1
|
Li T, Wu Y, Chen WC, Xue X, Suo MJ, Li P, Sheng W, Huang GY. Functional analysis of HECA variants identified in congenital heart disease in the Chinese population. J Clin Lab Anal 2022; 36:e24649. [PMID: 35949005 PMCID: PMC9459261 DOI: 10.1002/jcla.24649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/13/2022] [Accepted: 07/26/2022] [Indexed: 11/07/2022] Open
Abstract
Background Congenital heart disease (CHD) is a class of cardiovascular defects that includes septal defects, outflow tract abnormalities, and valve defects. Human homolog of Drosophila headcase (HECA) is a novel cell cycle regulator whose role in CHD has not been elucidated. This is the first study to determine the frequency of HECA mutations in patients with CHD and the association between HECA variants and CHD. Methods In this study, we identified a candidate gene, HECA, by whole‐exome sequencing of an atrial septal defect family. To investigate the association between HECA variants and CHD risk, targeted exon sequencing was conducted in 689 individuals with sporadic CHD. We further analyzed the effect of HECA gene abnormalities on cardiomyocyte phenotype behavior and related signaling pathways by Western blotting, reverse transcription‐quantitative polymerase chain reaction, and scratch assay. Results We found a novel de novo mutation, c.409_410insA (p. W137fs), in the HECA gene and identified five rare deleterious variants that met the filtering criteria in 689 individuals with sporadic CHD. Fisher's exact test revealed a significant association between HECA variations and CHD compared with those in gnomADv2‐East Asians(p = 0.0027). Further functional analysis suggested that the variant p. W137fs resulted in a deficiency of the normal HECA protein, and HECA deficiency altered AC16 cell cycle progression, increased cell proliferation, and migration, and promoted the activation of the PDGF‐BB/PDGFRB/AKT pathway. Conclusions Our study identified HECA and its six rare variants, expanding the spectrum of genes associated with CHD pathogenesis in the Chinese population.
Collapse
Affiliation(s)
- Ting Li
- Children's Hospital of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Birth Defects, Shanghai, China
| | - Yao Wu
- Children's Hospital of Fudan University, Shanghai, China
| | - Wei-Cheng Chen
- Children's Hospital of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Birth Defects, Shanghai, China
| | - Xing Xue
- Children's Hospital of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Birth Defects, Shanghai, China
| | - Mei-Jiao Suo
- Children's Hospital of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Birth Defects, Shanghai, China
| | - Ping Li
- Children's Hospital of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Birth Defects, Shanghai, China
| | - Wei Sheng
- Children's Hospital of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Birth Defects, Shanghai, China
| | - Guo-Ying Huang
- Children's Hospital of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Birth Defects, Shanghai, China.,Research Unit of Early Intervention of Genetically Related Childhood Cardiovascular Diseases(2018RU002), Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|
2
|
Venet D, Rediti M, Maetens M, Fumagalli D, Brown DN, Majjaj S, Salgado R, Pusztai L, Harbeck N, El-Abed S, Wang Y, Saura C, Gomez H, Semiglazov VF, de Azambuja E, Huober J, Nuciforo P, Di Cosimo S, Piccart M, Loi S, Rothé F, Sotiriou C. Copy Number Aberration Analysis to Predict Response to Neoadjuvant Anti-HER2 Therapy: Results from the NeoALTTO Phase III Clinical Trial. Clin Cancer Res 2021; 27:5607-5618. [PMID: 34321278 DOI: 10.1158/1078-0432.ccr-21-1317] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/29/2021] [Accepted: 07/23/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE The heterogeneity of response to anti-HER2 agents represents a major challenge in patients with HER2-positive breast cancer. To better understand the sensitivity and resistance to trastuzumab and lapatinib, we investigated the role of copy number aberrations (CNA) in predicting pathologic complete response (pCR) and survival outcomes in the NeoALTTO trial. EXPERIMENTAL DESIGN The neoadjuvant phase III NeoALTTO trial enrolled 455 patients with HER2-positive early-stage breast cancer. DNA samples from 269 patients were assessed for genome-wide copy number profiling. Recurrent CNAs were found with GISTIC2.0. RESULTS CNA estimates were obtained for 184 patients included in NeoALTTO. Among those, matched transcriptome and whole-exome data were available for 154 and 181 patients, respectively. A significant association between gene copy number and pCR was demonstrated for ERBB2 amplification. Nevertheless, ERBB2 amplification ceased to be predictive once ERBB2 expression level was considered. GISTIC2.0 analysis revealed 159 recurrent CNA regions. Lower copy number levels of the 6q23-24 locus predicted absence of pCR in the whole cohort and in the estrogen receptor-positive subgroup. 6q23-24 deletion was significantly more frequent in TP53 wild-type (WT) compared with TP53-mutated, resulting in copy number levels significantly associated with lack of pCR only in the TP53 WT subgroup. Interestingly, a gene-ontology analysis highlighted several immune processes correlated to 6q23-24 copy number. CONCLUSIONS Our analysis identified ERBB2 copy number as well as 6q23-24 CNAs as predictors of response to anti-HER2-based treatment. ERBB2 expression outperformed ERBB2 amplification. The complexity of the 6q23-24 region warrants further investigation.
Collapse
Affiliation(s)
- David Venet
- Breast Cancer Translational Research Laboratory J.-C. Heuson, Institut Jules Bordet, Université Libre de Bruxelles (U.L.B.), Brussels, Belgium
| | - Mattia Rediti
- Breast Cancer Translational Research Laboratory J.-C. Heuson, Institut Jules Bordet, Université Libre de Bruxelles (U.L.B.), Brussels, Belgium
| | - Marion Maetens
- Breast Cancer Translational Research Laboratory J.-C. Heuson, Institut Jules Bordet, Université Libre de Bruxelles (U.L.B.), Brussels, Belgium.,Department of Oncology, Laboratory for Translational Breast Cancer Research, KU Leuven, Leuven, Belgium
| | | | - David N Brown
- Breast Cancer Translational Research Laboratory J.-C. Heuson, Institut Jules Bordet, Université Libre de Bruxelles (U.L.B.), Brussels, Belgium.,Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Samira Majjaj
- Breast Cancer Translational Research Laboratory J.-C. Heuson, Institut Jules Bordet, Université Libre de Bruxelles (U.L.B.), Brussels, Belgium
| | - Roberto Salgado
- Department of Pathology, GZA-ZNA Ziekenhuizen, Antwerp, Belgium.,Division of Research, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Lajos Pusztai
- Breast Medical Oncology, Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut
| | - Nadia Harbeck
- Breast Center, Dept OB&GYN and CCC Munich, LMU University Hospital, Munich, Germany
| | | | - Yingbo Wang
- Novartis Pharmaceuticals AG, Basel, Switzerland
| | | | - Henry Gomez
- Department of Medical Oncology, Instituto Nacional de Enfermedades Neoplasicas, Lima, Peru
| | | | - Evandro de Azambuja
- Institut Jules Bordet, Université Libre de Bruxelles (U.L.B.), Brussels, Belgium
| | - Jens Huober
- Department of Obstetrics and Gynecology, University of Ulm, Ulm, Germany.,Breast Center, Cantonal Hospital St Gallen, St Gallen, Switzerland
| | - Paolo Nuciforo
- Molecular Oncology Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Serena Di Cosimo
- Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Martine Piccart
- Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles (U.L.B.), Brussels, Belgium
| | - Sherene Loi
- Division of Research, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Françoise Rothé
- Breast Cancer Translational Research Laboratory J.-C. Heuson, Institut Jules Bordet, Université Libre de Bruxelles (U.L.B.), Brussels, Belgium
| | - Christos Sotiriou
- Breast Cancer Translational Research Laboratory J.-C. Heuson, Institut Jules Bordet, Université Libre de Bruxelles (U.L.B.), Brussels, Belgium.
| |
Collapse
|
3
|
MicroRNA-550a is associated with muscle system conferring poorer survival for esophageal cancer. Biosci Rep 2019; 39:BSR20181173. [PMID: 31028132 PMCID: PMC6542760 DOI: 10.1042/bsr20181173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 04/12/2019] [Accepted: 04/24/2019] [Indexed: 12/13/2022] Open
Abstract
Background Esophageal cancer (ESCA) is one of the most common cancers in the digestive tract. Approximately 300000 people on an average die of ESCA per year worldwide. The determination of key microRNAs for the prognosis of ESCA is of indispensable significance in the clinical treatment. Methods The differentially expressed microRNAs were screened by analyzing The Cancer Genome Atlas (TCGA) database. By using the survival data of the database, we analyzed correlation between patients’ survival time and miR-550a expression levels. Differential expression analysis and gene set enrichment analysis were performed using the targeted data. Results It was found that patients with high miR-550a expression levels had shorter survival time. Data mining and signal pathway enrichment analysis of TCGA database showed that abnormal miR-550a expressions affected the recurrence of tumors by the muscle system regulation. Conclusions Through the proposed investigation, miR-550a is found to be a potential biomarker as well as non-coding therapeutic target for esophagus cancer. These results suggest that miR-550a may serve as a therapeutic target and predictor for ESCA survival.
Collapse
|
4
|
Retraction: The Human Homolog of Drosophila Headcase Acts as a Tumor Suppressor through Its Blocking Effect on the Cell Cycle in Hepatocellular Carcinoma. PLoS One 2019; 14:e0215040. [PMID: 30939171 PMCID: PMC6445516 DOI: 10.1371/journal.pone.0215040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
5
|
Headcase is a Repressor of Lamellocyte Fate in Drosophila melanogaster. Genes (Basel) 2019; 10:genes10030173. [PMID: 30841641 PMCID: PMC6470581 DOI: 10.3390/genes10030173] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 01/12/2023] Open
Abstract
Due to the evolutionary conservation of the regulation of hematopoiesis, Drosophila provides an excellent model organism to study blood cell differentiation and hematopoietic stem cell (HSC) maintenance. The larvae of Drosophila melanogaster respond to immune induction with the production of special effector blood cells, the lamellocytes, which encapsulate and subsequently kill the invader. Lamellocytes differentiate as a result of a concerted action of all three hematopoietic compartments of the larva: the lymph gland, the circulating hemocytes, and the sessile tissue. Within the lymph gland, the communication of the functional zones, the maintenance of HSC fate, and the differentiation of effector blood cells are regulated by a complex network of signaling pathways. Applying gene conversion, mutational analysis, and a candidate based genetic interaction screen, we investigated the role of Headcase (Hdc), the homolog of the tumor suppressor HECA in the hematopoiesis of Drosophila. We found that naive loss-of-function hdc mutant larvae produce lamellocytes, showing that Hdc has a repressive role in effector blood cell differentiation. We demonstrate that hdc genetically interacts with the Hedgehog and the Decapentaplegic pathways in the hematopoietic niche of the lymph gland. By adding further details to the model of blood cell fate regulation in the lymph gland of the larva, our findings contribute to the better understanding of HSC maintenance.
Collapse
|
6
|
Hsu CL, Chang HY, Chang JY, Hsu WM, Huang HC, Juan HF. Unveiling MYCN regulatory networks in neuroblastoma via integrative analysis of heterogeneous genomics data. Oncotarget 2017; 7:36293-36310. [PMID: 27167114 PMCID: PMC5095001 DOI: 10.18632/oncotarget.9202] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 04/19/2016] [Indexed: 12/31/2022] Open
Abstract
MYCN, an oncogenic transcription factor of the Myc family, is a major driver of neuroblastoma tumorigenesis. Due to the difficulty in drugging MYCN directly, revealing the molecules in MYCN regulatory networks will help to identify effective therapeutic targets for neuroblastoma therapy. Here we perform ChIP-sequencing and small RNA-sequencing of neuroblastoma cells to determine the MYCN-binding sites and MYCN-associated microRNAs, and integrate various types of genomic data to construct MYCN regulatory networks. The overall analysis indicated that MYCN-regulated genes were involved in a wide range of biological processes and could be used as signatures to identify poor-prognosis MYCN-non-amplified patients. Analysis of the MYCN binding sites showed that MYCN principally served as an activator. Using a computational approach, we identified 32 MYCN co-regulators, and some of these findings are supported by previous studies. Moreover, we investigated the interplay between MYCN transcriptional and microRNA post-transcriptional regulations and identified several microRNAs, such as miR-124-3p and miR-93-5p, which may significantly contribute to neuroblastoma pathogenesis. We also found MYCN and its regulated microRNAs acted together to repress the tumor suppressor genes. This work provides a comprehensive view of MYCN regulations for exploring therapeutic targets in neuroblastoma, as well as insights into the mechanism of neuroblastoma tumorigenesis.
Collapse
Affiliation(s)
- Chia-Lang Hsu
- Department of Life Science, Institute of Molecular and Cellular Biology, Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106, Taiwan
| | - Hsin-Yi Chang
- Department of Life Science, Institute of Molecular and Cellular Biology, Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106, Taiwan
| | - Jen-Yun Chang
- Department of Life Science, Institute of Molecular and Cellular Biology, Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106, Taiwan
| | - Wen-Ming Hsu
- Department of Surgery, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Hsuan-Cheng Huang
- Institute of Biomedical Informatics, Center for Systems and Synthetic Biology, National Yang-Ming University, Taipei 112, Taiwan
| | - Hsueh-Fen Juan
- Department of Life Science, Institute of Molecular and Cellular Biology, Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
7
|
Iurato S, Carrillo-Roa T, Arloth J, Czamara D, Diener-Hölzl L, Lange J, Müller-Myhsok B, Binder EB, Erhardt A. "DNA Methylation signatures in panic disorder". Transl Psychiatry 2017; 7:1287. [PMID: 29249830 PMCID: PMC5802688 DOI: 10.1038/s41398-017-0026-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 08/23/2017] [Accepted: 08/23/2017] [Indexed: 01/15/2023] Open
Abstract
Panic disorder (PD) affects about four million Europeans, with women affected twice as likely as men, causing substantial suffering and high economic costs. The etiopathogenesis of PD remains largely unknown, but both genetic and environmental factors contribute to risk. An epigenome-wide association study (EWAS) was conducted to compare medication-free PD patients (n = 89) with healthy controls (n = 76) stratified by gender. Replication was sought in an independent sample (131 cases, 169 controls) and functional analyses were conducted in a third sample (N = 71). DNA methylation was assessed in whole blood using the Infinium HumanMethylation450 BeadChip. One genome-wide association surviving FDR of 5% (cg07308824, P = 1.094 × 10-7, P-adj = 0.046) was identified in female PD patients (N = 49) compared to controls (N = 48). The same locus, located in an enhancer region of the HECA gene, was also hypermethylated in female PD patients in the replication sample (P = 0.035) and the significance of the association improved in the meta-analysis (P-adj = 0.004). Methylation at this CpG site was associated with HECA mRNA expression in another independent female sample (N = 71) both at baseline (P = 0.046) and after induction by dexamethasone (P = 0.029). Of 15 candidates, 5 previously reported as associated with PD or anxiety traits also showed differences in DNA methylation after gene-wise correction and included SGK1, FHIT, ADCYAP1, HTR1A, HTR2A. Our study examines epigenome-wide differences in peripheral blood for PD patients. Our results point to possible sex-specific methylation changes in the HECA gene for PD but overall highlight that this disorder is not associated with extensive changes in DNA methylation in peripheral blood.
Collapse
Affiliation(s)
- Stella Iurato
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany.
| | - Tania Carrillo-Roa
- 0000 0000 9497 5095grid.419548.5Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Janine Arloth
- 0000 0000 9497 5095grid.419548.5Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Darina Czamara
- 0000 0000 9497 5095grid.419548.5Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Laura Diener-Hölzl
- 0000 0000 9497 5095grid.419548.5Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Jennifer Lange
- 0000 0000 9497 5095grid.419548.5Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Bertram Müller-Myhsok
- 0000 0000 9497 5095grid.419548.5Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Elisabeth B. Binder
- 0000 0000 9497 5095grid.419548.5Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany ,0000 0001 0941 6502grid.189967.8Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA USA
| | - Angelika Erhardt
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany.
| |
Collapse
|
8
|
Hu Z, Chen J, Zhou S, Yang N, Duan S, Zhang Z, Su J, He J, Zhang Z, Lu X, Zhao Y. Mouse IP-10 Gene Delivered by Folate-modified Chitosan Nanoparticles and Dendritic/tumor Cells Fusion Vaccine Effectively Inhibit the Growth of Hepatocellular Carcinoma in Mice. Am J Cancer Res 2017. [PMID: 28638480 PMCID: PMC5479281 DOI: 10.7150/thno.16236] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Dendritic cells (DC) and tumor cell fusion vaccine (DC/tumor cell fusion vaccine) is considered an effective approach in cancer biotherapy. However, its therapeutic effects in early clinical trials have been suboptimal partially due to the immunosuppressive tumor environment. In this study, we used nanoparticles of folate (FA)-modified chitosan, a non-viral vector capable of targeting tumor cells with high expression of FA receptors. FA-chitosan nanoparticles were used as biological carriers for the expression plasmid of the mouse interferon-induced protein-10 (mIP-10) gene, a potent chemoattractant for cytotoxic T cells. The combination of FA-chitosan/mIP-10 and DC/tumor cell fusion vaccine against hepatocellular carcinoma (HCC) effectively inhibited the growth of implanted HCC tumors and prolonged the survival of mice. The combination therapy significantly reduced myeloid-derived suppressor cells (MDSC) in mouse spleen, local tumor, and bone marrow while increasing tumor-specific IFN-γ responses. Furthermore, the combination therapy significantly inhibited tumor cell proliferation while promoting their apoptosis. Taken together, our data illustrate that the mIP-10 enhances the anti-tumor effect of DC/tumor cell fusion vaccine by alleviating the immunosuppressive tumor environment.
Collapse
|
9
|
Nakamoto Y. Promising new strategies for hepatocellular carcinoma. Hepatol Res 2017; 47:251-265. [PMID: 27558453 DOI: 10.1111/hepr.12795] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 08/16/2016] [Accepted: 08/19/2016] [Indexed: 12/13/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common causes of cancer death worldwide. It usually arises based on a background of chronic liver diseases, defined as the hypercarcinogenic state. The current treatment options for HCC ranging from locoregional treatments to chemotherapies, including sorafenib, effectively regulate the limited sizes and numbers of the nodules. However, these treatments remain unsatisfactory because they have insufficient antitumor effects on the large and numerous nodules associated with HCC and because of a high recurrence rate in the surrounding inflamed liver. To develop novel and promising therapies with higher antitumor effects, recent progress in identifying molecular targets and developing immunological procedures for HCC are reviewed. The molecular targets discussed include the intracellular signaling pathways of protein kinase B/mammalian target of rapamycin and RAS/RAF/mitogen-activated protein kinase, Wnt/β-catenin and glutamine synthetase, insulin-like growth factor, signal transducer and activator of transcription 3, nuclear factor-κB and telomerase reverse transcriptase, and c-MET. Immunological studies have focused mainly on target identification, T cells, natural killer cells, dendritic cells, natural killer T cells, and vaccine development.
Collapse
Affiliation(s)
- Yasunari Nakamoto
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| |
Collapse
|