1
|
Aldehyde-specific responses of olfactory sensory neurons in the praying mantis. Sci Rep 2021; 11:1856. [PMID: 33473161 PMCID: PMC7817670 DOI: 10.1038/s41598-021-81359-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 12/31/2020] [Indexed: 11/09/2022] Open
Abstract
Although praying mantises rely mainly on vision for predatory behaviours, olfaction also plays a critical role in feeding and mating behaviours. However, the receptive processes underlying olfactory signals remain unclear. Here, we identified olfactory sensory neurons (OSNs) that are highly tuned to detect aldehydes in the mantis Tenodera aridifolia. In extracellular recordings from OSNs in basiconic sensilla on the antennae, we observed three different spike shapes, indicating that at least three OSNs are housed in a single basiconic sensillum. Unexpectedly, one of the three OSNs exhibited strong excitatory responses to a set of aldehydes. Based on the similarities of the response spectra to 15 different aldehydes, the aldehyde-specific OSNs were classified into three classes: B, S, and M. Class B broadly responded to most aldehydes used as stimulants; class S responded to short-chain aldehydes (C3–C7); and class M responded to middle-length chain aldehydes (C6–C9). Thus, aldehyde molecules can be finely discriminated based on the activity patterns of a population of OSNs. Because many insects emit aldehydes for pheromonal communication, mantises might use aldehydes as olfactory cues for locating prey habitat.
Collapse
|
2
|
Piersanti S, Rebora M, Salerno G, Anton S. The Antennal Pathway of Dragonfly Nymphs, from Sensilla to the Brain. INSECTS 2020; 11:E886. [PMID: 33339188 PMCID: PMC7765675 DOI: 10.3390/insects11120886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/09/2020] [Accepted: 12/15/2020] [Indexed: 11/25/2022]
Abstract
Dragonflies are hemimetabolous insects, switching from an aquatic life style as nymphs to aerial life as adults, confronted to different environmental cues. How sensory structures on the antennae and the brain regions processing the incoming information are adapted to the reception of fundamentally different sensory cues has not been investigated in hemimetabolous insects. Here we describe the antennal sensilla, the general brain structure, and the antennal sensory pathways in the last six nymphal instars of Libellula depressa, in comparison with earlier published data from adults, using scanning electron microscopy, and antennal receptor neuron and antennal lobe output neuron mass-tracing with tetramethylrhodamin. Brain structure was visualized with an anti-synapsin antibody. Differently from adults, the nymphal antennal flagellum harbors many mechanoreceptive sensilla, one olfactory, and two thermo-hygroreceptive sensilla at all investigated instars. The nymphal brain is very similar to the adult brain throughout development, despite the considerable differences in antennal sensilla and habitat. Like in adults, nymphal brains contain mushroom bodies lacking calyces and small aglomerular antennal lobes. Antennal fibers innervate the antennal lobe similar to adult brains and the gnathal ganglion more prominently than in adults. Similar brain structures are thus used in L. depressa nymphs and adults to process diverging sensory information.
Collapse
Affiliation(s)
- Silvana Piersanti
- Dipartimento di Chimica, Biologia e Biotecnologie, University of Perugia, 06123 Perugia, Italy; (S.P.); (M.R.)
| | - Manuela Rebora
- Dipartimento di Chimica, Biologia e Biotecnologie, University of Perugia, 06123 Perugia, Italy; (S.P.); (M.R.)
| | - Gianandrea Salerno
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, University of Perugia, 06123 Perugia, Italy;
| | - Sylvia Anton
- IGEPP, INRAE, Institut Agro, Univ Rennes, 49045 Angers, France
| |
Collapse
|
3
|
Khan MK. Female prereproductive coloration reduces mating harassment in damselflies. Evolution 2020; 74:2293-2303. [PMID: 32573766 DOI: 10.1111/evo.14048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 05/09/2020] [Accepted: 06/18/2020] [Indexed: 12/01/2022]
Abstract
Conspicuous female coloration can evolve through male mate choice or via female-female competition thereby increasing female mating success. However, when mating is not beneficial, such as in pre-reproductive females, selection should favor cryptic rather than conspicuous coloration to avoid male detection and the associated harassment. Nevertheless, conspicuous female coloration occurs in many prereproductive animals, and its evolution remains an enigma. Here, I studied conspicuous female coloration in Agriocnemis femina damselflies, in which the conspicuous red color of the immature females changes to a less conspicuous green approximately a week after their emergence. I measured body size, weight, and egg numbers of the female morphs and found that red females are smaller and lighter and do not carry developed eggs. Finally, I calculated the occurrence frequency and mating frequency of red and green females in several populations over a three-year period. The results demonstrate that red females mated less frequently than green females even when red females were the abundant morph in the populations. I concluded that conspicuous female coloration is likely to function as a warning signal of sexual unprofitability, thereby reducing sexual harassment for females and unprofitable mating for males.
Collapse
Affiliation(s)
- Md Kawsar Khan
- Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia.,Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| |
Collapse
|
4
|
Khan MK, Herberstein ME. Sexually dimorphic blue bands are intrasexual aposematic signals in nonterritorial damselflies. Anim Behav 2019. [DOI: 10.1016/j.anbehav.2019.07.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Mangiacotti M, Fumagalli M, Cagnone M, Viglio S, Bardoni AM, Scali S, Sacchi R. Morph-specific protein patterns in the femoral gland secretions of a colour polymorphic lizard. Sci Rep 2019; 9:8412. [PMID: 31182789 PMCID: PMC6557888 DOI: 10.1038/s41598-019-44889-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 04/27/2019] [Indexed: 01/04/2023] Open
Abstract
Colour polymorphism occurs when two or more genetically-based colour morphs permanently coexist within an interbreeding population. Colouration is usually associated to other life-history traits (ecological, physiological, behavioural, reproductive …) of the bearer, thus being the phenotypic marker of such set of genetic features. This visual badge may be used to inform conspecifics and to drive those decision making processes which may contribute maintaining colour polymorphism under sexual selection context. The importance of such information suggests that other communication modalities should be recruited to ensure its transfer in case visual cues were insufficient. Here, for the first time, we investigated the potential role of proteins from femoral gland secretions in signalling colour morph in a polymorphic lizard. As proteins are thought to convey identity-related information, they represent the ideal cues to build up the chemical modality used to badge colour morphs. We found strong evidence for the occurrence of morph-specific protein profiles in the three main colour-morphs of the common wall lizard, which showed both qualitative and quantitative differences in protein expression. As lizards are able to detect proteins by tongue-flicking and vomeronasal organ, this result support the hypothesis that colour polymorphic lizards may use a multimodal signal to inform about colour-morph.
Collapse
Affiliation(s)
- Marco Mangiacotti
- Department of Earth and Environmental Sciences, University of Pavia, Via Taramelli 24, 27100, Pavia, Italy.
| | - Marco Fumagalli
- Department of Biology and Biotechnologies "L.Spallanzani", Unit of Biochemistry, University of Pavia, Via Ferrata 9, 27100, Pavia, Italy
| | - Maddalena Cagnone
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Via T. Taramelli 3, 27100, Pavia, Italy
| | - Simona Viglio
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Via T. Taramelli 3, 27100, Pavia, Italy
| | - Anna Maria Bardoni
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Via T. Taramelli 3, 27100, Pavia, Italy
| | - Stefano Scali
- Museo di Storia Naturale di Milano, Corso Venezia 55, 20121, Milan, Italy
| | - Roberto Sacchi
- Department of Earth and Environmental Sciences, University of Pavia, Via Taramelli 24, 27100, Pavia, Italy
| |
Collapse
|
6
|
Butterworth NJ, Byrne PG, Keller PA, Wallman JF. Body Odor and Sex: Do Cuticular Hydrocarbons Facilitate Sexual Attraction in the Small Hairy Maggot Blowfly? J Chem Ecol 2018. [DOI: 10.1007/s10886-018-0943-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
7
|
Field tests of multiple sensory cues in sex recognition and harassment of a colour polymorphic damselfly. Anim Behav 2018. [DOI: 10.1016/j.anbehav.2017.12.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Piersanti S, Rebora M. The antennae of damselfly larvae. ARTHROPOD STRUCTURE & DEVELOPMENT 2018; 47:36-44. [PMID: 29191794 DOI: 10.1016/j.asd.2017.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/24/2017] [Accepted: 11/25/2017] [Indexed: 06/07/2023]
Abstract
The larval antennal sensilla of two Zygoptera species, Calopteryx haemorroidalis (Calopterygidae) and Ischnura elegans (Coenagrionidae) are investigated with SEM and TEM. These two species have different antennae (geniculate, setaceous) and live in different environments (lotic, lentic waters). Notwithstanding this, similarities in the kind and distribution of sensilla are outlined: in both species the majority of sensilla types is located on the apical portion of the antenna, namely a composed coeloconic sensillum (possible chemoreceptor), two other coeloconic sensilla (possible thermo-hygroreceptors) and an apical seta (direct contact mechanoreceptor). Other mechanoreceptors, such as filiform hairs sensitive to movements of the surrounding medium or bristles positioned to sense the movements of the flagellar segments, are present on the antenna. Similarities in the antennal sensilla types and distribution are observed also with other dragonfly species, such as Onychogomphus forcipatus and Libellula depressa. A peculiar structure with an internal organization similar to that of a gland is observed in the apical antenna of C. haemorroidalis and I. elegans and it is present also in O. forcipatus and L. depressa. The possible function of this structure is at the moment unknown but deserves further investigations owing to its widespread presence in Odonata larvae.
Collapse
Affiliation(s)
- Silvana Piersanti
- Dipartimento di Chimica, Biologia e Biotecnologie, University of Perugia, Via Elce di Sotto, 1, 06121 Perugia, Italy.
| | - Manuela Rebora
- Dipartimento di Chimica, Biologia e Biotecnologie, University of Perugia, Via Elce di Sotto, 1, 06121 Perugia, Italy
| |
Collapse
|
9
|
Ioannidis P, Simao FA, Waterhouse RM, Manni M, Seppey M, Robertson HM, Misof B, Niehuis O, Zdobnov EM. Genomic Features of the Damselfly Calopteryx splendens Representing a Sister Clade to Most Insect Orders. Genome Biol Evol 2017; 9:415-430. [PMID: 28137743 PMCID: PMC5381652 DOI: 10.1093/gbe/evx006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2017] [Indexed: 12/14/2022] Open
Abstract
Insects comprise the most diverse and successful animal group with over one million described species that are found in almost every terrestrial and limnic habitat, with many being used as important models in genetics, ecology, and evolutionary research. Genome sequencing projects have greatly expanded the sampling of species from many insect orders, but genomic resources for species of certain insect lineages have remained relatively limited to date. To address this paucity, we sequenced the genome of the banded demoiselle, Calopteryx splendens, a damselfly (Odonata: Zygoptera) belonging to Palaeoptera, the clade containing the first winged insects. The 1.6 Gbp C. splendens draft genome assembly is one of the largest insect genomes sequenced to date and encodes a predicted set of 22,523 protein-coding genes. Comparative genomic analyses with other sequenced insects identified a relatively small repertoire of C. splendens detoxification genes, which could explain its previously noted sensitivity to habitat pollution. Intriguingly, this repertoire includes a cytochrome P450 gene not previously described in any insect genome. The C. splendens immune gene repertoire appears relatively complete and features several genes encoding novel multi-domain peptidoglycan recognition proteins. Analysis of chemosensory genes revealed the presence of both gustatory and ionotropic receptors, as well as the insect odorant receptor coreceptor gene (OrCo) and at least four partner odorant receptors (ORs). This represents the oldest known instance of a complete OrCo/OR system in insects, and provides the molecular underpinning for odonate olfaction. The C. splendens genome improves the sampling of insect lineages that diverged before the radiation of Holometabola and offers new opportunities for molecular-level evolutionary, ecological, and behavioral studies.
Collapse
Affiliation(s)
- Panagiotis Ioannidis
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland.,Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Felipe A Simao
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland.,Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Robert M Waterhouse
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland.,Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Mosè Manni
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland.,Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Mathieu Seppey
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland.,Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Hugh M Robertson
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Bernhard Misof
- Center for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, Bonn, Germany
| | - Oliver Niehuis
- Center for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, Bonn, Germany
| | - Evgeny M Zdobnov
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland.,Swiss Institute of Bioinformatics, Geneva, Switzerland
| |
Collapse
|
10
|
Rebora M, Piersanti S, Frati F, Salerno G. Antennal responses to volatile organic compounds in a stonefly. JOURNAL OF INSECT PHYSIOLOGY 2017; 98:231-237. [PMID: 28115118 DOI: 10.1016/j.jinsphys.2017.01.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/11/2017] [Accepted: 01/12/2017] [Indexed: 06/06/2023]
Abstract
Notwithstanding their long antennae, especially in the adult stage, Plecoptera represent a poorly studied group as regards their sensory structures and their ability to perceive olfactory stimuli is so far totally unknown. A recent investigation on the antenna of Dinocras cephalotes revealed two kinds of putative olfactory sensilla (multiporous single walled sensilla and digitated double walled sensilla). The present electrophysiological study (electroantennography, EAG), in which male and female antennae of D. cephalotes (Plecoptera, Perlidae) have been stimulated with a set of generic odours belonging to different functional groups, shows that Plecoptera can perceive olfactory cues through their antennal sensilla. Indeed, although many chemicals did not elicit any response, high EAG activity has been recorded in response to pentanoic acid, propanal, butyric acid, propionic acid, isoamylamine and ammonia. The response was very similar in both sexes even if propanal elicited a response only in males. EAG dose-responses curves in both males and females showed that EAG responses were similar in males and females and generally increased in amplitude with increasing doses of the chemicals. Behavioural, neuroanatomical and molecular investigations on Plecoptera olfaction, could be particularly interesting not only to increase the knowledge of the adult stonefly behaviour but also to better understand the adaptation of the olfactory sensory system in aquatic insects moving from land to water.
Collapse
Affiliation(s)
- Manuela Rebora
- Dipartimento di Chimica, Biologia e Biotecnologie, University of Perugia, Italy
| | - Silvana Piersanti
- Dipartimento di Chimica, Biologia e Biotecnologie, University of Perugia, Italy.
| | - Francesca Frati
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, University of Perugia, Italy
| | - Gianandrea Salerno
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, University of Perugia, Italy
| |
Collapse
|
11
|
Rebora M, Tierno de Figueroa JM, Piersanti S. Antennal sensilla of the stonefly Dinocras cephalotes (Plecoptera: Perlidae). ARTHROPOD STRUCTURE & DEVELOPMENT 2016; 45:552-561. [PMID: 27742465 DOI: 10.1016/j.asd.2016.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 10/06/2016] [Accepted: 10/07/2016] [Indexed: 06/06/2023]
Abstract
Plecoptera, one of the most primitive groups of Neoptera, are important aquatic insects usually employed as bioindicators of high water quality. Notwithstanding the well-developed antennae of the adult, its sensory abilities are so far not well known. The present paper describes at ultrastructural level under scanning and transmission electron microscopy the antennal sensilla of the adult stonefly Dinocras cephalotes (Plecoptera, Perlidae). Adult males and females show a filiform antenna constituted of a scape, a pedicel and a flagellum composed of very numerous segments with no clear sexual dimorphism in the number and distribution of the antennal sensilla. The most represented sensilla are sensilla trichodea, with different length, whose internal structure reveal their mechanosensory function, sensilla chaetica, with an apical pore, with an internal structure revealing a typical gustatory function, porous pegs representing single-walled olfactory sensilla, digitated pegs with hollow cuticular spoke channels representing double-walled olfactory sensilla, pegs in pits for which we hypothesize a thermo-hygrosensory function. The diversity of described sensilla is discussed in relation to known biological aspects of the studied species. This opens new perspectives in the study of the behavior of these aquatic insects during their adult stage.
Collapse
Affiliation(s)
- Manuela Rebora
- Dipartimento di Chimica, Biologia e Biotecnologie, University of Perugia, 06121, Italy.
| | | | - Silvana Piersanti
- Dipartimento di Chimica, Biologia e Biotecnologie, University of Perugia, 06121, Italy
| |
Collapse
|
12
|
Futahashi R. Color vision and color formation in dragonflies. CURRENT OPINION IN INSECT SCIENCE 2016; 17:32-39. [PMID: 27720071 DOI: 10.1016/j.cois.2016.05.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/20/2016] [Accepted: 05/21/2016] [Indexed: 06/06/2023]
Abstract
Dragonflies including damselflies are colorful and large-eyed insects, which show remarkable sexual dimorphism, color transition, and color polymorphism. Recent comprehensive visual transcriptomics has unveiled an extraordinary diversity of opsin genes within the lineage of dragonflies. These opsin genes are differentially expressed between aquatic larvae and terrestrial adults, as well as between dorsal and ventral regions of adult compound eyes. Recent topics of color formation in dragonflies are also outlined. Non-iridescent blue color is caused by coherent light scattering from the quasiordered nanostructures, whereas iridescent color is produced by multilayer structures. Wrinkles or wax crystals sometimes enhances multilayer structural colors. Sex-specific and stage-specific color differences in red dragonflies is attributed to redox states of ommochrome pigments.
Collapse
Affiliation(s)
- Ryo Futahashi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Tsukuba, Ibaraki 305-8566, Japan.
| |
Collapse
|
13
|
Frati F, Piersanti S, Rebora M, Salerno G. Volatile cues can drive the oviposition behavior in Odonata. JOURNAL OF INSECT PHYSIOLOGY 2016; 91-92:34-38. [PMID: 27349728 DOI: 10.1016/j.jinsphys.2016.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 06/22/2016] [Accepted: 06/23/2016] [Indexed: 06/06/2023]
Abstract
Selection for the oviposition site represents the criterion for the behavioral process of habitat selection for the next generation. It is well known that in Odonata the most general cues are detected visually, but laboratory investigations on the coenagrionid Ischnura elegans showed through behavioral and electrophysiological assays that adults were attracted by olfactory cues emitted by prey and that males of the same species are attracted by female odor. The results of the present behavioral and electrophysiological investigations on I. elegans suggest the involvement of antennal olfactory sensilla in oviposition behavior. In particular, I. elegans females laid in the laboratory significantly more eggs in water from larval rearing aquaria than in distilled or tap water. Moreover, the lack of preference between rearing water and tap water with plankton suggests a role of volatiles related to conspecific and plankton presence in the oviposition site choice. I. elegans may rely on food odor for oviposition site selection, thus supporting the predictions of the "mother knows best" theory. These behavioral data are partially supported by electroantennographic responses. These findings confirm a possible role of olfaction in crucial aspects of Odonata biology.
Collapse
Affiliation(s)
- Francesca Frati
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, University of Perugia, Italy
| | - Silvana Piersanti
- Dipartimento di Chimica, Biologia e Biotecnologie, University of Perugia, Italy.
| | - Manuela Rebora
- Dipartimento di Chimica, Biologia e Biotecnologie, University of Perugia, Italy
| | - Gianandrea Salerno
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, University of Perugia, Italy
| |
Collapse
|
14
|
Verzijden MN, Svensson EI. Interspecific interactions and learning variability jointly drive geographic differences in mate preferences. Evolution 2016; 70:1896-903. [DOI: 10.1111/evo.12982] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 05/20/2016] [Accepted: 06/02/2016] [Indexed: 01/25/2023]
Affiliation(s)
- Machteld N. Verzijden
- Department of Biology, Evolutionary Ecology Unit; Lund University; SE-223 62 Lund Sweden
- Current Address: Aarhus Institute of Advanced Studies; Aarhus University; 8000 Aarhus Denmark
| | - Erik I. Svensson
- Department of Biology, Evolutionary Ecology Unit; Lund University; SE-223 62 Lund Sweden
| |
Collapse
|