1
|
Wolfe AD, Li S, Goedderz C, Chen XS. The structure of APOBEC1 and insights into its RNA and DNA substrate selectivity. NAR Cancer 2020; 2:zcaa027. [PMID: 33094286 PMCID: PMC7556403 DOI: 10.1093/narcan/zcaa027] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/05/2020] [Accepted: 09/10/2020] [Indexed: 02/06/2023] Open
Abstract
APOBEC1 (APO1), a member of AID/APOBEC nucleic acid cytosine deaminase family, can edit apolipoprotein B mRNA to regulate cholesterol metabolism. This APO1 RNA editing activity requires a cellular cofactor to achieve tight regulation. However, no cofactors are required for deamination on DNA by APO1 and other AID/APOBEC members, and aberrant deamination on genomic DNA by AID/APOBEC deaminases has been linked to cancer. Here, we present the crystal structure of APO1, which reveals a typical APOBEC deaminase core structure, plus a unique well-folded C-terminal domain that is highly hydrophobic. This APO1 C-terminal hydrophobic domain (A1HD) interacts to form a stable dimer mainly through hydrophobic interactions within the dimer interface to create a four-stranded β-sheet positively charged surface. Structure-guided mutagenesis within this and other regions of APO1 clarified the importance of the A1HD in directing RNA and cofactor interactions, providing insights into the structural basis of selectivity on DNA or RNA substrates.
Collapse
Affiliation(s)
- Aaron D Wolfe
- Genetics, Molecular and Cellular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Shuxing Li
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Cody Goedderz
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Xiaojiang S Chen
- Genetics, Molecular and Cellular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
2
|
Fryatt AG, Dayl S, Stavrou A, Schmid R, Evans RJ. Organization of ATP-gated P2X1 receptor intracellular termini in apo and desensitized states. J Gen Physiol 2019; 151:146-155. [PMID: 30626615 PMCID: PMC6363416 DOI: 10.1085/jgp.201812108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 08/21/2018] [Accepted: 11/19/2018] [Indexed: 12/31/2022] Open
Abstract
The human P2X1 receptor (hP2X1R) is a trimeric ligand-gated ion channel opened by extracellular ATP. The intracellular amino and carboxyl termini play significant roles in determining the time-course and regulation of channel gating-for example, the C terminus regulates recovery from the desensitized state following agonist washout. This suggests that the intracellular regions of the channel have distinct structural features. Studies on the hP2X3R have shown that the intracellular regions associate to form a cytoplasmic cap in the open state of the channel. However, intracellular features could not be resolved in the agonist-free apo and ATP-bound desensitized structures. Here we investigate the organization of the intracellular regions of hP2X1R in the apo and ATP-bound desensitized states following expression in HEK293 cells. We couple cysteine scanning mutagenesis of residues R25-G30 and H355-R360 with the use of bi-functional cysteine reactive cross-linking compounds of different lengths (MTS-2-MTS, BMB, and BM(PEG)2), which we use as molecular calipers. If two cysteine residues come into close proximity, we predict they will be cross-linked and result in ∼66% of the receptor subunits running on a Western blot as dimers. In the control construct (C349A) that removed the free cysteine C349, and some cysteine-containing mutants, cross-linker treatment does not result in dimerization. However, we detect efficient dimerization for R25C, G30C, P358C, K359C, and R360C. This selective pattern indicates that there is structural organization to these regions in the apo and desensitized states in a native membrane environment. The existence of such precap (apo) and postcap (desensitized) organization of the intracellular domains would facilitate efficient gating of the channel.
Collapse
Affiliation(s)
- Alistair G Fryatt
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Sudad Dayl
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
- Department of Chemistry, College of Science, University of Baghdad, Baghdad, Iraq
| | - Anastasios Stavrou
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Ralf Schmid
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
- Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester, UK
| | - Richard J Evans
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| |
Collapse
|
3
|
Abstract
Chemical Shift-Rosetta (CS-Rosetta) is an automated method that employs NMR chemical shifts to model protein structures de novo. In this chapter, we introduce the terminology and central concepts of CS-Rosetta. We describe the architecture and functionality of automatic NOESY assignment (AutoNOE) and structure determination protocols (Abrelax and RASREC) within the CS-Rosetta framework. We further demonstrate how CS-Rosetta can discriminate near-native structures against a large conformational search space using restraints obtained from NMR data, and/or sequence and structure homology. We highlight how CS-Rosetta can be combined with alternative automated approaches to (i) model oligomeric systems and (ii) create NMR-based structure determination pipeline. To show its practical applicability, we emphasize on the computational requirements and performance of CS-Rosetta for protein targets of varying molecular weight and complexity. Finally, we discuss the current Python interface, which enables easy execution of protocols for rapid and accurate high-resolution structure determination.
Collapse
Affiliation(s)
- Santrupti Nerli
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, United States; Department of Computer Science, University of California Santa Cruz, Santa Cruz, CA, United States
| | - Nikolaos G Sgourakis
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, United States.
| |
Collapse
|
4
|
Nerli S, McShan AC, Sgourakis NG. Chemical shift-based methods in NMR structure determination. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2018; 106-107:1-25. [PMID: 31047599 PMCID: PMC6788782 DOI: 10.1016/j.pnmrs.2018.03.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/09/2018] [Accepted: 03/09/2018] [Indexed: 05/08/2023]
Abstract
Chemical shifts are highly sensitive probes harnessed by NMR spectroscopists and structural biologists as conformational parameters to characterize a range of biological molecules. Traditionally, assignment of chemical shifts has been a labor-intensive process requiring numerous samples and a suite of multidimensional experiments. Over the past two decades, the development of complementary computational approaches has bolstered the analysis, interpretation and utilization of chemical shifts for elucidation of high resolution protein and nucleic acid structures. Here, we review the development and application of chemical shift-based methods for structure determination with a focus on ab initio fragment assembly, comparative modeling, oligomeric systems, and automated assignment methods. Throughout our discussion, we point out practical uses, as well as advantages and caveats, of using chemical shifts in structure modeling. We additionally highlight (i) hybrid methods that employ chemical shifts with other types of NMR restraints (residual dipolar couplings, paramagnetic relaxation enhancements and pseudocontact shifts) that allow for improved accuracy and resolution of generated 3D structures, (ii) the utilization of chemical shifts to model the structures of sparsely populated excited states, and (iii) modeling of sidechain conformations. Finally, we briefly discuss the advantages of contemporary methods that employ sparse NMR data recorded using site-specific isotope labeling schemes for chemical shift-driven structure determination of larger molecules. With this review, we aim to emphasize the accessibility and versatility of chemical shifts for structure determination of challenging biological systems, and to point out emerging areas of development that lead us towards the next generation of tools.
Collapse
Affiliation(s)
- Santrupti Nerli
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064, United States; Department of Computer Science, University of California Santa Cruz, Santa Cruz, CA 95064, United States
| | - Andrew C McShan
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064, United States
| | - Nikolaos G Sgourakis
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064, United States.
| |
Collapse
|
5
|
Latek D. Rosetta Broker for membrane protein structure prediction: concentrative nucleoside transporter 3 and corticotropin-releasing factor receptor 1 test cases. BMC STRUCTURAL BIOLOGY 2017; 17:8. [PMID: 28774292 PMCID: PMC5543540 DOI: 10.1186/s12900-017-0078-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 07/26/2017] [Indexed: 02/12/2023]
Abstract
Background Membrane proteins are difficult targets for structure prediction due to the limited structural data deposited in Protein Data Bank. Most computational methods for membrane protein structure prediction are based on the comparative modeling. There are only few de novo methods targeting that distinct protein family. In this work an example of such de novo method was used to structurally and functionally characterize two representatives of distinct membrane proteins families of solute carrier transporters and G protein-coupled receptors. The well-known Rosetta program and one of its protocols named Broker was used in two test cases. The first case was de novo structure prediction of three N-terminal transmembrane helices of the human concentrative nucleoside transporter 3 (hCNT3) homotrimer belonging to the solute carrier 28 family of transporters (SLC28). The second case concerned the large scale refinement of transmembrane helices of a homology model of the corticotropin-releasing factor receptor 1 (CRFR1) belonging to the G protein-coupled receptors family. Results The inward-facing model of the hCNT3 homotrimer was used to propose the functional impact of its single nucleotide polymorphisms. Additionally, the 100 ns molecular dynamics simulation of the unliganded hCNT3 model confirmed its validity and revealed mobility of the selected binding site and homotrimer interface residues. The large scale refinement of transmembrane helices of the CRFR1 homology model resulted in the significant improvement of its accuracy with respect to the crystal structure of CRFR1, especially in the binding site area. Consequently, the antagonist CP-376395 could be docked with Autodock VINA to the CRFR1 model without any steric clashes. Conclusions The presented work demonstrated that Rosetta Broker can be a versatile tool for solving various issues referring to protein biology. Two distinct examples of de novo membrane protein structure prediction presented here provided important insights into three major areas of protein biology. Namely, the dynamics of the inward-facing hCNT3 homotrimer system, the structural changes of the CRFR1 receptor upon the antagonist binding and finally, the role of single nucleotide polymorphisms in both, hCNT3 and CRFR1 proteins, were investigated. Electronic supplementary material The online version of this article (doi:10.1186/s12900-017-0078-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dorota Latek
- Faculty of Chemistry, University of Warsaw, Pasteur St. 1, 02-093, Warsaw, Poland.
| |
Collapse
|
6
|
Computational Prediction of the Heterodimeric and Higher-Order Structure of gpE1/gpE2 Envelope Glycoproteins Encoded by Hepatitis C Virus. J Virol 2017; 91:JVI.02309-16. [PMID: 28148799 DOI: 10.1128/jvi.02309-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/25/2017] [Indexed: 12/24/2022] Open
Abstract
Despite the recent success of newly developed direct-acting antivirals against hepatitis C, the disease continues to be a global health threat due to the lack of diagnosis of most carriers and the high cost of treatment. The heterodimer formed by glycoproteins E1 and E2 within the hepatitis C virus (HCV) lipid envelope is a potential vaccine candidate and antiviral target. While the structure of E1/E2 has not yet been resolved, partial crystal structures of the E1 and E2 ectodomains have been determined. The unresolved parts of the structure are within the realm of what can be modeled with current computational modeling tools. Furthermore, a variety of additional experimental data is available to support computational predictions of E1/E2 structure, such as data from antibody binding studies, cryo-electron microscopy (cryo-EM), mutational analyses, peptide binding analysis, linker-scanning mutagenesis, and nuclear magnetic resonance (NMR) studies. In accordance with these rich experimental data, we have built an in silico model of the full-length E1/E2 heterodimer. Our model supports that E1/E2 assembles into a trimer, which was previously suggested from a study by Falson and coworkers (P. Falson, B. Bartosch, K. Alsaleh, B. A. Tews, A. Loquet, Y. Ciczora, L. Riva, C. Montigny, C. Montpellier, G. Duverlie, E. I. Pecheur, M. le Maire, F. L. Cosset, J. Dubuisson, and F. Penin, J. Virol. 89:10333-10346, 2015, https://doi.org/10.1128/JVI.00991-15). Size exclusion chromatography and Western blotting data obtained by using purified recombinant E1/E2 support our hypothesis. Our model suggests that during virus assembly, the trimer of E1/E2 may be further assembled into a pentamer, with 12 pentamers comprising a single HCV virion. We anticipate that this new model will provide a useful framework for HCV envelope structure and the development of antiviral strategies.IMPORTANCE One hundred fifty million people have been estimated to be infected with hepatitis C virus, and many more are at risk for infection. A better understanding of the structure of the HCV envelope, which is responsible for attachment and fusion, could aid in the development of a vaccine and/or new treatments for this disease. We draw upon computational techniques to predict a full-length model of the E1/E2 heterodimer based on the partial crystal structures of the envelope glycoproteins E1 and E2. E1/E2 has been widely studied experimentally, and this provides valuable data, which has assisted us in our modeling. Our proposed structure is used to suggest the organization of the HCV envelope. We also present new experimental data from size exclusion chromatography that support our computational prediction of a trimeric oligomeric state of E1/E2.
Collapse
|
7
|
Bender BJ, Cisneros A, Duran AM, Finn JA, Fu D, Lokits AD, Mueller BK, Sangha AK, Sauer MF, Sevy AM, Sliwoski G, Sheehan JH, DiMaio F, Meiler J, Moretti R. Protocols for Molecular Modeling with Rosetta3 and RosettaScripts. Biochemistry 2016; 55:4748-63. [PMID: 27490953 PMCID: PMC5007558 DOI: 10.1021/acs.biochem.6b00444] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
![]()
Previously, we published an article
providing an overview of the
Rosetta suite of biomacromolecular modeling software and a series
of step-by-step tutorials [Kaufmann, K. W., et al. (2010) Biochemistry 49, 2987–2998]. The overwhelming positive
response to this publication we received motivates us to here share
the next iteration of these tutorials that feature de novo folding, comparative modeling, loop construction, protein docking,
small molecule docking, and protein design. This updated and expanded
set of tutorials is needed, as since 2010 Rosetta has been fully redesigned
into an object-oriented protein modeling program Rosetta3. Notable
improvements include a substantially improved energy function, an
XML-like language termed “RosettaScripts” for flexibly
specifying modeling task, new analysis tools, the addition of the
TopologyBroker to control conformational sampling, and support for
multiple templates in comparative modeling. Rosetta’s ability
to model systems with symmetric proteins, membrane proteins, noncanonical
amino acids, and RNA has also been greatly expanded and improved.
Collapse
Affiliation(s)
- Brian J Bender
- Department of Pharmacology, Vanderbilt University , Nashville, Tennessee 37232-6600, United States.,Center for Structural Biology, Vanderbilt University , Nashville, Tennessee 37240-7917, United States
| | - Alberto Cisneros
- Center for Structural Biology, Vanderbilt University , Nashville, Tennessee 37240-7917, United States.,Chemical and Physical Biology Program, Vanderbilt University , Nashville, Tennessee 37232-0301, United States
| | - Amanda M Duran
- Center for Structural Biology, Vanderbilt University , Nashville, Tennessee 37240-7917, United States.,Department of Chemistry, Vanderbilt University , Nashville, Tennessee 37235, United States
| | - Jessica A Finn
- Center for Structural Biology, Vanderbilt University , Nashville, Tennessee 37240-7917, United States.,Department of Pathology, Microbiology and Immunology, Vanderbilt University , Nashville, Tennessee 37232-2561, United States
| | - Darwin Fu
- Center for Structural Biology, Vanderbilt University , Nashville, Tennessee 37240-7917, United States.,Department of Chemistry, Vanderbilt University , Nashville, Tennessee 37235, United States
| | - Alyssa D Lokits
- Center for Structural Biology, Vanderbilt University , Nashville, Tennessee 37240-7917, United States.,Neuroscience Program, Vanderbilt University , Nashville, Tennessee 37235, United States
| | - Benjamin K Mueller
- Center for Structural Biology, Vanderbilt University , Nashville, Tennessee 37240-7917, United States.,Department of Chemistry, Vanderbilt University , Nashville, Tennessee 37235, United States
| | - Amandeep K Sangha
- Center for Structural Biology, Vanderbilt University , Nashville, Tennessee 37240-7917, United States.,Department of Chemistry, Vanderbilt University , Nashville, Tennessee 37235, United States
| | - Marion F Sauer
- Center for Structural Biology, Vanderbilt University , Nashville, Tennessee 37240-7917, United States.,Chemical and Physical Biology Program, Vanderbilt University , Nashville, Tennessee 37232-0301, United States
| | - Alexander M Sevy
- Center for Structural Biology, Vanderbilt University , Nashville, Tennessee 37240-7917, United States.,Chemical and Physical Biology Program, Vanderbilt University , Nashville, Tennessee 37232-0301, United States
| | - Gregory Sliwoski
- Center for Structural Biology, Vanderbilt University , Nashville, Tennessee 37240-7917, United States.,Department of Chemistry, Vanderbilt University , Nashville, Tennessee 37235, United States
| | - Jonathan H Sheehan
- Center for Structural Biology, Vanderbilt University , Nashville, Tennessee 37240-7917, United States
| | - Frank DiMaio
- Department of Biochemistry, University of Washington , Seattle, Washington 98195, United States
| | - Jens Meiler
- Department of Pharmacology, Vanderbilt University , Nashville, Tennessee 37232-6600, United States.,Center for Structural Biology, Vanderbilt University , Nashville, Tennessee 37240-7917, United States.,Chemical and Physical Biology Program, Vanderbilt University , Nashville, Tennessee 37232-0301, United States.,Department of Chemistry, Vanderbilt University , Nashville, Tennessee 37235, United States.,Department of Pathology, Microbiology and Immunology, Vanderbilt University , Nashville, Tennessee 37232-2561, United States.,Neuroscience Program, Vanderbilt University , Nashville, Tennessee 37235, United States
| | - Rocco Moretti
- Center for Structural Biology, Vanderbilt University , Nashville, Tennessee 37240-7917, United States.,Department of Chemistry, Vanderbilt University , Nashville, Tennessee 37235, United States
| |
Collapse
|
8
|
Boelt SG, Norn C, Rasmussen MI, André I, Čiplys E, Slibinskas R, Houen G, Højrup P. Mapping the Ca(2+) induced structural change in calreticulin. J Proteomics 2016; 142:138-48. [PMID: 27195812 DOI: 10.1016/j.jprot.2016.05.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 05/09/2016] [Accepted: 05/14/2016] [Indexed: 01/04/2023]
Abstract
UNLABELLED Calreticulin is a highly conserved multifunctional protein implicated in many different biological systems and has therefore been the subject of intensive research. It is primarily present in the endoplasmatic reticulum where its main functions are to regulate Ca(2+) homeostasis, act as a chaperone and stabilize the MHC class I peptide-loading complex. Although several high-resolution structures of calreticulin exist, these only cover three-quarters of the entire protein leaving the extended structures unsolved. Additionally, the structure of calreticulin is influenced by the presence of Ca(2+). The conformational changes induced by Ca(2+) have not been determined yet as they are hard to study with traditional approaches. Here, we investigated the Ca(2+)-induced conformational changes with a combination of chemical cross-linking, mass spectrometry, bioinformatics analysis and modelling in Rosetta. Using a bifunctional linker, we found a large Ca(2+)-induced change to the cross-linking pattern in calreticulin. Our results are consistent with a high flexibility in the P-loop, a stabilization of the acidic C-terminal and a relatively close interaction of the P-loop and the acidic C-terminal. BIOLOGICAL SIGNIFICANCE The function of calreticulin, an endoplasmatic reticulin chaperone, is affected by fluctuations in Ca(2+)concentration, but the structural mechanism is unknown. The present work suggests that Ca(2+)-dependent regulation is caused by different conformations of a long proline-rich loop that changes the accessibility to the peptide/lectin-binding site. Our results indicate that the binding of Ca(2+) to calreticulin may thus not only just be a question of Ca(2+) storage but is likely to have an impact on the chaperone activity.
Collapse
Affiliation(s)
- Sanne Grundvad Boelt
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK 5230 Odense, Denmark; Department of Autoimmunology and Biomarkers, Statens Serum Institut, Artillerivej 5, DK 2300 Copenhagen, Denmark
| | - Christoffer Norn
- Department of Biochemistry and Structural Biology, Lund University, Paradisgatan 2, SE 221 00 Lund, Sweden
| | - Morten Ib Rasmussen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK 5230 Odense, Denmark
| | - Ingemar André
- Department of Biochemistry and Structural Biology, Lund University, Paradisgatan 2, SE 221 00 Lund, Sweden
| | - Evaldas Čiplys
- Department of Eukayote Gene Engineering, Institute of Biotechnology, Vilnius University, V. Graičiūno St, LT 02241 Vilnius, Lithuania
| | - Rimantas Slibinskas
- Department of Eukayote Gene Engineering, Institute of Biotechnology, Vilnius University, V. Graičiūno St, LT 02241 Vilnius, Lithuania
| | - Gunnar Houen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK 5230 Odense, Denmark; Department of Autoimmunology and Biomarkers, Statens Serum Institut, Artillerivej 5, DK 2300 Copenhagen, Denmark
| | - Peter Højrup
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK 5230 Odense, Denmark.
| |
Collapse
|
9
|
Abstract
The Rosetta macromolecular modeling software is a versatile, rapidly developing set of tools that are now being routinely utilized to address state-of-the-art research challenges in academia and industrial research settings. A Rosetta Conference (RosettaCon) describing updates to the Rosetta source code is held annually. Every two years, a Rosetta Conference (RosettaCon) special collection describing the results presented at the annual conference by participating RosettaCommons labs is published by the Public Library of Science (PLOS). This is the introduction to the third RosettaCon 2014 Special Collection published by PLOS.
Collapse
Affiliation(s)
- Sagar D. Khare
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, United States of America
- * E-mail: (SDK); (TAW)
| | - Timothy A. Whitehead
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, United States of America
- Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI, United States of America
- * E-mail: (SDK); (TAW)
| |
Collapse
|