Rouen, Département de Génétique, Rouen, France.
| | - Chrystelle Colas
- Groupe Hospitalier Pitié-Salpêtrière, Département de Génétique, APHP, Paris, France.
| | | | - Clotilde Penet
- Institut Jean-Godinot, Reims, France. .,ICC Courlancy, Cs Oncogénétique, Reims, France.
| | - Thierry Frebourg
- Hôpital Universitaire de Rouen, Département de Génétique, Rouen, France.
| | - Marie-Agnès Collonge-Rame
- CHU Hôpital Saint-Jacques, Service Génétique et Biologie du Développement - Histologie, Besançon, France.
| | | | | | - Dominique Leroux
- CHU de Grenoble, Hôpital Couple-Enfant, Département de Génétique, Grenoble, France.
| | | | - Fabienne Prieur
- CHU de Saint-Etienne, Hôpital Nord, Service de Génétique, Saint-Etienne, France.
| | | | | | - Philippe Jonveaux
- CHU Hôpital de Brabois, Laboratoire de Génétique, Vandœuvre-lès-Nancy, France.
| | - Odile Bera
- CHU de Martinique, Unité d'Oncogénétique, Fort-de-France, France.
| | - Eve Cavaciuti
- Inserm, U900, Paris, France. .,Institut Curie, Paris, France. .,PSL Research University, Paris, France. .,Mines ParisTech, Fontainebleau, France.
| | - Anne Tardivon
- Institut Curie, Département d'imagerie médicale, Paris, France.
| | - Fabienne Lesueur
- Inserm, U900, Paris, France. .,Institut Curie, Paris, France. .,PSL Research University, Paris, France. .,Mines ParisTech, Fontainebleau, France.
| | - Sylvie Mazoyer
- Cancer Research Centre of Lyon, CNRS UMR5286, Inserm U1052, Université Claude Bernard Lyon 1, Centre Léon Bérard, Lyon, France.
| | - Dominique Stoppa-Lyonnet
- PSL Research University, Paris, France. .,Institut Curie, Service de Génétique, Paris, France. .,Inserm, U830, Paris, France. .,Université Paris-Descartes, Paris, France.
| | - Nadine Andrieu
- Inserm, U900, Paris, France. .,Institut Curie, Paris, France. .,PSL Research University, Paris, France. .,Mines ParisTech, Fontainebleau, France.
| |
Collapse
|