1
|
Montaner M, Denom J, Simon V, Jiang W, Holt MK, Brierley DI, Rouch C, Foppen E, Kassis N, Jarriault D, Khan D, Eygret L, Mifsud F, Hodson DJ, Broichhagen J, Van Oudenhove L, Fioramonti X, Gault V, Cota D, Reimann F, Gribble FM, Migrenne-Li S, Trapp S, Gurden H, Magnan C. A neuronal circuit driven by GLP-1 in the olfactory bulb regulates insulin secretion. Nat Commun 2024; 15:6941. [PMID: 39138162 PMCID: PMC11322178 DOI: 10.1038/s41467-024-51076-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 07/26/2024] [Indexed: 08/15/2024] Open
Abstract
Glucagon-like peptide 1 (GLP-1) stimulates insulin secretion and holds significant pharmacological potential. Nevertheless, the regulation of energy homeostasis by centrally-produced GLP-1 remains partially understood. Preproglucagon cells, known to release GLP-1, are found in the olfactory bulb (OB). We show that activating GLP-1 receptors (GLP-1R) in the OB stimulates insulin secretion in response to oral glucose in lean and diet-induced obese male mice. This is associated with reduced noradrenaline content in the pancreas and blocked by an α2-adrenergic receptor agonist, implicating functional involvement of the sympathetic nervous system (SNS). Inhibiting GABAA receptors in the paraventricular nucleus of the hypothalamus (PVN), the control centre of the SNS, abolishes the enhancing effect on insulin secretion induced by OB GLP-1R. Therefore, OB GLP-1-dependent regulation of insulin secretion relies on a relay within the PVN. This study provides evidence that OB GLP-1 signalling engages a top-down neural mechanism to control insulin secretion via the SNS.
Collapse
Affiliation(s)
- Mireia Montaner
- Université Paris Cité, Unit of Functional and Adaptive Biology (BFA), UMR 8251 CNRS, Paris, France
| | - Jessica Denom
- Université Paris Cité, Unit of Functional and Adaptive Biology (BFA), UMR 8251 CNRS, Paris, France
| | - Vincent Simon
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, Bordeaux, France
| | - Wanqing Jiang
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology & Pharmacology, UCL, London, UK
| | - Marie K Holt
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology & Pharmacology, UCL, London, UK
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Daniel I Brierley
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology & Pharmacology, UCL, London, UK
| | - Claude Rouch
- Université Paris Cité, Unit of Functional and Adaptive Biology (BFA), UMR 8251 CNRS, Paris, France
| | - Ewout Foppen
- Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience (NIN), An Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, Netherlands
- Laboratory of Endocrinology, Amsterdam UMC, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), Amsterdam, Netherlands
| | - Nadim Kassis
- Université Paris Cité, Unit of Functional and Adaptive Biology (BFA), UMR 8251 CNRS, Paris, France
| | - David Jarriault
- University of Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| | - Dawood Khan
- Faculty of Life and Health Sciences, School of Biomedical Sciences, Ulster University, Coleraine, UK
| | - Louise Eygret
- University of Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| | - Francois Mifsud
- Université Paris Cité, Unit of Functional and Adaptive Biology (BFA), UMR 8251 CNRS, Paris, France
| | - David J Hodson
- University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Oxford, UK
| | | | - Lukas Van Oudenhove
- Laboratory for Brain-Gut Axis Studies (LaBGAS), Translational Research in Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism (CHROMETA), University of Leuven, Leuven, Belgium
| | - Xavier Fioramonti
- University of Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| | - Victor Gault
- Faculty of Life and Health Sciences, School of Biomedical Sciences, Ulster University, Coleraine, UK
| | - Daniela Cota
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, Bordeaux, France
| | - Frank Reimann
- Institute of Metabolic Science & MRC Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Fiona M Gribble
- Institute of Metabolic Science & MRC Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Stephanie Migrenne-Li
- Université Paris Cité, Unit of Functional and Adaptive Biology (BFA), UMR 8251 CNRS, Paris, France
| | - Stefan Trapp
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology & Pharmacology, UCL, London, UK.
| | - Hirac Gurden
- Université Paris Cité, Unit of Functional and Adaptive Biology (BFA), UMR 8251 CNRS, Paris, France.
| | - Christophe Magnan
- Université Paris Cité, Unit of Functional and Adaptive Biology (BFA), UMR 8251 CNRS, Paris, France.
| |
Collapse
|
2
|
Adrenomedullin in paraventricular nucleus attenuates adipose afferent reflex and sympathoexcitation via receptors mediated nitric oxide-gamma-aminobutyric acid A type receptor pathway in rats with obesity-related hypertension. J Hypertens 2023; 41:233-245. [PMID: 36583351 DOI: 10.1097/hjh.0000000000003301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Hypothalamic paraventricular nucleus (PVN) is an important central site for the control of the adipose afferent reflex (AAR) that increases sympathetic outflow and blood pressure in obesity-related hypertension (OH). METHOD In this study, we investigated the effects of nitric oxide (NO) and cardiovascular bioactive polypeptide adrenomedullin (ADM) in the PVN on AAR and sympathetic nerve activity (SNA) in OH rats induced by a high-fat diet. RESULTS The results showed that ADM, total neuronal NO synthase (nNOS) and phosphorylated-nNOS protein expression levels in the PVN of the OH rats were down-regulated compared to the control rats. The enhanced AAR in OH rats was attenuated by PVN acute application of NO donor sodium nitroprusside (SNP), but was strengthened by the nNOS inhibitor nNOS-I, guanylyl cyclase inhibitor (1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one, ODQ) and gamma-aminobutyric acid A type receptor (GABAA) antagonist Bicuculline. Moreover, PVN ADM microinjection not only decreased basal SNA but also attenuated the enhanced AAR in OH rats, which were effectively inhibited by ADM receptor antagonist ADM22-52, nNOS-I, ODQ or Bicuculline pretreatment. Bilateral PVN acute microinjection of ADM also caused greater increases in NO and cyclic guanosine monophosphate (cGMP) levels, and nNOS phosphorylation. Adeno-associated virus vectors encoding ADM (AAV-ADM) transfection in the PVN of OH rats not only decreased the elevated AAR, basal SNA and blood pressure (BP), but also increased the expression and activation of nNOS. Furthermore, AAV-ADM transfection improved vascular remodeling in OH rats. CONCLUSION Taken together, our data highlight the roles of ADM in improving sympathetic overactivation, enhanced AAR and hypertension, and its related mechanisms associated with receptors mediated NO-cGMP-GABAA pathway in OH condition.
Collapse
|
3
|
Thorsdottir D, Einwag Z, Erdos B. BDNF shifts excitatory-inhibitory balance in the paraventricular nucleus of the hypothalamus to elevate blood pressure. J Neurophysiol 2021; 126:1209-1220. [PMID: 34406887 DOI: 10.1152/jn.00247.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Presympathetic neurons in the paraventricular nucleus of the hypothalamus (PVN) play a key role in cardiovascular regulation. We have previously shown that brain-derived neurotrophic factor (BDNF), acting in the PVN, increases sympathetic activity and blood pressure and serves as a key regulator of stress-induced hypertensive responses. BDNF is known to alter glutamatergic and GABA-ergic signaling broadly in the central nervous system, but whether BDNF has similar actions in the PVN remains to be investigated. Here, we tested the hypothesis that increased BDNF expression in the PVN elevates blood pressure by enhancing N-methyl-d-aspartate (NMDA) receptor (NMDAR)- and inhibiting GABAA receptor (GABAAR)-mediated signaling. Sprague-Dawley rats received bilateral PVN injections of AAV2 viral vectors expressing green fluorescent protein (GFP) or BDNF. Three weeks later, cardiovascular responses to PVN injections of NMDAR and GABAAR agonists and antagonists were recorded under α-chloralose-urethane anesthesia. In addition, expressions of excitatory and inhibitory signaling components in the PVN were assessed using immunofluorescence. Our results showed that NMDAR inhibition led to a greater decrease in blood pressure in the BDNF vs. GFP group, while GABAAR inhibition led to greater increases in blood pressure in the GFP group compared to BDNF. Conversely, GABAAR activation decreased blood pressure significantly more in GFP vs. BDNF rats. In addition, immunoreactivity of NMDAR1 was upregulated, while GABAAR-α1 and K+/Cl- cotransporter 2 were downregulated by BDNF overexpression in the PVN. In summary, our findings indicate that hypertensive actions of BDNF within the PVN are mediated, at least in part, by augmented NMDAR and reduced GABAAR signaling.NEW & NOTEWORTHY We have shown that BDNF, acting in the PVN, elevates blood pressure in part by augmenting NMDA receptor-mediated excitatory input and by diminishing GABAA receptor-mediated inhibitory input to PVN neurons. In addition, we demonstrate that elevated BDNF expression in the PVN upregulates NMDA receptor immunoreactivity and downregulates GABAA receptor as well as KCC2 transporter immunoreactivity.
Collapse
Affiliation(s)
| | - Zachary Einwag
- Department of Pharmacology, University of Vermont, Burlington, Vermont
| | - Benedek Erdos
- Department of Pharmacology, University of Vermont, Burlington, Vermont
| |
Collapse
|
4
|
Salusin-β in Intermediate Dorsal Motor Nucleus of the Vagus Regulates Sympathetic-Parasympathetic Balance and Blood Pressure. Biomedicines 2021; 9:biomedicines9091118. [PMID: 34572305 PMCID: PMC8467440 DOI: 10.3390/biomedicines9091118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 12/20/2022] Open
Abstract
The dorsal motor nucleus of the vagus (DMV) is known to control vagal activity. It is unknown whether the DMV regulates sympathetic activity and whether salusin-β in the DMV contributes to autonomic nervous activity. We investigated the roles of salusin-β in DMV in regulating sympathetic-parasympathetic balance and its underline mechanisms. Microinjections were carried out in the DMV and hypothalamic paraventricular nucleus (PVN) in male adult anesthetized rats. Renal sympathetic nerve activity (RSNA), blood pressure and heart rate were recorded. Immunohistochemistry for salusin-β and reactive oxidative species (ROS) production in the DMV were examined. Salusin-β was expressed in the intermediate DMV (iDMV). Salusin-β in the iDMV not only inhibited RSNA but also enhanced vagal activity and thereby reduced blood pressure and heart rate. The roles of salusin-β in causing vagal activation were mediated by NAD(P)H oxidase-dependent superoxide anion production in the iDMV. The roles of salusin-β in inhibiting RSNA were mediated by not only the NAD(P)H oxidase-originated superoxide anion production in the iDMV but also the γ-aminobutyric acid (GABA)A receptor activation in PVN. Moreover, endogenous salusin-β and ROS production in the iDMV play a tonic role in inhibiting RSNA. These results indicate that salusin-β in the iDMV inhibits sympathetic activity and enhances vagal activity, and thereby reduces blood pressure and heart rate, which are mediated by NAD(P)H oxidase-dependent ROS production in the iDMV. Moreover, GABAA receptor in the PVN mediates the effect of salusin-β on sympathetic inhibition. Endogenous salusin-β and ROS production in the iDMV play a tonic role in inhibiting sympathetic activity.
Collapse
|
5
|
Huang ST, Song ZJ, Liu Y, Luo WC, Yin Q, Zhang YM. BNST AV GABA-PVN CRF Circuit Regulates Visceral Hypersensitivity Induced by Maternal Separation in Vgat-Cre Mice. Front Pharmacol 2021; 12:615202. [PMID: 33815103 PMCID: PMC8017215 DOI: 10.3389/fphar.2021.615202] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 02/04/2021] [Indexed: 12/12/2022] Open
Abstract
Visceral hypersensitivity as a common clinical manifestation of irritable bowel syndrome (IBS) may contribute to the development of chronic visceral pain. Our prior studies authenticated that the activation of the corticotropin-releasing factor (CRF) neurons in paraventricular nucleus (PVN) contributed to visceral hypersensitivity in mice, but puzzles still remain with respect to the underlying hyperactivation of corticotropin-releasing factor neurons. Herein, we employed maternal separation (MS) to establish mouse model of visceral hypersensitivity. The neuronal circuits associated with nociceptive hypersensitivity involved paraventricular nucleus CRF neurons by means of techniques such as behavioral test, pharmacology, molecular biology, retrograde neuronal circuit tracers, electrophysiology, chemogenetics and optogenetics. MS could predispose the elevated firing frequency of CRF neurons in PVN in murine adulthood, which could be annulled via the injection of exogenous GABA (0.3mM, 0.2µl) into PVN. The PVN-projecting GABAergic neurons were mainly distributed in the anterior ventral (AV) region in the bed nucleus of stria terminalis (BNST), wherein the excitability of these GABAergic neurons was reduced. Casp3 virus was utilized to induce apoptosis of GABA neurons in BNST-AV region, resulting in the activation of CRF neurons in PVN and visceral hyperalgesia. In parallel, chemogenetic and optogenetic approaches to activate GABAergic BNSTAV-PVN circuit in MS mice abated the spontaneous firing frequency of PVN CRF neurons and prevented the development of visceral hypersensitivity. A priori, PVNCRF-projecting GABAergic neurons in BNST-AV region participated in the occurrence of visceral hypersensitivity induced by MS. Our research may provide a new insight into the neural circuit mechanism of chronic visceral pain.
Collapse
Affiliation(s)
- Si-Ting Huang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Zhi-Jing Song
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China.,Department of Anesthesiology, Xuzhou Municipal Hospital Affiliated with Xuzhou Medical University, Xuzhou, China
| | - Yu Liu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Wen-Chen Luo
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Qian Yin
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Yong-Mei Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
6
|
Zhang QJ, Yang BB, Yang J, Wang YM, Dai YT, Song NH, Wang ZJ, Xia JD. Inhibitory Role of Gamma-Aminobutyric Receptors in Paraventricular Nucleus on Ejaculatory Responses in Rats. J Sex Med 2020; 17:614-622. [DOI: 10.1016/j.jsxm.2020.01.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/27/2019] [Accepted: 01/07/2020] [Indexed: 01/13/2023]
|
7
|
Milanez MIO, Silva AM, Perry JC, Faber J, Nishi EE, Bergamaschi CT, Campos RR. Pattern of sympathetic vasomotor activity induced by GABAergic inhibition in the brain and spinal cord. Pharmacol Rep 2020; 72:67-79. [PMID: 32016845 DOI: 10.1007/s43440-019-00025-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 09/05/2019] [Accepted: 10/11/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND Knowledge of the central areas involved in the control of sympathetic vasomotor activity has advanced in the last few decades. γ-Aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the mammal nervous system, and a microinjection of bicuculline, an antagonist of GABA type A (GABA-A) receptors, into the paraventricular nucleus of the hypothalamus (PVN) alters the pattern of sympathetic activity to the renal, splanchnic and lumbar territories. However, studies are needed to clarify the role of GABAergic inputs in other central areas involved in the sympathetic vasomotor activity. The present work studied the cardiovascular effects evoked by GABAergic antagonism in the PVN, RVLM and spinal cord. METHODS AND RESULTS Bicuculline microinjections (400 pMol in 100 nL) into the PVN and rostral ventrolateral medulla (RVLM) as well as intrathecal administration (1.6 nmol in 2 µL) evoked an increase in blood pressure, heart rate, and renal and splanchnic sympathetic nerve activity (rSNA and sSNA, respectively), inducing a higher coherence between rSNA and sSNA patterns. However, some of these responses were more intense when the GABA-A antagonism was performed in the RVLM than when the GABA-A antagonism was performed in other regions. CONCLUSIONS Administration of bicuculline into the RVLM, PVN and SC induced a similar pattern of renal and splanchnic sympathetic vasomotor burst discharge, characterized by a low-frequency (0.5 Hz) and high-amplitude pattern, despite different blood pressure responses. Thus, the differential control of sympathetic drive to different targets by each region is dependent, in part, on tonic GABAergic inputs.
Collapse
Affiliation(s)
- Maycon I O Milanez
- Cardiovascular Division, Department of Physiology, Universidade Federal de São Paulo, Escola Paulista de Medicina, Rua Botucatu, 862, Ground Floor, CEP 04023-060, São Paulo, SP, Brazil
| | - Adilson M Silva
- Cardiovascular Division, Department of Physiology, Universidade Federal de São Paulo, Escola Paulista de Medicina, Rua Botucatu, 862, Ground Floor, CEP 04023-060, São Paulo, SP, Brazil
| | - Juliana C Perry
- Cardiovascular Division, Department of Physiology, Universidade Federal de São Paulo, Escola Paulista de Medicina, Rua Botucatu, 862, Ground Floor, CEP 04023-060, São Paulo, SP, Brazil
| | - Jean Faber
- Department of Neurology and Neurosurgery, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, Brazil
| | - Erika E Nishi
- Cardiovascular Division, Department of Physiology, Universidade Federal de São Paulo, Escola Paulista de Medicina, Rua Botucatu, 862, Ground Floor, CEP 04023-060, São Paulo, SP, Brazil
| | - Cássia T Bergamaschi
- Cardiovascular Division, Department of Physiology, Universidade Federal de São Paulo, Escola Paulista de Medicina, Rua Botucatu, 862, Ground Floor, CEP 04023-060, São Paulo, SP, Brazil
| | - Ruy R Campos
- Cardiovascular Division, Department of Physiology, Universidade Federal de São Paulo, Escola Paulista de Medicina, Rua Botucatu, 862, Ground Floor, CEP 04023-060, São Paulo, SP, Brazil.
| |
Collapse
|
8
|
Dalmasso C, Leachman JR, Osborn JL, Loria AS. Sensory signals mediating high blood pressure via sympathetic activation: role of adipose afferent reflex. Am J Physiol Regul Integr Comp Physiol 2019; 318:R379-R389. [PMID: 31868518 DOI: 10.1152/ajpregu.00079.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Blood pressure regulation in health and disease involves a balance between afferent and efferent signals from multiple organs and tissues. Although there are numerous reviews focused on the role of sympathetic nerves in different models of hypertension, few have revised the contribution of afferent nerves innervating adipose tissue and their role in the development of obesity-induced hypertension. Both clinical and basic research support the beneficial effects of bilateral renal denervation in lowering blood pressure. However, recent studies revealed that afferent signals from adipose tissue, in an adipose-brain-peripheral pathway, could contribute to the increased sympathetic activation and blood pressure during obesity. This review focuses on the role of adipose tissue afferent reflexes and briefly describes a number of other afferent reflexes modulating blood pressure. A comprehensive understanding of how multiple afferent reflexes contribute to the pathophysiology of essential and/or obesity-induced hypertension may provide significant insights into improving antihypertensive therapeutic approaches.
Collapse
Affiliation(s)
- Carolina Dalmasso
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Jacqueline R Leachman
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Jeffrey L Osborn
- Department of Biology, College of Arts and Sciences, University of Kentucky, Lexington, Kentucky
| | - Analia S Loria
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
9
|
GABA B receptors in the hypothalamic paraventricular nucleus mediate β-adrenoceptor-induced elevations of plasma noradrenaline in rats. Eur J Pharmacol 2019; 848:88-95. [PMID: 30685430 DOI: 10.1016/j.ejphar.2019.01.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 01/15/2019] [Accepted: 01/18/2019] [Indexed: 11/21/2022]
Abstract
In the brain, various neurotransmitters such as noradrenaline and GABA regulate peripheral sympathetic functions. Previously, it has been reported that both β-adrenoceptor activation and GABAB receptor activation in the brain are involved in the elevation of plasma noradrenaline levels. However, it is unknown whether these pathways interact with each other. In the present study, we examined the relationship between the central actions of β-adrenoceptor activation and GABAB receptor activation with regard to plasma noradrenaline responses using urethane-anesthetized rats. Intracerebroventricular pretreatment with the GABAA receptor antagonist bicuculline did not affect the β-adrenoceptor agonist isoproterenol-induced elevation of plasma noradrenaline levels. In contrast, pretreatment with the GABAB receptor antagonist CGP 35348 suppressed the isoproterenol-induced elevation of noradrenaline levels. Intracerebroventricular pretreatment with the β-adrenoceptor antagonist propranolol did not alter the GABAB receptor agonist baclofen-induced elevation of plasma noradrenaline levels. We next examined the central effects of β-adrenoceptor activation on GABA release in the paraventricular hypothalamic nucleus (PVN), the major integrative center for sympathetic regulation in the brain. Intracerebroventricular administration of isoproterenol increased GABA content in PVN dialysates. In addition, baclofen microinjected unilaterally into the PVN resulted in elevated plasma levels of noradrenaline, but not adrenaline. Finally, unilateral blockade of GABAB receptors in the PVN suppressed the isoproterenol-induced elevation of plasma noradrenaline level. Our results suggest that activation of β-adrenoceptors in the brain, likely in the PVN, induces GABA release in the PVN, which in turn activates GABAB receptors in the PVN, leading to elevated plasma noradrenaline.
Collapse
|
10
|
Gao HL, Yu XJ, Liu KL, Shi XL, Qi J, Chen YM, Zhang Y, Bai J, Yi QY, Feng ZP, Chen WS, Cui W, Liu JJ, Zhu GQ, Kang YM. PVN Blockade of p44/42 MAPK Pathway Attenuates Salt-induced Hypertension through Modulating Neurotransmitters and Attenuating Oxidative Stress. Sci Rep 2017; 7:43038. [PMID: 28225041 PMCID: PMC5320530 DOI: 10.1038/srep43038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 01/18/2017] [Indexed: 11/09/2022] Open
Abstract
The imbalance of neurotransmitters and excessive oxidative stress responses contribute to the pathogenesis of hypertension. In this study, we determined whether blockade of p44/42 MAPK pathway in the hypothalamic paraventricular nucleus (PVN) ameliorates the development of hypertension through modulating neurotransmitters and attenuating oxidative stress. Dahl salt-sensitive (S) rats received a high-salt diet (HS, 8% NaCl) or a normal-salt diet (NS, 0.3% NaCl) for 6 weeks and were treated with bilateral PVN infusion of PD-98059 (0.025 μg/h), a p44/42 MAPK inhibitor, or vehicle via osmotic minipump. HS resulted in higher mean arterial pressure (MAP) and Fra-like (Fra-LI) activity, and plasma and PVN levels of norepinephrine (NE), tyrosine hydroxylase (TH), NOX2 and NOX4, lower PVN levels of gamma-aminobutyric acid (GABA), copper/zinc superoxide dismutase (Cu/Zn-SOD) and the 67-kDa isoform of glutamate decarboxylase (GAD67), as compared with NS group. PD-98059 infusion reduced NE, TH, NOX2 and NOX4 in the PVN, and induced Cu/Zn-SOD and GAD67 in the PVN. It suggests that PVN blockade of p44/42 MAPK attenuates hypertension through modulating neurotransmitters and attenuating oxidative stress.
Collapse
Affiliation(s)
- Hong-Li Gao
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China
| | - Xiao-Jing Yu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China
| | - Kai-Li Liu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China
| | - Xiao-Lian Shi
- Department of Pharmacology, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an 710061, China
| | - Jie Qi
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China
| | - Yan-Mei Chen
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China
| | - Yan Zhang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China
| | - Juan Bai
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China
| | - Qiu-Yue Yi
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China
| | - Zhi-Peng Feng
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China
| | - Wen-Sheng Chen
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Wei Cui
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jin-Jun Liu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China
| | - Guo-Qing Zhu
- Department of Physiology, Nanjing Medical University, Nanjing 210029, China
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China
| |
Collapse
|
11
|
Gao HL, Yu XJ, Qi J, Yi QY, Jing WH, Sun WY, Cui W, Mu JJ, Yuan ZY, Zhao XF, Liu KL, Zhu GQ, Shi XL, Liu JJ, Kang YM. Oral CoQ10 attenuates high salt-induced hypertension by restoring neurotransmitters and cytokines in the hypothalamic paraventricular nucleus. Sci Rep 2016; 6:30301. [PMID: 27452860 PMCID: PMC4958989 DOI: 10.1038/srep30301] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 07/04/2016] [Indexed: 01/26/2023] Open
Abstract
High salt intake leads to an increase in some proinflammatory cytokines and neurotransmitters involved in the pathogenesis of hypertension. The purpose of this work was to know if oral administration of anti-oxidant and free-radical scavenger CoQ10 may attenuate high salt-induced hypertension via regulating neurotransmitters and cytokines in the hypothalamic paraventricular nucleus (PVN). Adult male Sprague-Dawley (SD) rats were fed with a normal salt diet (NS, 0.3% NaCl) or a high salt diet (HS, 8% NaCl) for 15 weeks to induce hypertension. These rats received CoQ10 (10 mg/kg/day) dissolved in olive oil was given by gavage (10 mg/kg/day) for 15 weeks. HS resulted in higher mean arterial pressure (MAP) and the sympathetic nerve activity (RSNA). These HS rats had higher PVN levels of norepinephrine (NE), tyrosine hydroxylase (TH), interleukin (IL)-1β, NOX2 and NOX4, lower PVN levels of gamma-aminobutyric acid (GABA), IL-10, copper/zinc superoxide dismutase (Cu/Zn-SOD) and the 67-kDa isoform of glutamate decarboxylase (GAD67), as compared with NS group. CoQ10 supplementation reduced NE, TH, IL-1β, NOX2 and NOX4 in the PVN, and induced IL-10, Cu/Zn-SOD and GAD67 in the PVN. These findings suggest that CoQ10 supplementation restores neurotransmitters and cytokines in the PVN, thereby attenuating high salt-induced hypertension.
Collapse
Affiliation(s)
- Hong-Li Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cardiovascular Research Center, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Xiao-Jing Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cardiovascular Research Center, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Jie Qi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cardiovascular Research Center, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Qiu-Yue Yi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cardiovascular Research Center, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Wang-Hui Jing
- Department of Pharmaceutical Analysis, School of Pharmacy, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Wen-Yan Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cardiovascular Research Center, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Wei Cui
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Jian-Jun Mu
- Department of Cardiology, First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an 710061, China
| | - Zu-Yi Yuan
- Department of Cardiology, First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiu-Fang Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cardiovascular Research Center, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Kai-Li Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cardiovascular Research Center, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Guo-Qing Zhu
- Department of Physiology, Nanjing Medical University, Nanjing 210029, China
| | - Xiao-Lian Shi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cardiovascular Research Center, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China.,Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Jin-Jun Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cardiovascular Research Center, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cardiovascular Research Center, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| |
Collapse
|