1
|
Dhiyanesh B, Vijayalakshmi M, Saranya P, Viji D. EnsembleEdgeFusion: advancing semantic segmentation in microvascular decompression imaging with innovative ensemble techniques. Sci Rep 2025; 15:17892. [PMID: 40410312 PMCID: PMC12102392 DOI: 10.1038/s41598-025-02470-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 05/13/2025] [Indexed: 05/25/2025] Open
Abstract
Semantic segmentation involves an imminent part in the investigation of medical images, particularly in the domain of microvascular decompression, where publicly available datasets are scarce, and expert annotation is demanding. In response to this challenge, this study presents a meticulously curated dataset comprising 2003 RGB microvascular decompression images, each intricately paired with annotated masks. Extensive data preprocessing and augmentation strategies were employed to fortify the training dataset, enhancing the robustness of proposed deep learning model. Numerous up-to-date semantic segmentation approaches, including DeepLabv3+, U-Net, DilatedFastFCN with JPU, DANet, and a custom Vanilla architecture, were trained and evaluated using diverse performance metrics. Among these models, DeepLabv3 + emerged as a strong contender, notably excelling in F1 score. Innovatively, ensemble techniques, such as stacking and bagging, were introduced to further elevate segmentation performance. Bagging, notably with the Naïve Bayes approach, exhibited significant improvements, underscoring the potential of ensemble methods in medical image segmentation. The proposed EnsembleEdgeFusion technique exhibited superior loss reduction during training compared to DeepLabv3 + and achieved maximum Mean Intersection over Union (MIoU) scores of 77.73%, surpassing other models. Category-wise analysis affirmed its superiority in accurately delineating various categories within the test dataset.
Collapse
Affiliation(s)
- B Dhiyanesh
- Department of Computer Science and Engineering (ETech), SRM Institute of Science and Technology, Vadapalani Campus, Chennai, Tamil Nadu, India.
| | - M Vijayalakshmi
- Department of Computing Technologies, SRM Institute of Science and Technology, Kattankulathur, Chennai, India
| | - P Saranya
- Department of Computational Intelligence, SRM Institute of Science and Technology, Kattankulathur, Chennai, India
| | - D Viji
- Department of Computing Technologies, SRM Institute of Science and Technology, Kattankulathur, Chennai, India
| |
Collapse
|
2
|
Almaslamani M, Byun BH, Song K, Kong CB, Woo SK. PET image nonuniformity texture features for metastasis risk prediction in osteosarcoma. Nucl Med Commun 2025:00006231-990000000-00422. [PMID: 40325963 DOI: 10.1097/mnm.0000000000001989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
OBJECTIVE PET image analysis provides tumor heterogeneity data related to neoadjuvant chemotherapy response (NACR) and metastatic risk in osteosarcoma. Ki-67 expression is used to predict metastasis. The accuracy of prediction models with image quantitative features can be improved by including genetic information. Here, we aimed to evaluate the accuracy of a combination of heterogeneous 18F-fluorodeoxyglucose PET image texture features and Ki-67 expression as predictive indicators of metastasis. METHODS PET images and clinical data of 82 patients with osteosarcoma before and after treatment were collected. Quantitative features were extracted from the PET images obtained before treatment, and the area under the receiver operating characteristic curve (AUC) for NACR and metastatic event was calculated. Relative risk and odds analyses of the quantitative features of the entire image were performed. Kaplan-Meier survival analysis was performed to determine the relationship between image quantitative features and clinical information. The machine learning prediction model was evaluated using valid image quantitative features and various algorithms of the univariate analysis. RESULTS Forty-seven image textures were obtained. The AUC values were 0.504-0.62 for NACR and 0.510-0.598 for metastatic events. The NACR and metastatic risk were related to the gray-level run length matrix (GLRLM) run length nonuniformity (RLNU) (relative risk: 1.3846, P = 0.0138 for NACR; relative risk: 2.1284, P = 0.049 for metastatic event) in the univariate analysis. The accuracy of the prediction model using the random forest algorithm with GLRLM RLNU, Ki-67 expression, and NACR was 0.91 for metastatic risk. NACR and metastatic risk were predicted with high accuracy using the nonuniformity in PET image texture. CONCLUSION Combining PET image texture nonuniformity with Ki-67 expression and clinical data can enhance the accuracy of metastasis prediction in osteosarcoma. This multimodal approach may support metastasis risk prediction in osteosarcoma and aid in personalized treatment planning.
Collapse
Affiliation(s)
- Muath Almaslamani
- Radiological and Medico-Oncological Sciences, University of Science and Technology, Daejeon, Republic of Korea
- Division of Applied RI, Korea Institute of Radiological and Medical Science, Seoul, Republic of Korea
| | - Byung-Hyun Byun
- Department of Nuclear Medicine, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Kanghyon Song
- Department of Nuclear Medicine, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Chang-Bae Kong
- Department of Nuclear Medicine, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Sang-Keun Woo
- Radiological and Medico-Oncological Sciences, University of Science and Technology, Daejeon, Republic of Korea
- Division of Applied RI, Korea Institute of Radiological and Medical Science, Seoul, Republic of Korea
| |
Collapse
|
3
|
Gupta A, Bajaj S, Nema P, Purohit A, Kashaw V, Soni V, Kashaw SK. Potential of AI and ML in oncology research including diagnosis, treatment and future directions: A comprehensive prospective. Comput Biol Med 2025; 189:109918. [PMID: 40037170 DOI: 10.1016/j.compbiomed.2025.109918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 02/21/2025] [Accepted: 02/23/2025] [Indexed: 03/06/2025]
Abstract
Artificial intelligence (AI) and machine learning (ML) have emerged as transformative tools in cancer research, offering the ability to process huge data rapidly and make precise therapeutic decisions. Over the last decade, AI, particularly deep learning (DL) and machine learning (ML), has significantly enhanced cancer prediction, diagnosis, and treatment by leveraging algorithms such as convolutional neural networks (CNNs) and multi-layer perceptrons (MLPs). These technologies provide reliable, efficient solutions for managing aggressive diseases like cancer, which have high recurrence and mortality rates. This review prospective highlights the applications of AI in oncology, a long with FDA-approved technologies like EFAI RTSuite CT HN-Segmentation System, Quantib Prostate, and Paige Prostate, and explore their role in advancing cancer detection, personalized care, and treatment. Furthermore, we also explored broader applications of AI in healthcare, addressing challenges, limitations, regulatory considerations, and ethical implications. By presenting these advancements, we underscore AI's potential to revolutionize cancer care, management and treatment.
Collapse
Affiliation(s)
- Akanksha Gupta
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar, Madya Pradesh, 470003, India.
| | - Samyak Bajaj
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar, Madya Pradesh, 470003, India.
| | - Priyanshu Nema
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar, Madya Pradesh, 470003, India.
| | - Arpana Purohit
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar, Madya Pradesh, 470003, India.
| | - Varsha Kashaw
- Sagar Institute of Pharmaceutical Sciences, Sagar, M.P., India.
| | - Vandana Soni
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar, Madya Pradesh, 470003, India.
| | - Sushil K Kashaw
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar, Madya Pradesh, 470003, India.
| |
Collapse
|
4
|
Mela E, Tsapralis D, Papaconstantinou D, Sakarellos P, Vergadis C, Klontzas ME, Rouvelas I, Tzortzakakis A, Schizas D. Current Role of Artificial Intelligence in the Management of Esophageal Cancer. J Clin Med 2025; 14:1845. [PMID: 40142652 PMCID: PMC11943403 DOI: 10.3390/jcm14061845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/03/2025] [Accepted: 03/07/2025] [Indexed: 03/28/2025] Open
Abstract
Background/Objectives: Esophageal cancer (EC) represents a major global contributor to cancer-related mortality. The advent of artificial intelligence (AI), including machine learning, deep learning, and radiomics, holds promise for enhancing treatment decisions and predicting outcomes. The aim of this review is to present an overview of the current landscape and future perspectives of AI in the management of EC. Methods: A literature search was performed on MEDLINE using the following keywords: "Artificial Intelligence", "Esophageal cancer", "Barrett's esophagus", "Esophageal Adenocarcinoma", and "Esophageal Squamous cell carcinoma". All titles and abstracts were screened; the results included 41 studies. Results: Over the past five years, the number of studies focusing on the application of AI to the treatment and prognosis of EC has surged, leveraging increasingly larger datasets with external validation. The simultaneous incorporation in AI models of clinical factors and features from several imaging modalities displays improved predictive performance, which may enhance patient outcomes, based on direct personalized therapeutic options. However, clinicians and researchers must address existing limitations, conduct randomized controlled trials, and consider the ethical and legal aspects that arise to establish AI as a standard decision-support tool. Conclusions: AI applications may result in substantial advances in EC management, heralding a new era. Considering the complexity of EC as a clinical entity, the evolving potential of AI is anticipated to ameliorate patients' quality of life and survival rates.
Collapse
Affiliation(s)
- Evgenia Mela
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, 11527 Athens, Greece;
| | - Dimitrios Tsapralis
- Department of Surgery, General Hospital of Ierapetra, 72200 Ierapetra, Greece;
| | - Dimitrios Papaconstantinou
- Third Department of Surgery, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece;
| | - Panagiotis Sakarellos
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, 11527 Athens, Greece;
| | | | - Michail E. Klontzas
- Department for Clinical Science, Intervention and Technology (CLINTEC), Division of Radiology, Karolinska Institutet, 14152 Stockholm, Sweden; (M.E.K.); (A.T.)
- Department of Medical Imaging, University Hospital of Heraklion, 71500 Crete, Greece
- Computational BioMedicine Laboratory, Institute of Computer Science, Foundation for Research and Technology (FORTH), 71500 Heraklion, Greece
- Department of Radiology, School of Medicine, University of Crete, Voutes Campus, 70013 Heraklion, Greece
| | - Ioannis Rouvelas
- Department of Clinical Science, Intervention and Technology (CLINTEC), Division of Surgery and Oncology, Karolinska Institutet, 14152 Stockholm, Sweden;
- Department of Upper Abdominal Diseases, Karolinska University Hospital, Huddinge, 14152 Stockholm, Sweden
| | - Antonios Tzortzakakis
- Department for Clinical Science, Intervention and Technology (CLINTEC), Division of Radiology, Karolinska Institutet, 14152 Stockholm, Sweden; (M.E.K.); (A.T.)
- Medical Radiation Physics and Nuclear Medicine, Section for Nuclear Medicine, Karolinska University Hospital, Huddinge, 14152 Stockholm, Sweden
| | - Dimitrios Schizas
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, 11527 Athens, Greece;
| |
Collapse
|
5
|
Wang M, Yang Z, Zhao R. Advancing lung cancer diagnosis: Combining 3D auto-encoders and attention mechanisms for CT scan analysis. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2025; 33:376-392. [PMID: 39973792 DOI: 10.1177/08953996241313120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
ObjectiveThe goal of this study is to assess the effectiveness of a hybrid deep learning model that combines 3D Auto-encoders with attention mechanisms to detect lung cancer early from CT scan images. The study aims to improve diagnostic accuracy, sensitivity, and specificity by focusing on key features in the scans.Materials and methodsA hybrid model was developed that combines feature extraction using 3D Auto-encoder networks with attention mechanisms. First, the 3D Auto-encoder model was tested without attention, using feature selection techniques such as RFE, LASSO, and ANOVA. This was followed by evaluation using several classifiers: SVM, RF, GBM, MLP, LightGBM, XGBoost, Stacking, and Voting. The model's performance was evaluated based on accuracy, sensitivity, F1-Score, and AUC-ROC. After that, attention mechanisms were added to help the model focus on important areas in the CT scans, and the performance was re-assessed.ResultsThe 3D Auto-encoder model without attention achieved an accuracy of 93% and sensitivity of 89%. When attention mechanisms were added, the performance improved across all metrics. For example, the accuracy of SVM increased to 94%, sensitivity to 91%, and AUC-ROC to 0.96. Random Forest (RF) also showed improvements, with accuracy rising to 94% and AUC-ROC to 0.93. The final model with attention improved the overall accuracy to 93.4%, sensitivity to 90.2%, and AUC-ROC to 94.1%. These results highlight the important role of attention in identifying the most relevant features for accurate classification.ConclusionsThe proposed hybrid deep learning model, especially with the addition of attention mechanisms, significantly improves the early detection of lung cancer. By focusing on key features in the CT scans, the attention mechanism helps reduce false negatives and boosts overall diagnostic accuracy. This approach has great potential for use in clinical applications, particularly in the early-stage detection of lung cancer.
Collapse
Affiliation(s)
- Meng Wang
- Department of Radiotherapy, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zi Yang
- Department of Nuclear Medicine, Shanghai Pulmonology Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ruifeng Zhao
- Department of Nuclear Medicine, Shanghai Pulmonology Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
6
|
Smith CLC, Zwezerijnen GJC, Wiegers SE, Jauw YWS, Lugtenburg PJ, Zijlstra JM, Yaqub M, Boellaard R. Feasibility of Using 18F-FDG PET/CT Radiomics and Machine Learning to Detect Drug-Induced Interstitial Lung Disease. Diagnostics (Basel) 2024; 14:2531. [PMID: 39594197 PMCID: PMC11592839 DOI: 10.3390/diagnostics14222531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/04/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Bleomycin is an oncolytic and antibiotic agent used to treat various human cancers because of its antitumor activity. Unfortunately, up to 46% of the patients treated with bleomycin develop drug-induced interstitial lung disease (DIILD) and potentially life-threatening interstitial pulmonary fibrosis. Tools and biomarkers for predicting and detecting DIILD are limited. Therefore, we aimed to evaluate the feasibility of 18F-FDG PET/CT, PET radiomics, and machine learning in distinguishing DIILD in an explorative pilot study. METHODS Eighteen Hodgkin's lymphoma (HL) patients, of whom 10 developed DIILD after treatment with bleomycin, were retrospectively included. Five diffuse large B-cell lymphoma (DLBCL) patients were included as a control group since they were not treated with bleomycin. All patients underwent 18F-FDG PET/CT scans before (baseline) and during treatment (interim). Structural changes were assessed by changes in Hounsfield Units (HUs). The 18F-FDG PET scans were used to assess metabolic changes by examining the feasibility of 504 radiomics features, including the mean activity of the lungs (SUVmean). A Random Forest (RF) classifier evaluated the identification and prediction of DIILD based on PET radiomics features. RESULTS HL patients who developed DIILD showed a significant increase in standard SUV metrics (SUVmean; p = 0.012, median increase 37.4%), and in some regional PET radiomics features (texture strength; p = 0.009, median increase 101.6% and zone distance entropy; p = 0.019, median increase 18.5%), while this was not found in HL patients who did not develop DIILD and DLBCL patients. The RF classifier correctly identified DIILD in 72.2% of the patients and predicted the development of DIILD correctly in 50% of the patients. There were no significant differences in HUs over time within all three patient groups. CONCLUSIONS Our explorative longitudinal pilot study suggests that certain regional 18F-FDG PET radiomics features can effectively identify DIILD in HL patients treated with bleomycin, as significant longitudinal increases were observed in SUVmean, texture strength, and zone distance entropy after the development of DIILD. The metabolic activity of these features did not significantly increase over time in DLBCL patients and HL patients who did not develop DIILD. This indicates that 18F-FDG PET radiomics, with and without machine learning, might serve as potential biomarkers for detecting DIILD.
Collapse
Affiliation(s)
- Charlotte L. C. Smith
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Imaging and Biomarkers, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Gerben J. C. Zwezerijnen
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Imaging and Biomarkers, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Sanne E. Wiegers
- Imaging and Biomarkers, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
- Department of Hematology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Yvonne W. S. Jauw
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Imaging and Biomarkers, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
- Department of Hematology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Pieternella J. Lugtenburg
- Department of Hematology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 CN Rotterdam, The Netherlands
| | - Josée M. Zijlstra
- Imaging and Biomarkers, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
- Department of Hematology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Maqsood Yaqub
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Imaging and Biomarkers, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Ronald Boellaard
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Imaging and Biomarkers, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
7
|
Sun Y, Ge X, Niu R, Gao J, Shi Y, Shao X, Wang Y, Shao X. PET/CT radiomics and deep learning in the diagnosis of benign and malignant pulmonary nodules: progress and challenges. Front Oncol 2024; 14:1491762. [PMID: 39582533 PMCID: PMC11581934 DOI: 10.3389/fonc.2024.1491762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/25/2024] [Indexed: 11/26/2024] Open
Abstract
Lung cancer is currently the leading cause of cancer-related deaths, and early diagnosis and screening can significantly reduce its mortality rate. Since some early-stage lung cancers lack obvious clinical symptoms and only present as pulmonary nodules (PNs) in imaging examinations, accurately determining the benign or malignant nature of PNs is crucial for improving patient survival rates. 18F-FDG PET/CT is important in diagnosing PNs, but its specificity needs improvement. Radiomics can provide information beyond traditional visual assessment, overcoming its limitations by extracting high-throughput quantitative features from medical images. Radiomics features based on 18F-FDG PET/CT and deep learning methods have shown great potential in the noninvasive diagnosis of PNs. This paper reviews the latest advancements in these methods and discusses their contributions to improving diagnostic accuracy and the challenges they face.
Collapse
Affiliation(s)
- Yan Sun
- Department of Nuclear Medicine, the Third Affiliated Hospital of Soochow University, Changzhou, China
- Institute of Clinical Translation of Nuclear Medicine and Molecular Imaging, Soochow University, Changzhou, China
- Department of Nuclear Medicine, Changzhou Clinical Medical Center, Changzhou, China
| | - Xinyu Ge
- Department of Nuclear Medicine, the Third Affiliated Hospital of Soochow University, Changzhou, China
- Institute of Clinical Translation of Nuclear Medicine and Molecular Imaging, Soochow University, Changzhou, China
- Department of Nuclear Medicine, Changzhou Clinical Medical Center, Changzhou, China
| | - Rong Niu
- Department of Nuclear Medicine, the Third Affiliated Hospital of Soochow University, Changzhou, China
- Institute of Clinical Translation of Nuclear Medicine and Molecular Imaging, Soochow University, Changzhou, China
- Department of Nuclear Medicine, Changzhou Clinical Medical Center, Changzhou, China
| | - Jianxiong Gao
- Department of Nuclear Medicine, the Third Affiliated Hospital of Soochow University, Changzhou, China
- Institute of Clinical Translation of Nuclear Medicine and Molecular Imaging, Soochow University, Changzhou, China
- Department of Nuclear Medicine, Changzhou Clinical Medical Center, Changzhou, China
| | - Yunmei Shi
- Department of Nuclear Medicine, the Third Affiliated Hospital of Soochow University, Changzhou, China
- Institute of Clinical Translation of Nuclear Medicine and Molecular Imaging, Soochow University, Changzhou, China
- Department of Nuclear Medicine, Changzhou Clinical Medical Center, Changzhou, China
| | - Xiaoliang Shao
- Department of Nuclear Medicine, the Third Affiliated Hospital of Soochow University, Changzhou, China
- Institute of Clinical Translation of Nuclear Medicine and Molecular Imaging, Soochow University, Changzhou, China
- Department of Nuclear Medicine, Changzhou Clinical Medical Center, Changzhou, China
| | - Yuetao Wang
- Department of Nuclear Medicine, the Third Affiliated Hospital of Soochow University, Changzhou, China
- Institute of Clinical Translation of Nuclear Medicine and Molecular Imaging, Soochow University, Changzhou, China
- Department of Nuclear Medicine, Changzhou Clinical Medical Center, Changzhou, China
| | - Xiaonan Shao
- Department of Nuclear Medicine, the Third Affiliated Hospital of Soochow University, Changzhou, China
- Institute of Clinical Translation of Nuclear Medicine and Molecular Imaging, Soochow University, Changzhou, China
- Department of Nuclear Medicine, Changzhou Clinical Medical Center, Changzhou, China
| |
Collapse
|
8
|
Li S, Hamdi M, Dutta K, Fraum TJ, Luo J, Laforest R, Shoghi KI. FAST (fast analytical simulator of tracer)-PET: an accurate and efficient PET analytical simulation tool. Phys Med Biol 2024; 69:165020. [PMID: 39047765 DOI: 10.1088/1361-6560/ad6743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/23/2024] [Indexed: 07/27/2024]
Abstract
Objective.Simulation of positron emission tomography (PET) images is an essential tool in the development and validation of quantitative imaging workflows and advanced image processing pipelines. Existing Monte Carlo or analytical PET simulators often compromise on either efficiency or accuracy. We aim to develop and validate fast analytical simulator of tracer (FAST)-PET, a novel analytical framework, to simulate PET images accurately and efficiently.Approach. FAST-PET simulates PET images by performing precise forward projection, scatter, and random estimation that match the scanner geometry and statistics. Although the same process should be applicable to other scanner models, we focus on the Siemens Biograph Vision-600 in this work. Calibration and validation of FAST-PET were performed through comparison with an experimental scan of a National Electrical Manufacturers Association (NEMA) Image Quality (IQ) phantom. Further validation was conducted between FAST-PET and Geant4 Application for Tomographic Emission (GATE) quantitatively in clinical image simulations in terms of intensity-based and texture-based features and task-based tumor segmentation.Main results.According to the NEMA IQ phantom simulation, FAST-PET's simulated images exhibited partial volume effects and noise levels comparable to experimental images, with a relative bias of the recovery coefficient RC within 10% for all spheres and a coefficient of variation for the background region within 6% across various acquisition times. FAST-PET generated clinical PET images exhibit high quantitative accuracy and texture comparable to GATE (correlation coefficients of all features over 0.95) but with ∼100-fold lower computation time. The tumor segmentation masks comparison between both methods exhibited significant overlap and shape similarity with high concordance CCC > 0.97 across measures.Significance.FAST-PET generated PET images with high quantitative accuracy comparable to GATE, making it ideal for applications requiring extensive PET image simulations such as virtual imaging trials, and the development and validation of image processing pipelines.
Collapse
Affiliation(s)
- Suya Li
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, United States of America
- Imaging Science Program, McKelvey School of Engineering, Washington University in St Louis, St Louis, MO, United States of America
| | - Mahdjoub Hamdi
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, United States of America
| | - Kaushik Dutta
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, United States of America
- Imaging Science Program, McKelvey School of Engineering, Washington University in St Louis, St Louis, MO, United States of America
| | - Tyler J Fraum
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, United States of America
| | - Jingqin Luo
- Department of Surgery, Washington University School of Medicine, St Louis, MO, United States of America
| | - Richard Laforest
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, United States of America
- Imaging Science Program, McKelvey School of Engineering, Washington University in St Louis, St Louis, MO, United States of America
| | - Kooresh I Shoghi
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, United States of America
- Imaging Science Program, McKelvey School of Engineering, Washington University in St Louis, St Louis, MO, United States of America
- Department of Biomedical Engineering, Washington University in St Louis, St Louis, MO, United States of America
| |
Collapse
|
9
|
Bangolo A, Wadhwani N, Nagesh VK, Dey S, Tran HHV, Aguilar IK, Auda A, Sidiqui A, Menon A, Daoud D, Liu J, Pulipaka SP, George B, Furman F, Khan N, Plumptre A, Sekhon I, Lo A, Weissman S. Impact of artificial intelligence in the management of esophageal, gastric and colorectal malignancies. Artif Intell Gastrointest Endosc 2024; 5:90704. [DOI: 10.37126/aige.v5.i2.90704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/28/2024] [Accepted: 03/04/2024] [Indexed: 05/11/2024] Open
Abstract
The incidence of gastrointestinal malignancies has increased over the past decade at an alarming rate. Colorectal and gastric cancers are the third and fifth most commonly diagnosed cancers worldwide but are cited as the second and third leading causes of mortality. Early institution of appropriate therapy from timely diagnosis can optimize patient outcomes. Artificial intelligence (AI)-assisted diagnostic, prognostic, and therapeutic tools can assist in expeditious diagnosis, treatment planning/response prediction, and post-surgical prognostication. AI can intercept neoplastic lesions in their primordial stages, accurately flag suspicious and/or inconspicuous lesions with greater accuracy on radiologic, histopathological, and/or endoscopic analyses, and eliminate over-dependence on clinicians. AI-based models have shown to be on par, and sometimes even outperformed experienced gastroenterologists and radiologists. Convolutional neural networks (state-of-the-art deep learning models) are powerful computational models, invaluable to the field of precision oncology. These models not only reliably classify images, but also accurately predict response to chemotherapy, tumor recurrence, metastasis, and survival rates post-treatment. In this systematic review, we analyze the available evidence about the diagnostic, prognostic, and therapeutic utility of artificial intelligence in gastrointestinal oncology.
Collapse
Affiliation(s)
- Ayrton Bangolo
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Nikita Wadhwani
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Vignesh K Nagesh
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Shraboni Dey
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Hadrian Hoang-Vu Tran
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Izage Kianifar Aguilar
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Auda Auda
- Department of Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Aman Sidiqui
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Aiswarya Menon
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Deborah Daoud
- Department of Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - James Liu
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Sai Priyanka Pulipaka
- Department of Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Blessy George
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Flor Furman
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Nareeman Khan
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Adewale Plumptre
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Imranjot Sekhon
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Abraham Lo
- Department of Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Simcha Weissman
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| |
Collapse
|
10
|
Yang Z, Guan F, Bronk L, Zhao L. Multi-omics approaches for biomarker discovery in predicting the response of esophageal cancer to neoadjuvant therapy: A multidimensional perspective. Pharmacol Ther 2024; 254:108591. [PMID: 38286161 DOI: 10.1016/j.pharmthera.2024.108591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/02/2023] [Accepted: 01/04/2024] [Indexed: 01/31/2024]
Abstract
Neoadjuvant chemoradiotherapy (NCRT) followed by surgery has been established as the standard treatment strategy for operable locally advanced esophageal cancer (EC). However, achieving pathologic complete response (pCR) or near pCR to NCRT is significantly associated with a considerable improvement in survival outcomes, while pCR patients may help organ preservation for patients by active surveillance to avoid planned surgery. Thus, there is an urgent need for improved biomarkers to predict EC chemoradiation response in research and clinical settings. Advances in multiple high-throughput technologies such as next-generation sequencing have facilitated the discovery of novel predictive biomarkers, specifically based on multi-omics data, including genomic/transcriptomic sequencings and proteomic/metabolomic mass spectra. The application of multi-omics data has shown the benefits in improving the understanding of underlying mechanisms of NCRT sensitivity/resistance in EC. Particularly, the prominent development of artificial intelligence (AI) has introduced a new direction in cancer research. The integration of multi-omics data has significantly advanced our knowledge of the disease and enabled the identification of valuable biomarkers for predicting treatment response from diverse dimension levels, especially with rapid advances in biotechnological and AI methodologies. Herein, we summarize the current status of research on the use of multi-omics technologies in predicting NCRT response for EC patients. Current limitations, challenges, and future perspectives of these multi-omics platforms will be addressed to assist in experimental designs and clinical use for further integrated analysis.
Collapse
Affiliation(s)
- Zhi Yang
- Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, 15 West Changle Road, Xi'an, China
| | - Fada Guan
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06510, United States of America
| | - Lawrence Bronk
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States of America
| | - Lina Zhao
- Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, 15 West Changle Road, Xi'an, China.
| |
Collapse
|
11
|
Ge X, Gao J, Niu R, Shi Y, Shao X, Wang Y, Shao X. New research progress on 18F-FDG PET/CT radiomics for EGFR mutation prediction in lung adenocarcinoma: a review. Front Oncol 2023; 13:1242392. [PMID: 38094613 PMCID: PMC10716448 DOI: 10.3389/fonc.2023.1242392] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/16/2023] [Indexed: 11/09/2024] Open
Abstract
Lung cancer, the most frequently diagnosed cancer worldwide, is the leading cause of cancer-associated deaths. In recent years, significant progress has been achieved in basic and clinical research concerning the epidermal growth factor receptor (EGFR), and the treatment of lung adenocarcinoma has also entered a new era of individualized, targeted therapies. However, the detection of lung adenocarcinoma is usually invasive. 18F-FDG PET/CT can be used as a noninvasive molecular imaging approach, and radiomics can acquire high-throughput data from standard images. These methods play an increasingly prominent role in diagnosing and treating cancers. Herein, we reviewed the progress in applying 18F-FDG PET/CT and radiomics in lung adenocarcinoma clinical research and how these data are analyzed via traditional statistics, machine learning, and deep learning to predict EGFR mutation status, all of which achieved satisfactory results. Traditional statistics extract features effectively, machine learning achieves higher accuracy with complex algorithms, and deep learning obtains significant results through end-to-end methods. Future research should combine these methods to achieve more accurate predictions, providing reliable evidence for the precision treatment of lung adenocarcinoma. At the same time, facing challenges such as data insufficiency and high algorithm complexity, future researchers must continuously explore and optimize to better apply to clinical practice.
Collapse
Affiliation(s)
- Xinyu Ge
- Department of Nuclear Medicine, the Third Affiliated Hospital of Soochow University, Changzhou, China
- Institute of Clinical Translation of Nuclear Medicine and Molecular Imaging, Soochow University, Changzhou, China
- Department of Nuclear Medicine, Changzhou Clinical Medical Center, Changzhou, China
| | - Jianxiong Gao
- Department of Nuclear Medicine, the Third Affiliated Hospital of Soochow University, Changzhou, China
- Institute of Clinical Translation of Nuclear Medicine and Molecular Imaging, Soochow University, Changzhou, China
- Department of Nuclear Medicine, Changzhou Clinical Medical Center, Changzhou, China
| | - Rong Niu
- Department of Nuclear Medicine, the Third Affiliated Hospital of Soochow University, Changzhou, China
- Institute of Clinical Translation of Nuclear Medicine and Molecular Imaging, Soochow University, Changzhou, China
- Department of Nuclear Medicine, Changzhou Clinical Medical Center, Changzhou, China
| | - Yunmei Shi
- Department of Nuclear Medicine, the Third Affiliated Hospital of Soochow University, Changzhou, China
- Institute of Clinical Translation of Nuclear Medicine and Molecular Imaging, Soochow University, Changzhou, China
- Department of Nuclear Medicine, Changzhou Clinical Medical Center, Changzhou, China
| | - Xiaoliang Shao
- Department of Nuclear Medicine, the Third Affiliated Hospital of Soochow University, Changzhou, China
- Institute of Clinical Translation of Nuclear Medicine and Molecular Imaging, Soochow University, Changzhou, China
- Department of Nuclear Medicine, Changzhou Clinical Medical Center, Changzhou, China
| | - Yuetao Wang
- Department of Nuclear Medicine, the Third Affiliated Hospital of Soochow University, Changzhou, China
- Institute of Clinical Translation of Nuclear Medicine and Molecular Imaging, Soochow University, Changzhou, China
- Department of Nuclear Medicine, Changzhou Clinical Medical Center, Changzhou, China
| | - Xiaonan Shao
- Department of Nuclear Medicine, the Third Affiliated Hospital of Soochow University, Changzhou, China
- Institute of Clinical Translation of Nuclear Medicine and Molecular Imaging, Soochow University, Changzhou, China
- Department of Nuclear Medicine, Changzhou Clinical Medical Center, Changzhou, China
| |
Collapse
|
12
|
Yap WK, Hsiao IT, Yap WL, Tsai TY, Lu YA, Yang CK, Peng MT, Su EL, Cheng SC. A Radiotherapy Dose Map-Guided Deep Learning Method for Predicting Pathological Complete Response in Esophageal Cancer Patients after Neoadjuvant Chemoradiotherapy Followed by Surgery. Biomedicines 2023; 11:3072. [PMID: 38002072 PMCID: PMC10669191 DOI: 10.3390/biomedicines11113072] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/28/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Esophageal cancer is a deadly disease, and neoadjuvant chemoradiotherapy can improve patient survival, particularly for patients achieving a pathological complete response (ypCR). However, existing imaging methods struggle to accurately predict ypCR. This study explores computer-aided detection methods, considering both imaging data and radiotherapy dose variations to enhance prediction accuracy. It involved patients with node-positive esophageal squamous cell carcinoma undergoing neoadjuvant chemoradiotherapy and surgery, with data collected from 2014 to 2017, randomly split into five subsets for 5-fold cross-validation. The algorithm DCRNet, an advanced version of OCRNet, integrates RT dose distribution into dose contextual representations (DCR), combining dose and pixel representation with ten soft regions. Among the 80 enrolled patients (mean age 55.68 years, primarily male, with stage III disease and middle-part lesions), the ypCR rate was 28.75%, showing no significant demographic or disease differences between the ypCR and non-ypCR groups. Among the three summarization methods, the maximum value across the CTV method produced the best results with an AUC of 0.928. The HRNetV2p model with DCR performed the best among the four backbone models tested, with an AUC of 0.928 (95% CI, 0.884-0.972) based on 5-fold cross-validation, showing significant improvement compared to other models. This underscores DCR-equipped models' superior AUC outcomes. The study highlights the potential of dose-guided deep learning in ypCR prediction, necessitating larger, multicenter studies to validate the results.
Collapse
Affiliation(s)
- Wing-Keen Yap
- Department of Radiation Oncology, Proton and Radiation Therapy Center, Chang Gung Memorial Hospital—Linkou Medical Center, 5 Fu-Shin Street, Kwei-Shan, Taoyuan 333, Taiwan
| | - Ing-Tsung Hsiao
- Department of Medical Imaging and Radiological Sciences, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan
| | - Wing-Lake Yap
- Department of Post Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Tsung-You Tsai
- Department of Otolaryngology—Head and Neck Surgery, Chang Gung Memorial Hospital—Linkou Medical Center, 5 Fu-Shin Street, Kwei-Shan, Taoyuan 333, Taiwan
| | - Yi-An Lu
- Department of Otolaryngology—Head and Neck Surgery, Chang Gung Memorial Hospital—Linkou Medical Center, 5 Fu-Shin Street, Kwei-Shan, Taoyuan 333, Taiwan
| | - Chan-Keng Yang
- Division of Hematology and Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou Branch, Chang Gung University College of Medicine, Taoyuan 333, Taiwan
| | - Meng-Ting Peng
- Division of Hematology and Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou Branch, Chang Gung University College of Medicine, Taoyuan 333, Taiwan
| | - En-Lin Su
- Department of School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | | |
Collapse
|
13
|
Merchán Gómez B, Milla Collado L, Rodríguez M. Artificial intelligence in esophageal cancer diagnosis and treatment: where are we now?-a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:353. [PMID: 37675332 PMCID: PMC10477654 DOI: 10.21037/atm-22-3977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 04/21/2023] [Indexed: 09/08/2023]
Abstract
Background and Objective Artificial intelligence (AI) use is becoming increasingly prevalent directly or indirectly in daily clinical practice, including esophageal cancer (EC) diagnosis and treatment. Although the limits of its adoption and their clinical benefits are still unknown, any physician related to EC patients' management should be aware of the status and future perspectives of AI use in their field. The purpose of this review is to summarize the existing literature regarding the role of AI in diagnosis and treatment of EC. We have focused on the aids AI entails in the management of this pathology and we have tried to offer an updated perspective to maximize current applications and to identify potential future uses of it. Methods Data concerning AI applied to EC diagnosis and treatment is not limited, including direct (those specifically related to them) and indirect (those referring to other specialties as radiology or pathology), applications. However, the clinical relevance of the discussed and presented models is still unknown. We performed a research in PubMed of English and Spanish written studies from January 1970 to June 2022. Key Content and Findings Information regarding the role of AI in EC diagnosis and treatment has increased exponentially in recent years. Several models, including different variables and features have been investigated and some of them internally and externally validated. However, the main challenge remains to apply and introduce all these data into clinical practice, and, as some of the discussed studies argue, if the models are able to enhance experienced endoscopists' judgement. Although AI use is increasing steadily in different medical specialties, the truth is, most of the time, the gap between model development and clinical implementation is not closed. Learning to understand the routinely application of AI, as well as future improvements, would lead to a broadened adoption. Conclusions Physicians should be aware of the multiple current clinical uses of AI in EC diagnosis and treatment and should take part in their clinical application and future developments to enhance patient care.
Collapse
Affiliation(s)
| | | | - María Rodríguez
- Thoracic Surgery Department, Clínica Universidad de Navarra, Madrid, Spain
| |
Collapse
|
14
|
Menon N, Guidozzi N, Chidambaram S, Markar SR. Performance of radiomics-based artificial intelligence systems in the diagnosis and prediction of treatment response and survival in esophageal cancer: a systematic review and meta-analysis of diagnostic accuracy. Dis Esophagus 2023; 36:doad034. [PMID: 37236811 PMCID: PMC10789236 DOI: 10.1093/dote/doad034] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/04/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023]
Abstract
Radiomics can interpret radiological images with more detail and in less time compared to the human eye. Some challenges in managing esophageal cancer can be addressed by incorporating radiomics into image interpretation, treatment planning, and predicting response and survival. This systematic review and meta-analysis provides a summary of the evidence of radiomics in esophageal cancer. The systematic review was carried out using Pubmed, MEDLINE, and Ovid EMBASE databases-articles describing radiomics in esophageal cancer were included. A meta-analysis was also performed; 50 studies were included. For the assessment of treatment response using 18F-FDG PET/computed tomography (CT) scans, seven studies (443 patients) were included in the meta-analysis. The pooled sensitivity and specificity were 86.5% (81.1-90.6) and 87.1% (78.0-92.8). For the assessment of treatment response using CT scans, five studies (625 patients) were included in the meta-analysis, with a pooled sensitivity and specificity of 86.7% (81.4-90.7) and 76.1% (69.9-81.4). The remaining 37 studies formed the qualitative review, discussing radiomics in diagnosis, radiotherapy planning, and survival prediction. This review explores the wide-ranging possibilities of radiomics in esophageal cancer management. The sensitivities of 18F-FDG PET/CT scans and CT scans are comparable, but 18F-FDG PET/CT scans have improved specificity for AI-based prediction of treatment response. Models integrating clinical and radiomic features facilitate diagnosis and survival prediction. More research is required into comparing models and conducting large-scale studies to build a robust evidence base.
Collapse
Affiliation(s)
- Nainika Menon
- Department of General Surgery, Oxford University Hospitals, Oxford, UK
| | - Nadia Guidozzi
- Department of General Surgery, University of Witwatersrand, Johannesburg, South Africa
| | - Swathikan Chidambaram
- Academic Surgical Unit, Department of Surgery and Cancer, Imperial College London, St Mary’s Hospital, London, UK
| | - Sheraz Rehan Markar
- Department of General Surgery, Oxford University Hospitals, Oxford, UK
- Nuffield Department of Surgery, University of Oxford, Oxford, UK
| |
Collapse
|
15
|
Avery EW, Joshi K, Mehra S, Mahajan A. Role of PET/CT in Oropharyngeal Cancers. Cancers (Basel) 2023; 15:2651. [PMID: 37174116 PMCID: PMC10177278 DOI: 10.3390/cancers15092651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/03/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Oropharyngeal squamous cell carcinoma (OPSCC) comprises cancers of the tonsils, tongue base, soft palate, and uvula. The staging of oropharyngeal cancers varies depending upon the presence or absence of human papillomavirus (HPV)-directed pathogenesis. The incidence of HPV-associated oropharyngeal cancer (HPV + OPSCC) is expected to continue to rise over the coming decades. PET/CT is a useful modality for the diagnosis, staging, and follow up of patients with oropharyngeal cancers undergoing treatment and surveillance.
Collapse
Affiliation(s)
- Emily W. Avery
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Kavita Joshi
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Saral Mehra
- Department of Otolaryngology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Amit Mahajan
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
16
|
Bouhamama A, Leporq B, Faraz K, Foy JP, Boussageon M, Pérol M, Ortiz-Cuaran S, Ghiringhelli F, Saintigny P, Beuf O, Pilleul F. Radiomics combined with transcriptomics to predict response to immunotherapy from patients treated with PD-1/PD-L1 inhibitors for advanced NSCLC. FRONTIERS IN RADIOLOGY 2023; 3:1168448. [PMID: 37492391 PMCID: PMC10365090 DOI: 10.3389/fradi.2023.1168448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/31/2023] [Indexed: 07/27/2023]
Abstract
Introduction In this study, we aim to build radiomics and multiomics models based on transcriptomics and radiomics to predict the response from patients treated with the PD-L1 inhibitor. Materials and methods One hundred and ninety-five patients treated with PD-1/PD-L1 inhibitors were included. For all patients, 342 radiomic features were extracted from pretreatment computed tomography scans. The training set was built with 110 patients treated at the Léon Bérard Cancer Center. An independent validation cohort was built with the 85 patients treated in Dijon. The two sets were dichotomized into two classes, patients with disease control and those considered non-responders, in order to predict the disease control at 3 months. Various models were trained with different feature selection methods, and different classifiers were evaluated to build the models. In a second exploratory step, we used transcriptomics to enrich the database and develop a multiomic signature of response to immunotherapy in a 54-patient subgroup. Finally, we considered the HOT/COLD status. We first trained a radiomic model to predict the HOT/COLD status and then prototyped a hybrid model integrating radiomics and the HOT/COLD status to predict the response to immunotherapy. Results Radiomic signature for 3 months' progression-free survival (PFS) classification: The most predictive model had an area under the receiver operating characteristic curve (AUROC) of 0.94 on the training set and 0.65 on the external validation set. This model was obtained with the t-test selection method and with a support vector machine (SVM) classifier. Multiomic signature for PFS classification: The most predictive model had an AUROC of 0.95 on the training set and 0.99 on the validation set. Radiomic model to predict the HOT/COLD status: the most predictive model had an AUROC of 0.93 on the training set and 0.86 on the validation set. HOT/COLD radiomic hybrid model for PFS classification: the most predictive model had an AUROC of 0.93 on the training set and 0.90 on the validation set. Conclusion In conclusion, radiomics could be used to predict the response to immunotherapy in non-small-cell lung cancer patients. The use of transcriptomics or the HOT/COLD status, together with radiomics, may improve the working of the prediction models.
Collapse
Affiliation(s)
- Amine Bouhamama
- Department of Radiology, Centre Léon Bérard, Lyon, France
- Creatis, University Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, Creatis, UMR 5220, U1206, Lyon, France
| | - Benjamin Leporq
- Creatis, University Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, Creatis, UMR 5220, U1206, Lyon, France
| | - Khuram Faraz
- Creatis, University Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, Creatis, UMR 5220, U1206, Lyon, France
| | - Jean-Philippe Foy
- Department of Oral and Maxillofacial Surgery, Sorbonne Université, Pitié-Salpêtrière Hospital, APHP, Paris, France
| | | | - Maurice Pérol
- Department of Medical Oncology, Centre Léon Bérard, Lyon, France
| | - Sandra Ortiz-Cuaran
- CRCL, University Lyon, Claude Bernard Lyon 1 University, Inserm 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | | | - Pierre Saintigny
- Department of Medical Oncology, Centre Léon Bérard, Lyon, France
- CRCL, University Lyon, Claude Bernard Lyon 1 University, Inserm 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Olivier Beuf
- Creatis, University Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, Creatis, UMR 5220, U1206, Lyon, France
| | - Frank Pilleul
- Department of Radiology, Centre Léon Bérard, Lyon, France
- Creatis, University Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, Creatis, UMR 5220, U1206, Lyon, France
| |
Collapse
|
17
|
Kawashima Y, Miyakoshi M, Kawabata Y, Indo H. Efficacy of texture analysis of ultrasonographic images in the differentiation of metastatic and non-metastatic cervical lymph nodes in patients with squamous cell carcinoma of the tongue. Oral Surg Oral Med Oral Pathol Oral Radiol 2023:S2212-4403(23)00439-X. [PMID: 37353468 DOI: 10.1016/j.oooo.2023.04.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/13/2023] [Accepted: 04/23/2023] [Indexed: 06/25/2023]
Abstract
OBJECTIVE We investigated the efficacy of using texture analysis of ultrasonographic images of the cervical lymph nodes of patients with squamous cell carcinoma of the tongue to differentiate between metastatic and non-metastatic lymph nodes. STUDY DESIGN We analyzed 32 metastatic and 28 non-metastatic lymph nodes diagnosed by histopathologic examination on presurgical US images. Using the LIFEx texture analysis program, we extracted 36 texture features from the images and calculated the statistical significance of differences in texture features between metastatic and non-metastatic lymph nodes using the t test. To assess the diagnostic ability of the significantly different texture features to discriminate between metastatic and non-metastatic nodes, we performed receiver operating characteristic curve analysis and calculated the area under the curve. We set the cutoff points that maximized the sensitivity and specificity for each curve according to the Youden J statistic. RESULTS We found that 20 texture features significantly differed between metastatic and non-metastatic lymph nodes. Among them, only the gray-level run length matrix feature of run length non-uniformity and the gray-level zone length matrix features of gray-level non-uniformity and zone length non-uniformity showed an excellent ability to discriminate between metastatic and non-metastatic lymph nodes as indicated by the area under the curve and the sum of sensitivity and specificity. CONCLUSIONS Analysis of the texture features of run length non-uniformity, gray-level non-uniformity, and zone length non-uniformity values allows for differentiation between metastatic and non-metastatic lymph nodes, with the use of gray-level non-uniformity appearing to be the best means of predicting metastatic lymph nodes.
Collapse
Affiliation(s)
- Yusuke Kawashima
- Department of Maxillofacial Radiology, Kagoshima University Graduate School of Medical and Dental Sciences Field of Oncology, Kagoshima, Japan.
| | - Masaaki Miyakoshi
- Department of Maxillofacial Radiology, Kagoshima University Graduate School of Medical and Dental Sciences Field of Oncology, Kagoshima, Japan
| | - Yoshihiro Kawabata
- Department of Maxillofacial Radiology, Kagoshima University Graduate School of Medical and Dental Sciences Field of Oncology, Kagoshima, Japan
| | - Hiroko Indo
- Department of Maxillofacial Radiology, Kagoshima University Graduate School of Medical and Dental Sciences Field of Oncology, Kagoshima, Japan
| |
Collapse
|
18
|
Liu J, Yang X, Mao X, Wang T, Zheng X, Feng G, Dai T, Du X. Predicting the efficacy of radiotherapy for esophageal squamous cell carcinoma based on enhanced computed tomography radiomics and combined models. Front Oncol 2023; 13:1089365. [PMID: 37007134 PMCID: PMC10061127 DOI: 10.3389/fonc.2023.1089365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/24/2023] [Indexed: 03/18/2023] Open
Abstract
PurposeThis study aimed to investigate the ability of enhanced computed tomography (CT)-based radiomics and dosimetric parameters in predicting response to radiotherapy for esophageal cancer.MethodsA retrospective analysis of 147 patients diagnosed with esophageal cancer was performed, and the patients were divided into a training group (104 patients) and a validation group (43 patients). In total, 851 radiomics features were extracted from the primary lesions for analysis. Maximum correlation minimum redundancy and minimum least absolute shrinkage and selection operator were utilized for feature screening of radiomics features, and logistic regression was applied to construct a radiotherapy radiomics model for esophageal cancer. Finally, univariate and multivariate parameters were used to identify significant clinical and dosimetric characteristics for constructing combination models. The area evaluated the predictive performance under the receiver operating characteristics (AUC) curve and the accuracy, sensitivity, and specificity of the training and validation cohorts.ResultsUnivariate logistic regression analysis revealed statistically significant differences in clinical parameters of sex (p=0.031) and esophageal cancer thickness (p=0.028) on treatment response, whereas dosimetric parameters did not differ significantly in response to treatment. The combined model demonstrated improved discrimination between the training and validation groups, with AUCs of 0.78 (95% confidence interval [CI], 0.69–0.87) and 0.79 (95% CI, 0.65–0.93) in the training and validation groups, respectively.ConclusionThe combined model has potential application value in predicting the treatment response of patients with esophageal cancer after radiotherapy.
Collapse
|
19
|
Dai J, Wang H, Xu Y, Chen X, Tian R. Clinical application of AI-based PET images in oncological patients. Semin Cancer Biol 2023; 91:124-142. [PMID: 36906112 DOI: 10.1016/j.semcancer.2023.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023]
Abstract
Based on the advantages of revealing the functional status and molecular expression of tumor cells, positron emission tomography (PET) imaging has been performed in numerous types of malignant diseases for diagnosis and monitoring. However, insufficient image quality, the lack of a convincing evaluation tool and intra- and interobserver variation in human work are well-known limitations of nuclear medicine imaging and restrict its clinical application. Artificial intelligence (AI) has gained increasing interest in the field of medical imaging due to its powerful information collection and interpretation ability. The combination of AI and PET imaging potentially provides great assistance to physicians managing patients. Radiomics, an important branch of AI applied in medical imaging, can extract hundreds of abstract mathematical features of images for further analysis. In this review, an overview of the applications of AI in PET imaging is provided, focusing on image enhancement, tumor detection, response and prognosis prediction and correlation analyses with pathology or specific gene mutations in several types of tumors. Our aim is to describe recent clinical applications of AI-based PET imaging in malignant diseases and to focus on the description of possible future developments.
Collapse
Affiliation(s)
- Jiaona Dai
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hui Wang
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuchao Xu
- School of Nuclear Science and Technology, University of South China, Hengyang City 421001, China
| | - Xiyang Chen
- Division of Vascular Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Rong Tian
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
20
|
Zhang H, Wang S, Deng Z, Li Y, Yang Y, Huang H. Computed tomography-based radiomics machine learning models for prediction of histological invasiveness with sub-centimeter subsolid pulmonary nodules: a retrospective study. PeerJ 2023; 11:e14559. [PMID: 36643621 PMCID: PMC9838201 DOI: 10.7717/peerj.14559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/21/2022] [Indexed: 01/12/2023] Open
Abstract
To improve the accuracy of preoperative diagnoses and avoid over- or undertreatment, we aimed to develop and compare computed tomography-based radiomics machine learning models for the prediction of histological invasiveness using sub-centimeter subsolid pulmonary nodules. Three predictive models based on radiomics were built using three machine learning classifiers to discriminate the invasiveness of the sub-centimeter subsolid pulmonary nodules. A total of 203 sub-centimeter nodules from 177 patients were collected and assigned randomly to the training set (n = 143) or test set (n = 60). The areas under the curve of the predictive models were 0.743 (95% confidence interval CI [0.661-0.824]) for the logistic regression, 0.828 (95% CI [0.76-0.896]) for the support vector machine, and 0.917 (95% CI [0.869-0.965]) for the XGBoost classifier models in the training set, and 0.803 (95% CI [0.694-0.913]), 0.726 (95% CI [0.598-0.854]), and 0.874 (95% CI [0.776-0.972]) in the test set, respectively. In addition, the decision curve showed that the XGBoost model added more net benefit within the range of 0.06 to 0.93.
Collapse
|
21
|
Hatt M, Krizsan AK, Rahmim A, Bradshaw TJ, Costa PF, Forgacs A, Seifert R, Zwanenburg A, El Naqa I, Kinahan PE, Tixier F, Jha AK, Visvikis D. Joint EANM/SNMMI guideline on radiomics in nuclear medicine : Jointly supported by the EANM Physics Committee and the SNMMI Physics, Instrumentation and Data Sciences Council. Eur J Nucl Med Mol Imaging 2023; 50:352-375. [PMID: 36326868 PMCID: PMC9816255 DOI: 10.1007/s00259-022-06001-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/09/2022] [Indexed: 11/05/2022]
Abstract
PURPOSE The purpose of this guideline is to provide comprehensive information on best practices for robust radiomics analyses for both hand-crafted and deep learning-based approaches. METHODS In a cooperative effort between the EANM and SNMMI, we agreed upon current best practices and recommendations for relevant aspects of radiomics analyses, including study design, quality assurance, data collection, impact of acquisition and reconstruction, detection and segmentation, feature standardization and implementation, as well as appropriate modelling schemes, model evaluation, and interpretation. We also offer an outlook for future perspectives. CONCLUSION Radiomics is a very quickly evolving field of research. The present guideline focused on established findings as well as recommendations based on the state of the art. Though this guideline recognizes both hand-crafted and deep learning-based radiomics approaches, it primarily focuses on the former as this field is more mature. This guideline will be updated once more studies and results have contributed to improved consensus regarding the application of deep learning methods for radiomics. Although methodological recommendations in the present document are valid for most medical image modalities, we focus here on nuclear medicine, and specific recommendations when necessary are made for PET/CT, PET/MR, and quantitative SPECT.
Collapse
Affiliation(s)
- M Hatt
- LaTIM, INSERM, UMR 1101, Univ Brest, Brest, France
| | | | - A Rahmim
- Departments of Radiology and Physics, University of British Columbia, Vancouver, BC, Canada
| | - T J Bradshaw
- Department of Radiology, University of Wisconsin, Madison, WI, USA
| | - P F Costa
- Department of Nuclear Medicine, West German Cancer Center, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | | | - R Seifert
- Department of Nuclear Medicine, West German Cancer Center, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany.
- Department of Nuclear Medicine, Münster University Hospital, Münster, Germany.
| | - A Zwanenburg
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- National Center for Tumor Diseases (NCT/UCC), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - I El Naqa
- Department of Machine Learning, Moffitt Cancer Center, Tampa, FL, 33626, USA
| | - P E Kinahan
- Imaging Research Laboratory, PET/CT Physics, Department of Radiology, UW Medical Center, University of Washington, Seattle, WA, USA
| | - F Tixier
- LaTIM, INSERM, UMR 1101, Univ Brest, Brest, France
| | - A K Jha
- McKelvey School of Engineering and Mallinckrodt Institute of Radiology, Washington University in St. Louis, Saint Louis, MO, USA
| | - D Visvikis
- LaTIM, INSERM, UMR 1101, Univ Brest, Brest, France
| |
Collapse
|
22
|
Wong PK, Chan IN, Yan HM, Gao S, Wong CH, Yan T, Yao L, Hu Y, Wang ZR, Yu HH. Deep learning based radiomics for gastrointestinal cancer diagnosis and treatment: A minireview. World J Gastroenterol 2022; 28:6363-6379. [PMID: 36533112 PMCID: PMC9753055 DOI: 10.3748/wjg.v28.i45.6363] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/25/2022] [Accepted: 11/16/2022] [Indexed: 12/02/2022] Open
Abstract
Gastrointestinal (GI) cancers are the major cause of cancer-related mortality globally. Medical imaging is an important auxiliary means for the diagnosis, assessment and prognostic prediction of GI cancers. Radiomics is an emerging and effective technology to decipher the encoded information within medical images, and traditional machine learning is the most commonly used tool. Recent advances in deep learning technology have further promoted the development of radiomics. In the field of GI cancer, although there are several surveys on radiomics, there is no specific review on the application of deep-learning-based radiomics (DLR). In this review, a search was conducted on Web of Science, PubMed, and Google Scholar with an emphasis on the application of DLR for GI cancers, including esophageal, gastric, liver, pancreatic, and colorectal cancers. Besides, the challenges and recommendations based on the findings of the review are comprehensively analyzed to advance DLR.
Collapse
Affiliation(s)
- Pak Kin Wong
- Department of Electromechanical Engineering, University of Macau, Taipa 999078, Macau, China
| | - In Neng Chan
- Department of Electromechanical Engineering, University of Macau, Taipa 999078, Macau, China
| | - Hao-Ming Yan
- School of Clinical Medicine, China Medical University, Shenyang 110013, Liaoning Province, China
| | - Shan Gao
- Department of Gastroenterology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441021, Hubei Province, China
| | - Chi Hong Wong
- Faculty of Medicine, Macau University of Science and Technology, Taipa 999078, Macau, China
| | - Tao Yan
- School of Mechanical Engineering, Hubei University of Arts and Science, Xiangyang 441053, Hubei Province, China
| | - Liang Yao
- Department of Electromechanical Engineering, University of Macau, Taipa 999078, Macau, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong Province, China
| | - Ying Hu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong Province, China
| | - Zhong-Ren Wang
- School of Mechanical Engineering, Hubei University of Arts and Science, Xiangyang 441053, Hubei Province, China
| | - Hon Ho Yu
- Department of Gastroenterology, Kiang Wu Hospital, Macau 999078, China
| |
Collapse
|
23
|
Nakajo M, Takeda A, Katsuki A, Jinguji M, Ohmura K, Tani A, Sato M, Yoshiura T. The efficacy of 18F-FDG-PET-based radiomic and deep-learning features using a machine-learning approach to predict the pathological risk subtypes of thymic epithelial tumors. Br J Radiol 2022; 95:20211050. [PMID: 35312337 PMCID: PMC10996420 DOI: 10.1259/bjr.20211050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 02/28/2022] [Accepted: 03/14/2022] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE To examine whether the machine-learning approach using 18-fludeoxyglucose positron emission tomography (18F-FDG-PET)-based radiomic and deep-learning features is useful for predicting the pathological risk subtypes of thymic epithelial tumors (TETs). METHODS This retrospective study included 79 TET [27 low-risk thymomas (types A, AB and B1), 31 high-risk thymomas (types B2 and B3) and 21 thymic carcinomas] patients who underwent pre-therapeutic 18F-FDG-PET/CT. High-risk TETs (high-risk thymomas and thymic carcinomas) were 52 patients. The 107 PET-based radiomic features, including SUV-related parameters [maximum SUV (SUVmax), metabolic tumor volume (MTV), and total lesion glycolysis (TLG)] and 1024 deep-learning features extracted from the convolutional neural network were used to predict the pathological risk subtypes of TETs using six different machine-learning algorithms. The area under the curves (AUCs) were calculated to compare the predictive performances. RESULTS SUV-related parameters yielded the following AUCs for predicting thymic carcinomas: SUVmax 0.713, MTV 0.442, and TLG 0.479 or high-risk TETs: SUVmax 0.673, MTV 0.533, and TLG 0.539. The best-performing algorithm was the logistic regression model for predicting thymic carcinomas (AUC 0.900, accuracy 81.0%), and the random forest (RF) model for high-risk TETs (AUC 0.744, accuracy 72.2%). The AUC was significantly higher in the logistic regression model than three SUV-related parameters for predicting thymic carcinomas, and in the RF model than MTV and TLG for predicting high-risk TETs (each; p < 0.05). CONCLUSION 18F-FDG-PET-based radiomic analysis using a machine-learning approach may be useful for predicting the pathological risk subtypes of TETs. ADVANCES IN KNOWLEDGE Machine-learning approach using 18F-FDG-PET-based radiomic features has the potential to predict the pathological risk subtypes of TETs.
Collapse
Affiliation(s)
- Masatoyo Nakajo
- Department of Radiology, Kagoshima University, Graduate School
of Medical and Dental Sciences,
Kagoshima, Japan
| | - Aya Takeda
- Department of General Thoracic Surgery, Kagoshima University,
Graduate School of Medical and Dental Sciences,
Kagoshima, Japan
| | - Akie Katsuki
- Research and Development Department, GE Healthcare
Japan, Tokyo,
Japan
| | - Megumi Jinguji
- Department of Radiology, Kagoshima University, Graduate School
of Medical and Dental Sciences,
Kagoshima, Japan
| | - Kazuyuki Ohmura
- Research and Development Department, GE Healthcare
Japan, Tokyo,
Japan
| | - Atsushi Tani
- Department of Radiology, Kagoshima University, Graduate School
of Medical and Dental Sciences,
Kagoshima, Japan
| | - Masami Sato
- Department of General Thoracic Surgery, Kagoshima University,
Graduate School of Medical and Dental Sciences,
Kagoshima, Japan
| | - Takashi Yoshiura
- Department of Radiology, Kagoshima University, Graduate School
of Medical and Dental Sciences,
Kagoshima, Japan
| |
Collapse
|
24
|
Morland D, Triumbari EKA, Boldrini L, Gatta R, Pizzuto D, Annunziata S. Radiomics in Oncological PET Imaging: A Systematic Review-Part 2, Infradiaphragmatic Cancers, Blood Malignancies, Melanoma and Musculoskeletal Cancers. Diagnostics (Basel) 2022; 12:diagnostics12061330. [PMID: 35741139 PMCID: PMC9222024 DOI: 10.3390/diagnostics12061330] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 12/04/2022] Open
Abstract
The objective of this review was to summarize published radiomics studies dealing with infradiaphragmatic cancers, blood malignancies, melanoma, and musculoskeletal cancers, and assess their quality. PubMed database was searched from January 1990 to February 2022 for articles performing radiomics on PET imaging of at least 1 specified tumor type. Exclusion criteria includd: non-oncological studies; supradiaphragmatic tumors; reviews, comments, cases reports; phantom or animal studies; technical articles without a clinically oriented question; studies including <30 patients in the training cohort. The review database contained PMID, first author, year of publication, cancer type, number of patients, study design, independent validation cohort and objective. This database was completed twice by the same person; discrepant results were resolved by a third reading of the articles. A total of 162 studies met inclusion criteria; 61 (37.7%) studies included >100 patients, 13 (8.0%) were prospective and 61 (37.7%) used an independent validation set. The most represented cancers were esophagus, lymphoma, and cervical cancer (n = 24, n = 24 and n = 19 articles, respectively). Most studies focused on 18F-FDG, and prognostic and response to treatment objectives. Although radiomics and artificial intelligence are technically challenging, new contributions and guidelines help improving research quality over the years and pave the way toward personalized medicine.
Collapse
Affiliation(s)
- David Morland
- Unità di Medicina Nucleare, TracerGLab, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (E.K.A.T.); (D.P.); (S.A.)
- Service de Médecine Nucléaire, Institut Godinot, 51100 Reims, France
- Laboratoire de Biophysique, UFR de Médecine, Université de Reims Champagne-Ardenne, 51100 Reims, France
- CReSTIC (Centre de Recherche en Sciences et Technologies de l’Information et de la Communication), EA 3804, Université de Reims Champagne-Ardenne, 51100 Reims, France
- Correspondence:
| | - Elizabeth Katherine Anna Triumbari
- Unità di Medicina Nucleare, TracerGLab, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (E.K.A.T.); (D.P.); (S.A.)
| | - Luca Boldrini
- Unità di Radioterapia Oncologica, Radiomics, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (L.B.); (R.G.)
| | - Roberto Gatta
- Unità di Radioterapia Oncologica, Radiomics, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (L.B.); (R.G.)
- Department of Clinical and Experimental Sciences, University of Brescia, 25121 Brescia, Italy
- Department of Oncology, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Daniele Pizzuto
- Unità di Medicina Nucleare, TracerGLab, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (E.K.A.T.); (D.P.); (S.A.)
| | - Salvatore Annunziata
- Unità di Medicina Nucleare, TracerGLab, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (E.K.A.T.); (D.P.); (S.A.)
| |
Collapse
|
25
|
Clinical Perspectives for 18F-FDG PET Imaging in Pediatric Oncology: Μetabolic Tumor Volume and Radiomics. Metabolites 2022; 12:metabo12030217. [PMID: 35323660 PMCID: PMC8956064 DOI: 10.3390/metabo12030217] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 11/17/2022] Open
Abstract
Pediatric cancer, although rare, requires the most optimized treatment approach to obtain high survival rates and minimize serious long-term side effects in early adulthood. 18F-FDG PET/CT is most helpful and widely used in staging, recurrence detection, and response assessment in pediatric oncology. The well-known 18F-FDG PET metabolic indices of metabolic tumor volume (MTV) and tumor lesion glycolysis (TLG) have already revealed an independent significant prognostic value for survival in oncologic patients, although the corresponding cut-off values remain study-dependent and not validated for use in clinical practice. Advanced tumor “radiomic” analysis sheds new light into these indices. Numerous patterns of texture 18F-FDG uptake features can be extracted from segmented PET tumor images due to new powerful computational systems supporting complex “deep learning” algorithms. This high number of “quantitative” tumor imaging data, although not decrypted in their majority and once standardized for the different imaging systems and segmentation methods, could be used for the development of new “clinical” models for specific cancer types and, more interestingly, for specific age groups. In addition, data from novel techniques of tumor genome analysis could reveal new genes as biomarkers for prognosis and/or targeted therapies in childhood malignancies. Therefore, this ever-growing information of “radiogenomics”, in which the underlying tumor “genetic profile” could be expressed in the tumor-imaging signature of “radiomics”, possibly represents the next model for precision medicine in pediatric cancer management. This paper reviews 18F-FDG PET image segmentation methods as applied to pediatric sarcomas and lymphomas and summarizes reported findings on the values of metabolic and radiomic features in the assessment of these pediatric tumors.
Collapse
|
26
|
Nakajo M, Jinguji M, Tani A, Yano E, Hoo CK, Hirahara D, Togami S, Kobayashi H, Yoshiura T. Machine learning based evaluation of clinical and pretreatment 18F-FDG-PET/CT radiomic features to predict prognosis of cervical cancer patients. Abdom Radiol (NY) 2022; 47:838-847. [PMID: 34821963 DOI: 10.1007/s00261-021-03350-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 05/25/2021] [Accepted: 11/09/2021] [Indexed: 01/22/2023]
Abstract
PURPOSE To examine the usefulness of machine learning to predict prognosis in cervical cancer using clinical and radiomic features of 2-deoxy-2-[18F]fluoro-D-glucose (18F-FDG) positron emission tomography/computed tomography (CT) (18F-FDG-PET/CT). METHODS This retrospective study included 50 cervical cancer patients who underwent 18F-FDG-PET/CT before treatment. Four clinical (age, histology, stage, and treatment) and 41 18F-FDG-PET-based radiomic features were ranked and a subset of useful features for association with disease progression was selected based on decrease of the Gini impurity. Six machine learning algorithms (random forest, neural network, k-nearest neighbors, naive Bayes, logistic regression, and support vector machine) were compared using the areas under the receiver operating characteristic curve (AUC). Progression-free survival (PFS) was assessed using Cox regression analysis. RESULTS The five top predictors of disease progression were: stage, surface area, metabolic tumor volume, gray-level run length non-uniformity (GLRLM_RLNU), and gray-level non-uniformity for run (GLRLM_GLNU). The naive Bayes model was the best-performing classifier for predicting disease progression (AUC = 0.872, accuracy = 0.780, F1 score = 0.781, precision = 0.788, and recall = 0.780). In the naive Bayes model, 5-year PFS was significantly higher in predicted non-progression than predicted progression (80.1% vs. 9.1%, p < 0.001) and was only the independent factor for PFS in multivariate analysis (HR, 6.89; 95% CI, 1.92-24.69; p = 0.003). CONCLUSION A machine learning approach based on clinical and pretreatment 18F-FDG PET-based radiomic features may be useful for predicting tumor progression in cervical cancer patients.
Collapse
Affiliation(s)
- Masatoyo Nakajo
- Department of Radiology, Kagoshima University, Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan.
| | - Megumi Jinguji
- Department of Radiology, Kagoshima University, Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Atsushi Tani
- Department of Radiology, Kagoshima University, Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Erina Yano
- Department of Radiology, Kagoshima University, Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Chin Khang Hoo
- Department of Radiology, Kagoshima University, Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Daisuke Hirahara
- Department of Management Planning Division, Harada Academy, 2-54-4 Higashitaniyama, Kagoshima, 890-0113, Japan
| | - Shinichi Togami
- Department of Obstetrics and Gynecology, Kagoshima University, Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Hiroaki Kobayashi
- Department of Obstetrics and Gynecology, Kagoshima University, Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Takashi Yoshiura
- Department of Radiology, Kagoshima University, Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| |
Collapse
|
27
|
Koyuncu B, Melek A, Yilmaz D, Tuzer M, Unlu MB. Chemotherapy response prediction with diffuser elapser network. Sci Rep 2022; 12:1628. [PMID: 35102179 PMCID: PMC8803972 DOI: 10.1038/s41598-022-05460-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 11/10/2021] [Indexed: 12/31/2022] Open
Abstract
In solid tumors, elevated fluid pressure and inadequate blood perfusion resulting from unbalanced angiogenesis are the prominent reasons for the ineffective drug delivery inside tumors. To normalize the heterogeneous and tortuous tumor vessel structure, antiangiogenic treatment is an effective approach. Additionally, the combined therapy of antiangiogenic agents and chemotherapy drugs has shown promising effects on enhanced drug delivery. However, the need to find the appropriate scheduling and dosages of the combination therapy is one of the main problems in anticancer therapy. Our study aims to generate a realistic response to the treatment schedule, making it possible for future works to use these patient-specific responses to decide on the optimal starting time and dosages of cytotoxic drug treatment. Our dataset is based on our previous in-silico model with a framework for the tumor microenvironment, consisting of a tumor layer, vasculature network, interstitial fluid pressure, and drug diffusion maps. In this regard, the chemotherapy response prediction problem is discussed in the study, putting forth a proof of concept for deep learning models to capture the tumor growth and drug response behaviors simultaneously. The proposed model utilizes multiple convolutional neural network submodels to predict future tumor microenvironment maps considering the effects of ongoing treatment. Since the model has the task of predicting future tumor microenvironment maps, we use two image quality evaluation metrics, which are structural similarity and peak signal-to-noise ratio, to evaluate model performance. We track tumor cell density values of ground truth and predicted tumor microenvironments. The model predicts tumor microenvironment maps seven days ahead with the average structural similarity score of 0.973 and the average peak signal ratio of 35.41 in the test set. It also predicts tumor cell density at the end day of 7 with the mean absolute percentage error of [Formula: see text].
Collapse
Affiliation(s)
- Batuhan Koyuncu
- Department of Computer Engineering, Bogazici University, Istanbul, 34342, Turkey
- Center for Life Sciences and Technologies, Bogazici University, Istanbul, 34342, Turkey
| | - Ahmet Melek
- Department of Management, Bogazici University, Istanbul, 34342, Turkey
- Center for Life Sciences and Technologies, Bogazici University, Istanbul, 34342, Turkey
| | - Defne Yilmaz
- Department of Physics, Bogazici University, Istanbul, 34342, Turkey
- Center for Life Sciences and Technologies, Bogazici University, Istanbul, 34342, Turkey
| | - Mert Tuzer
- Department of Physics, Bogazici University, Istanbul, 34342, Turkey
- Center for Life Sciences and Technologies, Bogazici University, Istanbul, 34342, Turkey
| | - Mehmet Burcin Unlu
- Department of Physics, Bogazici University, Istanbul, 34342, Turkey.
- Center for Life Sciences and Technologies, Bogazici University, Istanbul, 34342, Turkey.
- Hokkaido University, Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education (GI-CoRE), Sapporo, 060-8648, Japan.
| |
Collapse
|
28
|
Majumder A, Sen D. Artificial intelligence in cancer diagnostics and therapy: current perspectives. Indian J Cancer 2022; 58:481-492. [PMID: 34975094 DOI: 10.4103/ijc.ijc_399_20] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Artificial intelligence (AI) has found its way into every sphere of human life including the field of medicine. Detection of cancer might be AI's most altruistic and convoluted challenge to date in the field of medicine. Embedding AI into various aspects of cancer diagnostics would be of immense use in dealing with the tedious, repetitive, time-consuming job of lesion detection, remove opportunities for human error, and cut costs and time. This would be of great value in cancer screening programs. By using AI algorithms, data from digital images from radiology and pathology that are imperceptible to the human eye can be identified (radiomics and pathomics). Correlating radiomics and pathomics with clinico-demographic-therapy-morbidity-mortality profiles will lead to a greater understanding of cancers. Specific imaging phenotypes have been found to be associated with specific gene-determined molecular pathways involved in cancer pathogenesis (radiogenomics). All these developments would not only help to personalize oncologic practice but also lead to the development of new imaging biomarkers. AI algorithms in oncoimaging and oncopathology will broadly have the following uses: cancer screening (detection of lesions), characterization and grading of tumors, and clinical decision-making and prognostication. However, AI cannot be a foolproof panacea nor can it supplant the role of humans. It can however be a powerful and useful complement to human insights and deeper understanding. Multiple issues like standardization, validity, ethics, privacy, finances, legal liability, training, accreditation, etc., need to be overcome before the vast potential of AI in diagnostic oncology can be fully harnessed.
Collapse
Affiliation(s)
- Anusree Majumder
- Department of Pathology, Armed Forces Medical College and Command Hospital (Southern Command), Pune, Maharashtra, India
| | - Debraj Sen
- Department of Radiodiagnosis, Armed Forces Medical College and Command Hospital (Southern Command), Pune, Maharashtra, India
| |
Collapse
|
29
|
Methodological quality of machine learning-based quantitative imaging analysis studies in esophageal cancer: a systematic review of clinical outcome prediction after concurrent chemoradiotherapy. Eur J Nucl Med Mol Imaging 2021; 49:2462-2481. [PMID: 34939174 PMCID: PMC9206619 DOI: 10.1007/s00259-021-05658-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/12/2021] [Indexed: 10/24/2022]
Abstract
PURPOSE Studies based on machine learning-based quantitative imaging techniques have gained much interest in cancer research. The aim of this review is to critically appraise the existing machine learning-based quantitative imaging analysis studies predicting outcomes of esophageal cancer after concurrent chemoradiotherapy in accordance with PRISMA guidelines. METHODS A systematic review was conducted in accordance with PRISMA guidelines. The citation search was performed via PubMed and Embase Ovid databases for literature published before April 2021. From each full-text article, study characteristics and model information were summarized. We proposed an appraisal matrix with 13 items to assess the methodological quality of each study based on recommended best-practices pertaining to quality. RESULTS Out of 244 identified records, 37 studies met the inclusion criteria. Study endpoints included prognosis, treatment response, and toxicity after concurrent chemoradiotherapy with reported discrimination metrics in validation datasets between 0.6 and 0.9, with wide variation in quality. A total of 30 studies published within the last 5 years were evaluated for methodological quality and we found 11 studies with at least 6 "good" item ratings. CONCLUSION A substantial number of studies lacked prospective registration, external validation, model calibration, and support for use in clinic. To further improve the predictive power of machine learning-based models and translate into real clinical applications in cancer research, appropriate methodologies, prospective registration, and multi-institution validation are recommended.
Collapse
|
30
|
Yousefirizi F, Pierre Decazes, Amyar A, Ruan S, Saboury B, Rahmim A. AI-Based Detection, Classification and Prediction/Prognosis in Medical Imaging:: Towards Radiophenomics. PET Clin 2021; 17:183-212. [PMID: 34809866 DOI: 10.1016/j.cpet.2021.09.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Artificial intelligence (AI) techniques have significant potential to enable effective, robust, and automated image phenotyping including the identification of subtle patterns. AI-based detection searches the image space to find the regions of interest based on patterns and features. There is a spectrum of tumor histologies from benign to malignant that can be identified by AI-based classification approaches using image features. The extraction of minable information from images gives way to the field of "radiomics" and can be explored via explicit (handcrafted/engineered) and deep radiomics frameworks. Radiomics analysis has the potential to be used as a noninvasive technique for the accurate characterization of tumors to improve diagnosis and treatment monitoring. This work reviews AI-based techniques, with a special focus on oncological PET and PET/CT imaging, for different detection, classification, and prediction/prognosis tasks. We also discuss needed efforts to enable the translation of AI techniques to routine clinical workflows, and potential improvements and complementary techniques such as the use of natural language processing on electronic health records and neuro-symbolic AI techniques.
Collapse
Affiliation(s)
- Fereshteh Yousefirizi
- Department of Integrative Oncology, BC Cancer Research Institute, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada.
| | - Pierre Decazes
- Department of Nuclear Medicine, Henri Becquerel Centre, Rue d'Amiens - CS 11516 - 76038 Rouen Cedex 1, France; QuantIF-LITIS, Faculty of Medicine and Pharmacy, Research Building - 1st floor, 22 boulevard Gambetta, 76183 Rouen Cedex, France
| | - Amine Amyar
- QuantIF-LITIS, Faculty of Medicine and Pharmacy, Research Building - 1st floor, 22 boulevard Gambetta, 76183 Rouen Cedex, France; General Electric Healthcare, Buc, France
| | - Su Ruan
- QuantIF-LITIS, Faculty of Medicine and Pharmacy, Research Building - 1st floor, 22 boulevard Gambetta, 76183 Rouen Cedex, France
| | - Babak Saboury
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA; Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County, Baltimore, MD, USA; Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Arman Rahmim
- Department of Integrative Oncology, BC Cancer Research Institute, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada; Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada; Department of Physics, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
31
|
Satake H, Ishigaki S, Ito R, Naganawa S. Radiomics in breast MRI: current progress toward clinical application in the era of artificial intelligence. Radiol Med 2021; 127:39-56. [PMID: 34704213 DOI: 10.1007/s11547-021-01423-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/14/2021] [Indexed: 12/11/2022]
Abstract
Breast magnetic resonance imaging (MRI) is the most sensitive imaging modality for breast cancer diagnosis and is widely used clinically. Dynamic contrast-enhanced MRI is the basis for breast MRI, but ultrafast images, T2-weighted images, and diffusion-weighted images are also taken to improve the characteristics of the lesion. Such multiparametric MRI with numerous morphological and functional data poses new challenges to radiologists, and thus, new tools for reliable, reproducible, and high-volume quantitative assessments are warranted. In this context, radiomics, which is an emerging field of research involving the conversion of digital medical images into mineable data for clinical decision-making and outcome prediction, has been gaining ground in oncology. Recent development in artificial intelligence has promoted radiomics studies in various fields including breast cancer treatment and numerous studies have been conducted. However, radiomics has shown a translational gap in clinical practice, and many issues remain to be solved. In this review, we will outline the steps of radiomics workflow and investigate clinical application of radiomics focusing on breast MRI based on published literature, as well as current discussion about limitations and challenges in radiomics.
Collapse
Affiliation(s)
- Hiroko Satake
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan.
| | - Satoko Ishigaki
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Rintaro Ito
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| |
Collapse
|
32
|
Kim J, Jeong SY, Kim BC, Byun BH, Lim I, Kong CB, Song WS, Lim SM, Woo SK. Prediction of Neoadjuvant Chemotherapy Response in Osteosarcoma Using Convolutional Neural Network of Tumor Center 18F-FDG PET Images. Diagnostics (Basel) 2021; 11:diagnostics11111976. [PMID: 34829324 PMCID: PMC8617812 DOI: 10.3390/diagnostics11111976] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/14/2021] [Accepted: 10/20/2021] [Indexed: 12/24/2022] Open
Abstract
We compared the accuracy of prediction of the response to neoadjuvant chemotherapy (NAC) in osteosarcoma patients between machine learning approaches of whole tumor utilizing fluorine−18fluorodeoxyglucose (18F-FDG) uptake heterogeneity features and a convolutional neural network of the intratumor image region. In 105 patients with osteosarcoma, 18F-FDG positron emission tomography/computed tomography (PET/CT) images were acquired before (baseline PET0) and after NAC (PET1). Patients were divided into responders and non-responders about neoadjuvant chemotherapy. Quantitative 18F-FDG heterogeneity features were calculated using LIFEX version 4.0. Receiver operating characteristic (ROC) curve analysis of 18F-FDG uptake heterogeneity features was used to predict the response to NAC. Machine learning algorithms and 2-dimensional convolutional neural network (2D CNN) deep learning networks were estimated for predicting NAC response with the baseline PET0 images of the 105 patients. ML was performed using the entire tumor image. The accuracy of the 2D CNN prediction model was evaluated using total tumor slices, the center 20 slices, the center 10 slices, and center slice. A total number of 80 patients was used for k-fold validation by five groups with 16 patients. The CNN network test accuracy estimation was performed using 25 patients. The areas under the ROC curves (AUCs) for baseline PET maximum standardized uptake value (SUVmax), total lesion glycolysis (TLG), metabolic tumor volume (MTV), and gray level size zone matrix (GLSZM) were 0.532, 0.507, 0.510, and 0.626, respectively. The texture features test accuracy of machine learning by random forest and support vector machine were 0.55 and 0. 54, respectively. The k-fold validation accuracy and validation accuracy were 0.968 ± 0.01 and 0.610 ± 0.04, respectively. The test accuracy of total tumor slices, the center 20 slices, center 10 slices, and center slices were 0.625, 0.616, 0.628, and 0.760, respectively. The prediction model for NAC response with baseline PET0 texture features machine learning estimated a poor outcome, but the 2D CNN network using 18F-FDG baseline PET0 images could predict the treatment response before prior chemotherapy in osteosarcoma. Additionally, using the 2D CNN prediction model using a tumor center slice of 18F-FDG PET images before NAC can help decide whether to perform NAC to treat osteosarcoma patients.
Collapse
Affiliation(s)
- Jingyu Kim
- Radiological & Medico-Oncological Sciences, University of Science & Technology, Seoul 34113, Korea;
| | - Su Young Jeong
- College of Medicine, University of Ulsan, Seoul 05505, Korea;
| | - Byung-Chul Kim
- Department of Nuclear Medicine, Korea Institute of Radiology and Medical Sciences, Seoul 01812, Korea; (B.-C.K.); (B.-H.B.); (I.L.); (S.M.L.)
| | - Byung-Hyun Byun
- Department of Nuclear Medicine, Korea Institute of Radiology and Medical Sciences, Seoul 01812, Korea; (B.-C.K.); (B.-H.B.); (I.L.); (S.M.L.)
| | - Ilhan Lim
- Department of Nuclear Medicine, Korea Institute of Radiology and Medical Sciences, Seoul 01812, Korea; (B.-C.K.); (B.-H.B.); (I.L.); (S.M.L.)
| | - Chang-Bae Kong
- Department of Orthopedic Surgery, Korea Institute of Radiology and Medical Sciences, Seoul 01812, Korea; (C.-B.K.); (W.S.S.)
| | - Won Seok Song
- Department of Orthopedic Surgery, Korea Institute of Radiology and Medical Sciences, Seoul 01812, Korea; (C.-B.K.); (W.S.S.)
| | - Sang Moo Lim
- Department of Nuclear Medicine, Korea Institute of Radiology and Medical Sciences, Seoul 01812, Korea; (B.-C.K.); (B.-H.B.); (I.L.); (S.M.L.)
| | - Sang-Keun Woo
- Radiological & Medico-Oncological Sciences, University of Science & Technology, Seoul 34113, Korea;
- Department of Nuclear Medicine, Korea Institute of Radiology and Medical Sciences, Seoul 01812, Korea; (B.-C.K.); (B.-H.B.); (I.L.); (S.M.L.)
- Correspondence:
| |
Collapse
|
33
|
Brosch-Lenz J, Yousefirizi F, Zukotynski K, Beauregard JM, Gaudet V, Saboury B, Rahmim A, Uribe C. Role of Artificial Intelligence in Theranostics:: Toward Routine Personalized Radiopharmaceutical Therapies. PET Clin 2021; 16:627-641. [PMID: 34537133 DOI: 10.1016/j.cpet.2021.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
We highlight emerging uses of artificial intelligence (AI) in the field of theranostics, focusing on its significant potential to enable routine and reliable personalization of radiopharmaceutical therapies (RPTs). Personalized RPTs require patient-specific dosimetry calculations accompanying therapy. Additionally we discuss the potential to exploit biological information from diagnostic and therapeutic molecular images to derive biomarkers for absorbed dose and outcome prediction; toward personalization of therapies. We try to motivate the nuclear medicine community to expand and align efforts into making routine and reliable personalization of RPTs a reality.
Collapse
Affiliation(s)
- Julia Brosch-Lenz
- Department of Integrative Oncology, BC Cancer Research Institute, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada
| | - Fereshteh Yousefirizi
- Department of Integrative Oncology, BC Cancer Research Institute, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada
| | - Katherine Zukotynski
- Department of Medicine and Radiology, McMaster University, 1200 Main Street West, Hamilton, Ontario L9G 4X5, Canada
| | - Jean-Mathieu Beauregard
- Department of Radiology and Nuclear Medicine, Cancer Research Centre, Université Laval, 2325 Rue de l'Université, Québec City, Quebec G1V 0A6, Canada; Department of Medical Imaging, Research Center (Oncology Axis), CHU de Québec - Université Laval, 2325 Rue de l'Université, Québec City, Quebec G1V 0A6, Canada
| | - Vincent Gaudet
- Department of Electrical and Computer Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Babak Saboury
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA; Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, Baltimore, MD, USA; Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Arman Rahmim
- Department of Integrative Oncology, BC Cancer Research Institute, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada; Department of Radiology, University of British Columbia, 11th Floor, 2775 Laurel St, Vancouver, British Columbia V5Z 1M9, Canada; Department of Physics, University of British Columbia, 325 - 6224 Agricultural Road, Vancouver, British Columbia V6T 1Z1, Canada
| | - Carlos Uribe
- Department of Radiology, University of British Columbia, 11th Floor, 2775 Laurel St, Vancouver, British Columbia V5Z 1M9, Canada; Department of Functional Imaging, BC Cancer, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada.
| |
Collapse
|
34
|
Huang B, Lin X, Shen J, Chen X, Chen J, Li ZP, Wang M, Yuan C, Diao XF, Luo Y, Feng ST. Accurate and Feasible Deep Learning Based Semi-Automatic Segmentation in CT for Radiomics Analysis in Pancreatic Neuroendocrine Neoplasms. IEEE J Biomed Health Inform 2021; 25:3498-3506. [PMID: 33798088 DOI: 10.1109/jbhi.2021.3070708] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Current clinical practice or radiomics studies of pancreatic neuroendocrine neoplasms (pNENs) require manual delineation of the lesions in computed tomography (CT) images, which is time-consuming and subjective. We used a semi-automatic deep learning (DL) method for segmentation of pNENs and verified its feasibility in radiomics analysis. This retrospective study included two datasets: Dataset 1, contrast-enhanced CT images (CECT) of 80 and 18 patients respectively collected from two centers; and Dataset 2, CECT of 56 and 16 patients respectively from two centers. A DL-based semi-automatic segmentation model was developed and validated with Dataset 1 and Dataset 2, and the segmentation results were used for radiomics analysis from which the performance was compared against that based on manual segmentation. The mean Dice similarity coefficient of the trained segmentation model was 81.8% and 74.8% for external validation with Dataset 1 and Dataset 2 respectively. Four classifiers frequently used in radiomics studies were trained and tested with leave-one-out cross-validation strategy. For pathological grading prediction with Dataset 1, the area under the receiver operating characteristic curve (AUC) with semi-automatic segmentation was up to 0.76 and 0.87 respectively for internal and external validation. For recurrence study with Dataset 2, the AUC with semi-automatic segmentation was up to 0.78. All these AUCs were not statistically significant from the corresponding results based on manual segmentation. Our study showed that DL-based semi-automatic segmentation is accurate and feasible for the radiomics analysis in pNENs.
Collapse
|
35
|
Sitek A, Ahn S, Asma E, Chandler A, Ihsani A, Prevrhal S, Rahmim A, Saboury B, Thielemans K. Artificial Intelligence in PET: An Industry Perspective. PET Clin 2021; 16:483-492. [PMID: 34353746 DOI: 10.1016/j.cpet.2021.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Artificial intelligence (AI) has significant potential to positively impact and advance medical imaging, including positron emission tomography (PET) imaging applications. AI has the ability to enhance and optimize all aspects of the PET imaging chain from patient scheduling, patient setup, protocoling, data acquisition, detector signal processing, reconstruction, image processing, and interpretation. AI poses industry-specific challenges which will need to be addressed and overcome to maximize the future potentials of AI in PET. This article provides an overview of these industry-specific challenges for the development, standardization, commercialization, and clinical adoption of AI and explores the potential enhancements to PET imaging brought on by AI in the near future. In particular, the combination of on-demand image reconstruction, AI, and custom-designed data-processing workflows may open new possibilities for innovation which would positively impact the industry and ultimately patients.
Collapse
Affiliation(s)
- Arkadiusz Sitek
- Sano Centre for Computational Medicine, Nawojki 11 Street, Kraków 30-072, Poland.
| | - Sangtae Ahn
- GE Research, 1 Research Circle KWC-1310C, Niskayuna, NY 12309, USA
| | - Evren Asma
- Canon Medical Research, 706 N Deerpath Drive, Vernon Hills, IL 60061, USA
| | - Adam Chandler
- Global Scientific Collaborations Group, United Imaging Healthcare, America, 9230 Kirby Drive, Houston, TX 77054, USA
| | - Alvin Ihsani
- NVIDIA, 2 Technology Park Drive, Westford, MA 01886, USA
| | - Sven Prevrhal
- Philips Research Europe, Röntgenstr. 22, Hamburg 22335, Germany
| | - Arman Rahmim
- Department of Radiology, University of British Columbia, BC Cancer, BC Cancer Research Institute, 675 West 10th Avenue, Office 6-112, Vancouver, British Columbia V5Z 1L3, Canada; Department of Physics, University of British Columbia, BC Cancer, BC Cancer Research Institute, 675 West 10th Avenue, Office 6-112, Vancouver, British Columbia V5Z 1L3, Canada
| | - Babak Saboury
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA; Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, Baltimore, MD, USA; Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Kris Thielemans
- Institute of Nuclear Medicine, University College London, UCL Hospital Tower 5, 235 Euston Road, London NW1 2BU, UK; Algorithms and Software Consulting Ltd, 10 Laneway, London SW15 5HX, UK
| |
Collapse
|
36
|
Pucher PH, Wijnhoven BPL, Underwood TJ, Reynolds JV, Davies AR. Thinking through the multimodal treatment of localized oesophageal cancer: the point of view of the surgeon. Curr Opin Oncol 2021; 33:353-361. [PMID: 33966001 DOI: 10.1097/cco.0000000000000751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE OF REVIEW This review examines current developments and controversies in the multimodal management of oesophageal cancer, with an emphasis on surgical dilemmas and outcomes from the surgeon's perspective. RECENT FINDINGS Despite the advancement of oncological neoadjuvant treatments, there is still no consensus on what regimen is superior. The majority of patients may still fail to respond to neoadjuvant therapy and suffer potential harm without any survival advantage as a result. In patients who do not respond, adjuvant therapy is still often recommended after surgery despite any evidence for its benefit. We examine the implications of different regimens and treatment approaches for both squamous cell cancer and adenocarcinoma of the oesophagus. SUMMARY The efficacy of neoadjuvant treatment is highly variable and likely relates to variability of tumour biology. Ongoing work to identify responders, or optimize treatment on an individual patient, should increase the efficacy of multimodal therapy and improve patient outcomes.
Collapse
Affiliation(s)
- Philip H Pucher
- Department of Surgery, Guy's and St Thomas' NHS Foundation Trust, London
- Department of Surgery, Portsmouth University Hospitals NHS Trust, Portsmouth, UK
| | - Bas P L Wijnhoven
- Department of Surgery, Erasmus MC-Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Timothy J Underwood
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
| | - John V Reynolds
- Department of Surgery, National Oesophageal and Gastric Center, St. James's Hospital and Trinity College, Dublin, Ireland
| | - Andrew R Davies
- Department of Surgery, Guy's and St Thomas' NHS Foundation Trust, London
- King's College London, London, UK
| |
Collapse
|
37
|
Nakajo M, Jinguji M, Tani A, Hirahara D, Nagano H, Takumi K, Yoshiura T. Application of a machine learning approach to characterization of liver function using 99mTc-GSA SPECT/CT. Abdom Radiol (NY) 2021; 46:3184-3192. [PMID: 33675380 DOI: 10.1007/s00261-021-02985-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/21/2021] [Accepted: 02/09/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE To assess the utility of a machine-learning approach for predicting liver function based on technetium-99 m-galactosyl serum albumin (99mTc-GSA) single photon emission computed tomography (SPECT)/CT. METHODS One hundred twenty-eight patients underwent a 99mTc-GSA SPECT/CT-based liver function evaluation. All were classified into the low liver-damage or high liver-damage group. Four clinical (age, sex, background liver disease and histological type) and 8 quantitative 99mTc-GSA SPECT/CT features (receptor index [LHL15], clearance index [HH15], liver-SUVmax, liver-SUVmean, heart-SUVmax, metabolic volume of liver [MVL], total lesion GSA [TL-GSA, liver-SUVmean × MVL] and SUVmax ratio [liver-SUVmax/heart-SUVmax]) were obtained. To predict high liver damage, a machine learning classification with features selection based on Gini impurity and principal component analysis (PCA) were performed using a support vector machine and a random forest (RF) with a five-fold cross-validation scheme. To overcome imbalanced data, stratified sampling was used. The ability to predict high liver damage was evaluated using a receiver operating characteristic (ROC) curve analysis. RESULTS Four indices (LHL15, HH15, heart SUVmax and SUVmax ratio) yielded high areas under the ROC curves (AUCs) for predicting high liver damage (range: 0.89-0.93). In a machine learning classification, the RF with selected features (heart SUVmax, SUVmax ratio, LHL15, HH15, and background liver disease) and PCA model yielded the best performance for predicting high liver damage (AUC = 0.956, sensitivity = 96.3%, specificity = 90.0%, accuracy = 91.4%). CONCLUSION A machine-learning approach based on clinical and quantitative 99mTc-GSA SPECT/CT parameters might be useful for predicting liver function.
Collapse
|
38
|
Wesdorp NJ, Hellingman T, Jansma EP, van Waesberghe JHTM, Boellaard R, Punt CJA, Huiskens J, Kazemier G. Advanced analytics and artificial intelligence in gastrointestinal cancer: a systematic review of radiomics predicting response to treatment. Eur J Nucl Med Mol Imaging 2021; 48:1785-1794. [PMID: 33326049 PMCID: PMC8113210 DOI: 10.1007/s00259-020-05142-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/29/2020] [Indexed: 02/08/2023]
Abstract
PURPOSE Advanced medical image analytics is increasingly used to predict clinical outcome in patients diagnosed with gastrointestinal tumors. This review provides an overview on the value of radiomics in predicting response to treatment in patients with gastrointestinal tumors. METHODS A systematic review was conducted, according to PRISMA guidelines. The protocol was prospectively registered (PROSPERO: CRD42019128408). PubMed, Embase, and Cochrane databases were searched. Original studies reporting on the value of radiomics in predicting response to treatment in patients with a gastrointestinal tumor were included. A narrative synthesis of results was conducted. Results were stratified by tumor type. Quality assessment of included studies was performed, according to the radiomics quality score. RESULTS The comprehensive literature search identified 1360 unique studies, of which 60 articles were included for analysis. In 37 studies, radiomics models and individual radiomic features showed good predictive performance for response to treatment (area under the curve or accuracy > 0.75). Various strategies to construct predictive models were used. Internal validation of predictive models was often performed, while the majority of studies lacked external validation. None of the studies reported predictive models implemented in clinical practice. CONCLUSION Radiomics is increasingly used to predict response to treatment in patients suffering from gastrointestinal cancer. This review demonstrates its great potential to help predict response to treatment and improve patient selection and early adjustment of treatment strategy in a non-invasive manner.
Collapse
Affiliation(s)
- Nina J Wesdorp
- Department of Surgery, Cancer Center Amsterdam, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, The Netherlands.
| | - Tessa Hellingman
- Department of Surgery, Cancer Center Amsterdam, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, The Netherlands
| | - Elise P Jansma
- Department of Epidemiology and Biostatistics, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, The Netherlands
| | - Jan-Hein T M van Waesberghe
- Department of Radiology and Molecular Imaging, Cancer Center Amsterdam, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, The Netherlands
| | - Ronald Boellaard
- Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, The Netherlands
| | - Cornelis J A Punt
- Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Geert Kazemier
- Department of Surgery, Cancer Center Amsterdam, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
39
|
Xie CY, Pang CL, Chan B, Wong EYY, Dou Q, Vardhanabhuti V. Machine Learning and Radiomics Applications in Esophageal Cancers Using Non-Invasive Imaging Methods-A Critical Review of Literature. Cancers (Basel) 2021; 13:2469. [PMID: 34069367 PMCID: PMC8158761 DOI: 10.3390/cancers13102469] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/12/2021] [Accepted: 05/15/2021] [Indexed: 11/16/2022] Open
Abstract
Esophageal cancer (EC) is of public health significance as one of the leading causes of cancer death worldwide. Accurate staging, treatment planning and prognostication in EC patients are of vital importance. Recent advances in machine learning (ML) techniques demonstrate their potential to provide novel quantitative imaging markers in medical imaging. Radiomics approaches that could quantify medical images into high-dimensional data have been shown to improve the imaging-based classification system in characterizing the heterogeneity of primary tumors and lymph nodes in EC patients. In this review, we aim to provide a comprehensive summary of the evidence of the most recent developments in ML application in imaging pertinent to EC patient care. According to the published results, ML models evaluating treatment response and lymph node metastasis achieve reliable predictions, ranging from acceptable to outstanding in their validation groups. Patients stratified by ML models in different risk groups have a significant or borderline significant difference in survival outcomes. Prospective large multi-center studies are suggested to improve the generalizability of ML techniques with standardized imaging protocols and harmonization between different centers.
Collapse
Affiliation(s)
- Chen-Yi Xie
- Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China;
| | - Chun-Lap Pang
- Department of Radiology, The Christies’ Hospital, Manchester M20 4BX, UK;
- Division of Dentistry, School of Medical Sciences, University of Manchester, Manchester M15 6FH, UK
| | - Benjamin Chan
- Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (B.C.); (E.Y.-Y.W.)
| | - Emily Yuen-Yuen Wong
- Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (B.C.); (E.Y.-Y.W.)
| | - Qi Dou
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China;
| | - Varut Vardhanabhuti
- Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China;
| |
Collapse
|
40
|
Yin L, Cao Z, Wang K, Tian J, Yang X, Zhang J. A review of the application of machine learning in molecular imaging. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:825. [PMID: 34268438 PMCID: PMC8246214 DOI: 10.21037/atm-20-5877] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 10/02/2020] [Indexed: 12/12/2022]
Abstract
Molecular imaging (MI) is a science that uses imaging methods to reflect the changes of molecular level in living state and conduct qualitative and quantitative studies on its biological behaviors in imaging. Optical molecular imaging (OMI) and nuclear medical imaging are two key research fields of MI. OMI technology refers to the optical information generated by the imaging target (such as tumors) due to drug intervention and other reasons. By collecting the optical information, researchers can track the motion trajectory of the imaging target at the molecular level. Owing to its high specificity and sensitivity, OMI has been widely used in preclinical research and clinical surgery. Nuclear medical imaging mainly detects ionizing radiation emitted by radioactive substances. It can provide molecular information for early diagnosis, effective treatment and basic research of diseases, which has become one of the frontiers and hot topics in the field of medicine in the world today. Both OMI and nuclear medical imaging technology require a lot of data processing and analysis. In recent years, artificial intelligence technology, especially neural network-based machine learning (ML) technology, has been widely used in MI because of its powerful data processing capability. It provides a feasible strategy to deal with large and complex data for the requirement of MI. In this review, we will focus on the applications of ML methods in OMI and nuclear medical imaging.
Collapse
Affiliation(s)
- Lin Yin
- Key Laboratory of Molecular Imaging of Chinese Academy of Sciences, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Zhen Cao
- Peking University First Hospital, Beijing, China
| | - Kun Wang
- Key Laboratory of Molecular Imaging of Chinese Academy of Sciences, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Jie Tian
- Key Laboratory of Molecular Imaging of Chinese Academy of Sciences, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China.,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, China
| | - Xing Yang
- Peking University First Hospital, Beijing, China
| | | |
Collapse
|
41
|
Dai H, Lu M, Huang B, Tang M, Pang T, Liao B, Cai H, Huang M, Zhou Y, Chen X, Ding H, Feng ST. Considerable effects of imaging sequences, feature extraction, feature selection, and classifiers on radiomics-based prediction of microvascular invasion in hepatocellular carcinoma using magnetic resonance imaging. Quant Imaging Med Surg 2021; 11:1836-1853. [PMID: 33936969 PMCID: PMC8047362 DOI: 10.21037/qims-20-218] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 12/02/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Microvascular invasion (MVI) has a significant effect on the prognosis of hepatocellular carcinoma (HCC), but its preoperative identification is challenging. Radiomics features extracted from medical images, such as magnetic resonance (MR) images, can be used to predict MVI. In this study, we explored the effects of different imaging sequences, feature extraction and selection methods, and classifiers on the performance of HCC MVI predictive models. METHODS After screening against the inclusion criteria, 69 patients with HCC and preoperative gadoxetic acid-enhanced MR images were enrolled. In total, 167 features were extracted from the MR images of each sequence for each patient. Experiments were designed to investigate the effects of imaging sequence, number of gray levels (Ng), quantization algorithm, feature selection method, and classifiers on the performance of radiomics biomarkers in the prediction of HCC MVI. We trained and tested these models using leave-one-out cross-validation (LOOCV). RESULTS The radiomics model based on the images of the hepatobiliary phase (HBP) had better predictive performance than those based on the arterial phase (AP), portal venous phase (PVP), and pre-enhanced T1-weighted images [area under the receiver operating characteristic (ROC) curve (AUC) =0.792 vs. 0.641/0.634/0.620, P=0.041/0.021/0.010, respectively]. Compared with the equal-probability and Lloyd-Max algorithms, the radiomics features obtained using the Uniform quantization algorithm had a better performance (AUC =0.643/0.666 vs. 0.792, P=0.002/0.003, respectively). Among the values of 8, 16, 32, 64, and 128, the best predictive performance was achieved when the Ng was 64 (AUC =0.792 vs. 0.584/0.697/0.677/0.734, P<0.001/P=0.039/0.001/0.137, respectively). We used a two-stage feature selection method which combined the least absolute shrinkage and selection operator (LASSO) and recursive feature elimination (RFE) gradient boosting decision tree (GBDT), which achieved better stability than and outperformed LASSO, minimum redundancy maximum relevance (mRMR), and support vector machine (SVM)-RFE (stability =0.967 vs. 0.837/0.623/0.390, respectively; AUC =0.850 vs. 0.792/0.713/0.699, P=0.142/0.007/0.003, respectively). The model based on the radiomics features of HBP images using the GBDT classifier showed a better performance for the preoperative prediction of MVI compared with logistic regression (LR), SVM, and random forest (RF) classifiers (AUC =0.895 vs. 0.850/0.834/0.884, P=0.558/0.229/0.058, respectively). With the optimal combination of these factors, we established the best model, which had an AUC of 0.895, accuracy of 87.0%, specificity of 82.5%, and sensitivity of 93.1%. CONCLUSIONS Imaging sequences, feature extraction and selection methods, and classifiers can have a considerable effect on the predictive performance of radiomics models for HCC MVI.
Collapse
Affiliation(s)
- Houjiao Dai
- Medical AI Lab, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
- Shenzhen University Clinical Research Center for Neurological Diseases, Shenzhen University General Hospital, Shenzhen, China
| | - Minhua Lu
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Bingsheng Huang
- Medical AI Lab, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
- Shenzhen University Clinical Research Center for Neurological Diseases, Shenzhen University General Hospital, Shenzhen, China
| | - Mimi Tang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tiantian Pang
- School of Computer Science and Software Engineering, Jilin University, Changchun, China
| | - Bing Liao
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huasong Cai
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mengqi Huang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yongjin Zhou
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen, China
| | - Xin Chen
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Huijun Ding
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Shi-Ting Feng
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
42
|
Duclos V, Iep A, Gomez L, Goldfarb L, Besson FL. PET Molecular Imaging: A Holistic Review of Current Practice and Emerging Perspectives for Diagnosis, Therapeutic Evaluation and Prognosis in Clinical Oncology. Int J Mol Sci 2021; 22:4159. [PMID: 33923839 PMCID: PMC8073681 DOI: 10.3390/ijms22084159] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 02/06/2023] Open
Abstract
PET/CT molecular imaging has been imposed in clinical oncological practice over the past 20 years, driven by its two well-grounded foundations: quantification and radiolabeled molecular probe vectorization. From basic visual interpretation to more sophisticated full kinetic modeling, PET technology provides a unique opportunity to characterize various biological processes with different levels of analysis. In clinical practice, many efforts have been made during the last two decades to standardize image analyses at the international level, but advanced metrics are still under use in practice. In parallel, the integration of PET imaging with radionuclide therapy, also known as radiolabeled theranostics, has paved the way towards highly sensitive radionuclide-based precision medicine, with major breakthroughs emerging in neuroendocrine tumors and prostate cancer. PET imaging of tumor immunity and beyond is also emerging, emphasizing the unique capabilities of PET molecular imaging to constantly adapt to emerging oncological challenges. However, these new horizons face the growing complexity of multidimensional data. In the era of precision medicine, statistical and computer sciences are currently revolutionizing image-based decision making, paving the way for more holistic cancer molecular imaging analyses at the whole-body level.
Collapse
Affiliation(s)
- Valentin Duclos
- Department of Biophysics and Nuclear Medicine-Molecular Imaging, Hôpitaux Universitaires Paris Saclay, Assistance Publique-Hôpitaux de Paris, CHU Bicêtre, 94270 Le Kremlin-Bicêtre, France; (V.D.); (A.I.); (L.G.)
| | - Alex Iep
- Department of Biophysics and Nuclear Medicine-Molecular Imaging, Hôpitaux Universitaires Paris Saclay, Assistance Publique-Hôpitaux de Paris, CHU Bicêtre, 94270 Le Kremlin-Bicêtre, France; (V.D.); (A.I.); (L.G.)
| | - Léa Gomez
- Department of Biophysics and Nuclear Medicine-Molecular Imaging, Hôpitaux Universitaires Paris Saclay, Assistance Publique-Hôpitaux de Paris, CHU Bicêtre, 94270 Le Kremlin-Bicêtre, France; (V.D.); (A.I.); (L.G.)
| | - Lucas Goldfarb
- Service Hospitalier Frédéric Joliot-CEA, 91401 Orsay, France;
| | - Florent L. Besson
- Department of Biophysics and Nuclear Medicine-Molecular Imaging, Hôpitaux Universitaires Paris Saclay, Assistance Publique-Hôpitaux de Paris, CHU Bicêtre, 94270 Le Kremlin-Bicêtre, France; (V.D.); (A.I.); (L.G.)
- Université Paris Saclay, CEA, CNRS, Inserm, BioMaps, 91401 Orsay, France
- School of Medicine, Université Paris Saclay, 94720 Le Kremlin-Bicêtre, France
| |
Collapse
|
43
|
Nakajo M, Jinguji M, Tani A, Kikuno H, Hirahara D, Togami S, Kobayashi H, Yoshiura T. Application of a Machine Learning Approach for the Analysis of Clinical and Radiomic Features of Pretreatment [ 18F]-FDG PET/CT to Predict Prognosis of Patients with Endometrial Cancer. Mol Imaging Biol 2021; 23:756-765. [PMID: 33763816 DOI: 10.1007/s11307-021-01599-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/05/2021] [Accepted: 03/10/2021] [Indexed: 12/22/2022]
Abstract
PURPOSE To examine the prognostic significance of pretreatment 2-deoxy-2-[18F]fluoro-D-glucose ([18F]-FDG) positron emission tomography (PET)-based radiomic features using a machine learning approach in patients with endometrial cancers. PROCEDURES Included in this retrospective study were 53 patients with endometrial cancers who underwent [18F]-FDG PET/X-ray computed tomography (CT) before treatment. Since two different PET scanners were used, post-reconstruction harmonization was performed for all PET parameters using the ComBat harmonization method. Four clinical (age, histological type, stage, and treatment method) and 40 [18F]-FDG PET-based radiomic features were ranked, and a subset of useful features was selected based on the decrease in the Gini impurity in terms of associations with disease progression. The machine learning algorithms (random forest, neural network, k-nearest neighbors (kNN), naive Bayes, logistic regression, and support vector machine) were compared using the areas under the receiver operating characteristic curve (AUC) and validated by the random sampling method. Progression-free survival (PFS) and overall survival (OS) were assessed by the Cox regression analysis. RESULTS The five best predictors of disease progression were coarseness, gray-level run length nonuniformity, stage, treatment method, and gray-level zone length nonuniformity. The kNN model obtained the best performance classifier for predicting the disease progression (AUC =0.890, accuracy =0.849, F1 score =0.848, precision =0.857, and recall =0.849). Coarseness which was the first ranked radiomic feature was selected for survival analyses, and only coarseness remained as a significant and independent factor for both PFS (hazard ratios (HR), 0.65; 95 % confidence interval [CI], 0.49-0.86; p=0.003) and OS (HR, 0.52; 95 % CI, 0.36-0.76; p<0.001) at multivariate Cox regression analysis. CONCLUSIONS [18F]-FDG PET-based radiomic analysis using a machine learning approach may be useful for predicting tumor progression and prognosis in patients with endometrial cancers.
Collapse
Affiliation(s)
- Masatoyo Nakajo
- Department of Radiology, Kagoshima University, Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan.
| | - Megumi Jinguji
- Department of Radiology, Kagoshima University, Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Atsushi Tani
- Department of Radiology, Kagoshima University, Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Hidehiko Kikuno
- Department of Radiology, Kagoshima University, Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Daisuke Hirahara
- Department of Management Planning Division, Harada Academy, 2-54-4 Higashitaniyama, Kagoshima, 890-0113, Japan
| | - Shinichi Togami
- Department of Obstetrics and Gynecology, Kagoshima University, Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Hiroaki Kobayashi
- Department of Obstetrics and Gynecology, Kagoshima University, Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Takashi Yoshiura
- Department of Radiology, Kagoshima University, Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| |
Collapse
|
44
|
Abstract
Positron emission tomography (PET)/computed tomography (CT) are nuclear diagnostic imaging modalities that are routinely deployed for cancer staging and monitoring. They hold the advantage of detecting disease related biochemical and physiologic abnormalities in advance of anatomical changes, thus widely used for staging of disease progression, identification of the treatment gross tumor volume, monitoring of disease, as well as prediction of outcomes and personalization of treatment regimens. Among the arsenal of different functional imaging modalities, nuclear imaging has benefited from early adoption of quantitative image analysis starting from simple standard uptake value normalization to more advanced extraction of complex imaging uptake patterns; thanks to application of sophisticated image processing and machine learning algorithms. In this review, we discuss the application of image processing and machine/deep learning techniques to PET/CT imaging with special focus on the oncological radiotherapy domain as a case study and draw examples from our work and others to highlight current status and future potentials.
Collapse
Affiliation(s)
- Lise Wei
- Department of Radiation Oncology, Physics Division, University of Michigan, Ann Arbor, MI
| | - Issam El Naqa
- Department of Radiation Oncology, Physics Division, University of Michigan, Ann Arbor, MI.
| |
Collapse
|
45
|
Avanzo M, Wei L, Stancanello J, Vallières M, Rao A, Morin O, Mattonen SA, El Naqa I. Machine and deep learning methods for radiomics. Med Phys 2021; 47:e185-e202. [PMID: 32418336 DOI: 10.1002/mp.13678] [Citation(s) in RCA: 299] [Impact Index Per Article: 74.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/22/2019] [Accepted: 06/13/2019] [Indexed: 12/12/2022] Open
Abstract
Radiomics is an emerging area in quantitative image analysis that aims to relate large-scale extracted imaging information to clinical and biological endpoints. The development of quantitative imaging methods along with machine learning has enabled the opportunity to move data science research towards translation for more personalized cancer treatments. Accumulating evidence has indeed demonstrated that noninvasive advanced imaging analytics, that is, radiomics, can reveal key components of tumor phenotype for multiple three-dimensional lesions at multiple time points over and beyond the course of treatment. These developments in the use of CT, PET, US, and MR imaging could augment patient stratification and prognostication buttressing emerging targeted therapeutic approaches. In recent years, deep learning architectures have demonstrated their tremendous potential for image segmentation, reconstruction, recognition, and classification. Many powerful open-source and commercial platforms are currently available to embark in new research areas of radiomics. Quantitative imaging research, however, is complex and key statistical principles should be followed to realize its full potential. The field of radiomics, in particular, requires a renewed focus on optimal study design/reporting practices and standardization of image acquisition, feature calculation, and rigorous statistical analysis for the field to move forward. In this article, the role of machine and deep learning as a major computational vehicle for advanced model building of radiomics-based signatures or classifiers, and diverse clinical applications, working principles, research opportunities, and available computational platforms for radiomics will be reviewed with examples drawn primarily from oncology. We also address issues related to common applications in medical physics, such as standardization, feature extraction, model building, and validation.
Collapse
Affiliation(s)
- Michele Avanzo
- Department of Medical Physics, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, PN, 33081, Italy
| | - Lise Wei
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, 48103, USA
| | | | - Martin Vallières
- Medical Physics Unit, McGill University, Montreal, QC, Canada.,Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Arvind Rao
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, 48103, USA.,Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI, 48103, USA
| | - Olivier Morin
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Sarah A Mattonen
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | - Issam El Naqa
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, 48103, USA
| |
Collapse
|
46
|
Arabi H, AkhavanAllaf A, Sanaat A, Shiri I, Zaidi H. The promise of artificial intelligence and deep learning in PET and SPECT imaging. Phys Med 2021; 83:122-137. [DOI: 10.1016/j.ejmp.2021.03.008] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/18/2021] [Accepted: 03/03/2021] [Indexed: 02/06/2023] Open
|
47
|
Artificial intelligence: Deep learning in oncological radiomics and challenges of interpretability and data harmonization. Phys Med 2021; 83:108-121. [PMID: 33765601 DOI: 10.1016/j.ejmp.2021.03.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 02/06/2023] Open
|
48
|
Torres-Velázquez M, Chen WJ, Li X, McMillan AB. Application and Construction of Deep Learning Networks in Medical Imaging. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2021; 5:137-159. [PMID: 34017931 PMCID: PMC8132932 DOI: 10.1109/trpms.2020.3030611] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Deep learning (DL) approaches are part of the machine learning (ML) subfield concerned with the development of computational models to train artificial intelligence systems. DL models are characterized by automatically extracting high-level features from the input data to learn the relationship between matching datasets. Thus, its implementation offers an advantage over common ML methods that often require the practitioner to have some domain knowledge of the input data to select the best latent representation. As a result of this advantage, DL has been successfully applied within the medical imaging field to address problems, such as disease classification and tumor segmentation for which it is difficult or impossible to determine which image features are relevant. Therefore, taking into consideration the positive impact of DL on the medical imaging field, this article reviews the key concepts associated with its evolution and implementation. The sections of this review summarize the milestones related to the development of the DL field, followed by a description of the elements of deep neural network and an overview of its application within the medical imaging field. Subsequently, the key steps necessary to implement a supervised DL application are defined, and associated limitations are discussed.
Collapse
Affiliation(s)
- Maribel Torres-Velázquez
- Department of Biomedical Engineering, College of Engineering, University of Wisconsin-Madison, Madison, WI 53705 USA
| | - Wei-Jie Chen
- Department of Electrical and Computer Engineering, College of Engineering, University of Wisconsin-Madison, Madison, WI 53705 USA
| | - Xue Li
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705 USA
| | - Alan B McMillan
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705 USA, and also with the Department of Medical Physics, University of Wisconsin-Madison, Madison, WI 53705 USA
| |
Collapse
|
49
|
A Systematic Review of PET Textural Analysis and Radiomics in Cancer. Diagnostics (Basel) 2021; 11:diagnostics11020380. [PMID: 33672285 PMCID: PMC7926413 DOI: 10.3390/diagnostics11020380] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/10/2021] [Accepted: 02/19/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Although many works have supported the utility of PET radiomics, several authors have raised concerns over the robustness and replicability of the results. This study aimed to perform a systematic review on the topic of PET radiomics and the used methodologies. Methods: PubMed was searched up to 15 October 2020. Original research articles based on human data specifying at least one tumor type and PET image were included, excluding those that apply only first-order statistics and those including fewer than 20 patients. Each publication, cancer type, objective and several methodological parameters (number of patients and features, validation approach, among other things) were extracted. Results: A total of 290 studies were included. Lung (28%) and head and neck (24%) were the most studied cancers. The most common objective was prognosis/treatment response (46%), followed by diagnosis/staging (21%), tumor characterization (18%) and technical evaluations (15%). The average number of patients included was 114 (median = 71; range 20–1419), and the average number of high-order features calculated per study was 31 (median = 26, range 1–286). Conclusions: PET radiomics is a promising field, but the number of patients in most publications is insufficient, and very few papers perform in-depth validations. The role of standardization initiatives will be crucial in the upcoming years.
Collapse
|
50
|
Bai R, Jiang S, Sun H, Yang Y, Li G. Deep Neural Network-Based Semantic Segmentation of Microvascular Decompression Images. SENSORS 2021; 21:s21041167. [PMID: 33562275 PMCID: PMC7915571 DOI: 10.3390/s21041167] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/26/2021] [Accepted: 02/02/2021] [Indexed: 11/30/2022]
Abstract
Image semantic segmentation has been applied more and more widely in the fields of satellite remote sensing, medical treatment, intelligent transportation, and virtual reality. However, in the medical field, the study of cerebral vessel and cranial nerve segmentation based on true-color medical images is in urgent need and has good research and development prospects. We have extended the current state-of-the-art semantic-segmentation network DeepLabv3+ and used it as the basic framework. First, the feature distillation block (FDB) was introduced into the encoder structure to refine the extracted features. In addition, the atrous spatial pyramid pooling (ASPP) module was added to the decoder structure to enhance the retention of feature and boundary information. The proposed model was trained by fine tuning and optimizing the relevant parameters. Experimental results show that the encoder structure has better performance in feature refinement processing, improving target boundary segmentation precision, and retaining more feature information. Our method has a segmentation accuracy of 75.73%, which is 3% better than DeepLabv3+.
Collapse
Affiliation(s)
- Ruifeng Bai
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; (R.B.); (H.S.); (Y.Y.); (G.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shan Jiang
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; (R.B.); (H.S.); (Y.Y.); (G.L.)
- Correspondence: ; Tel.: +86-187-4401-2663
| | - Haijiang Sun
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; (R.B.); (H.S.); (Y.Y.); (G.L.)
| | - Yifan Yang
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; (R.B.); (H.S.); (Y.Y.); (G.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guiju Li
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; (R.B.); (H.S.); (Y.Y.); (G.L.)
| |
Collapse
|