1
|
Martoni F, Bartlett JS, Moir ML, Steinbauer MJ, Taylor GS. An annotated checklist with a key to the genera of Australian psyllids (Hemiptera: Sternorrhyncha: Psylloidea). Zootaxa 2024; 5500:1-213. [PMID: 39647128 DOI: 10.11646/zootaxa.5500.1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Indexed: 12/10/2024]
Abstract
The diversity of the psyllids of Australia reflects that of the plants of this country, with large radiations and ecological dominance of Myrtaceae (e.g., Eucalyptus), Fabaceae (e.g., Acacia), Casuarinaceae (e.g., Allocasuarina, Casuarina) and Scrophulariaceae (e.g., Eremophila, Myoporum). Within Australian ecosystems, psyllids are critical components of food webs, especially with respect to providing energy-rich resources for many species of birds and insects and, historically, humans. Furthermore, in horticulture, agriculture and forestry, some Australian psyllid species are considered pests, causing leaf senescence and 'dieback', leaf deformation and inducing growth of sooty mould, with some adventive species capable of acting as vectors of plant pathogens. Several species are considered beneficial, having been introduced as biological control agents of weeds. Additionally, some Australian psyllids have established in other countries, or in regions within Australia that are not within their natural range; while others have such limited geographical ranges that they are of conservation concern. Here we provide an updated checklist of the species of Psylloidea present in Australia and updated a previous key to their genera based on adult morphology. This is the first checklist of the Australian psyllids compiled since the most recent global taxonomic classification, and provides detailed information on biogeographical, ecological and anthropogenic aspects, including global distribution, host plant data, pest status, conservation status, parasitoids, predators, and biological control programs. Our checklist includes information on 66 genera and 450 species, 414 formally described and 36 awaiting descriptions. This represents an increase of almost 20% of species since the last published checklist of 2004, which reported 354 described and 21 undescribed taxa. Additionally, we summarise the available information on more than 150 undescribed taxa. Finally, we reported here more than 60 new records, between distributions and host plant associations.
Collapse
Affiliation(s)
- Francesco Martoni
- Agriculture Victoria Research; AgriBio Centre; Bundoora; VIC 3083; Australia.
| | - Justin S Bartlett
- Plant Biosecurity Laboratory; Queensland Government Department of Agriculture and Fisheries; GPO Box 267; Brisbane Queensland 4001.
| | - Melinda L Moir
- Department of Primary Industries and Regional Development; South Perth; WA 6151; Australia.
| | - Martin J Steinbauer
- Department of Ecology; Environment and Evolution; La Trobe University; Melbourne; VIC 3086; Australia.
| | - Gary S Taylor
- Australian Centre for Evolutionary Biology & Biodiversity; and Department of Biodiversity & Evolutionary Biology; School of Biological Sciences; The University of Adelaide; North Terrace; SA 5005; Australia.
| |
Collapse
|
2
|
Li T, Zhang L, Deng Y, Deng X, Zheng Z. Establishment of a Cuscuta campestris-mediated enrichment system for genomic and transcriptomic analyses of 'Candidatus Liberibacter asiaticus'. Microb Biotechnol 2021; 14:737-751. [PMID: 33655703 PMCID: PMC7936317 DOI: 10.1111/1751-7915.13773] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 01/16/2023] Open
Abstract
‘Candidatus Liberibacter asiaticus’ (CLas) is a phloem‐limited non‐culturable α‐proteobacterium associated with citrus Huanglongbing, a highly destructive disease threatening global citrus industry. Research on CLas is challenging due to the current inability to culture CLas in vitro and the low CLas titre in citrus plant. Here, we develop a CLas enrichment system using the holoparasitic dodder plant (Cuscuta campestris) as an amenable host to acquire and enrich CLas from CLas‐infected citrus shoots maintained hydroponically. Forty‐eight out of fifty‐five (87%) dodder plants successfully parasitized CLas‐infected citrus shoots with detectable CLas by PCR. Among 48 dodders cultures, 30 showed two‐ to 419‐fold CLas titre increase as compared to the corresponding citrus hosts. The CLas population rapidly increased and reached the highest level in dodder tendrils at 15 days after parasitizing citrus shoot. Genome sequencing and assembly derived from CLas‐enriched dodder DNA samples generated a higher resolution than those obtained for CLas from citrus hosts. No genomic variation was detected in CLas after transmission from citrus to dodder during short‐term parasitism. Dual RNA‐Seq experiments showed similar CLas gene expression profiles in dodder and citrus samples, yet dodder samples generated a higher resolution of CLas transcriptome data. The ability of dodder to support CLas multiplication to high levels, as well as its advantage in CLas genomic and transcriptomic analyses, make it an optimal model for further studies on CLas–host interaction.
Collapse
Affiliation(s)
- Tao Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, Guangdong, 510642, China.,Citrus Huanglongbing Research Laboratory, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Ling Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, Guangdong, 510642, China.,Citrus Huanglongbing Research Laboratory, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Yunshuang Deng
- Citrus Huanglongbing Research Laboratory, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Xiaoling Deng
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, Guangdong, 510642, China.,Citrus Huanglongbing Research Laboratory, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Zheng Zheng
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, Guangdong, 510642, China.,Citrus Huanglongbing Research Laboratory, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| |
Collapse
|
3
|
da Silva PA, Fassini CG, Sampaio LS, Dequigiovanni G, Zucchi MI, Wulff NA. Genetic Diversity of ' Candidatus Liberibacter asiaticus' Revealed by Short Tandem Repeats and Prophage Typing Indicates Population Homogeneity in Brazil. PHYTOPATHOLOGY 2019; 109:960-971. [PMID: 30694114 DOI: 10.1094/phyto-08-18-0295-r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
'Candidatus Liberibacter asiaticus' is the most common huanglongbing-associated bacteria, being present in Asia, South, Central, and North America. Genomic approaches enabled sequencing of 'Ca. L. asiaticus' genomes, allowing for a broader assessment of its genetic variability with the application of polymerase chain reaction (PCR)-based tools such as microsatellite or short tandem repeat (STR) analysis. Although these tools contributed to a detailed analysis of strains from Japan, China, and the United States, Brazilian strains were analyzed in either too few samples with several STRs or in several strains with only a single microsatellite and a single PCR marker. We used 573 'Ca. L. asiaticus' strains, mainly collected from São Paulo State (SPS), in our genetic analyses, employing three STRs and several prophage PCR markers. STR revealed a homogeneous population regardless of sampling year or geographic regions of SPS. Thirty-eight haplotypes were recognized with a predominance of VNTR_005 higher than 10 repeats, with VNTR_002 and VNTR_077 containing 11 and 8 repeats, respectively. This haplotype is indicated as class HE, which comprised 80.28% of strains. Classes HA and HB, predominant in Florida, were not found. A new genomic organization in the junction of prophages SC2 and SC1 is prevalent in Brazilian strains, indicating gene rearrangement and a widespread occurrence of a type 1 prophage as well as the presence of a type 2-like prophage. Our results indicate that 'Ca. L. asiaticus' populations are homogeneous and harbor a new genomic organization in prophages type 1 and 2.
Collapse
Affiliation(s)
| | - Camila Giacomo Fassini
- 1 Departamento de Pesquisa & Desenvolvimento-Fundecitrus, Araraquara, SP, 14807-040, Brazil
| | - Laís Simões Sampaio
- 1 Departamento de Pesquisa & Desenvolvimento-Fundecitrus, Araraquara, SP, 14807-040, Brazil
| | - Gabriel Dequigiovanni
- 2 Agência Paulista de Tecnologia dos Agronegócios, Polo Regional Centro-Sul, Rodovia SP 127, km 30, Piracicaba, SP, 13400-970 Brazil; and
| | - Maria Imaculada Zucchi
- 2 Agência Paulista de Tecnologia dos Agronegócios, Polo Regional Centro-Sul, Rodovia SP 127, km 30, Piracicaba, SP, 13400-970 Brazil; and
| | - Nelson Arno Wulff
- 1 Departamento de Pesquisa & Desenvolvimento-Fundecitrus, Araraquara, SP, 14807-040, Brazil
- 3 PPG Biotecnologia, IQ/UNESP Araraquara, SP, 14800-060, Brazil
| |
Collapse
|
4
|
Dolatabadian A, Patel DA, Edwards D, Batley J. Copy number variation and disease resistance in plants. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:2479-2490. [PMID: 29043379 DOI: 10.1007/s00122-017-2993-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 09/27/2017] [Indexed: 05/06/2023]
Abstract
Plant genome diversity varies from single nucleotide polymorphisms to large-scale deletions, insertions, duplications, or re-arrangements. These re-arrangements of sequences resulting from duplication, gains or losses of DNA segments are termed copy number variations (CNVs). During the last decade, numerous studies have emphasized the importance of CNVs as a factor affecting human phenotype; in particular, CNVs have been associated with risks for several severe diseases. In plants, the exploration of the extent and role of CNVs in resistance against pathogens and pests is just beginning. Since CNVs are likely to be associated with disease resistance in plants, an understanding of the distribution of CNVs could assist in the identification of novel plant disease-resistance genes. In this paper, we review existing information about CNVs; their importance, role and function, as well as their association with disease resistance in plants.
Collapse
Affiliation(s)
- Aria Dolatabadian
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Crawley, WA, 6009, Australia
| | - Dhwani Apurva Patel
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Crawley, WA, 6009, Australia
| | - David Edwards
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Crawley, WA, 6009, Australia
| | - Jacqueline Batley
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Crawley, WA, 6009, Australia.
| |
Collapse
|
5
|
Hajri A, Loiseau M, Cousseau-Suhard P, Renaudin I, Gentit P. Genetic Characterization of 'Candidatus Liberibacter solanacearum' Haplotypes Associated with Apiaceous Crops in France. PLANT DISEASE 2017; 101:1383-1390. [PMID: 30678593 DOI: 10.1094/pdis-11-16-1686-re] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
'Candidatus Liberibacter solanacearum' (Lso) is an emerging phytopathogenic bacterium that causes significant crop losses worldwide. This bacterium has been identified in association with diseases of several solanaceous crops in the United States and New Zealand, and with carrot and celery crops in several European countries. Five Lso haplotypes (LsoA, LsoB, LsoC, LsoD, and LsoE) have now been described worldwide. In France, symptoms of Lso were observed on plants of the Apiaceae family in several regions. One hundred and ninety-two samples of apiaceous plants were collected from 2012 to 2016 in different geographical regions and were tested for the occurrence of Lso by real-time PCR assay. In addition to carrot and celery, Lso was detected in four other apiaceous crops: chervil, fennel, parsley, and parsnip. These new findings suggest that Lso has a wider natural host range within the Apiaceae family than expected. To identify the Lso haplotypes present in France, we sequenced and analyzed the 16S rRNA gene and the 50S ribosomal protein rpIJ-rpIL gene region from a representative bacterial collection of 44 Lso-positive samples. Our SNP analysis revealed the occurrence of two distinct bacterial lineages that correspond to haplotypes D and E. Then, we assessed the phylogenetic relationships between strains isolated from France and a worldwide collection of Lso isolates by using the rpIJ-rpIL gene region sequences. The neighbor-joining tree constructed delineated five clusters corresponding to the five Lso haplotypes, with LsoD and LsoE being closely related phylogenetically. Altogether, the data presented here constitute a first step toward a better understanding of the genetic diversity among Lso haplotypes in France, and provide new insights into the host range of this emerging bacterial species.
Collapse
Affiliation(s)
- Ahmed Hajri
- ANSES-Laboratoire de la Santé des Végétaux (LSV), 49044 Angers Cedex 01, France
| | - Marianne Loiseau
- ANSES-Laboratoire de la Santé des Végétaux (LSV), 49044 Angers Cedex 01, France
| | | | - Isabelle Renaudin
- ANSES-Laboratoire de la Santé des Végétaux (LSV), 49044 Angers Cedex 01, France
| | - Pascal Gentit
- ANSES-Laboratoire de la Santé des Végétaux (LSV), 49044 Angers Cedex 01, France
| |
Collapse
|
6
|
Saeed AF, Wang R, Wang S. Microsatellites in Pursuit of Microbial Genome Evolution. Front Microbiol 2016; 6:1462. [PMID: 26779133 PMCID: PMC4700210 DOI: 10.3389/fmicb.2015.01462] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 12/07/2015] [Indexed: 12/27/2022] Open
Abstract
Microsatellites or short sequence repeats are widespread genetic markers which are hypermutable 1-6 bp long short nucleotide motifs. Significantly, their applications in genetics are extensive due to their ceaseless mutational degree, widespread length variations and hypermutability skills. These features make them useful in determining the driving forces of evolution by using powerful molecular techniques. Consequently, revealing important questions, for example, what is the significance of these abundant sequences in DNA, what are their roles in genomic evolution? The answers of these important questions are hidden in the ways these short motifs contributed in altering the microbial genomes since the origin of life. Even though their size ranges from 1 -to- 6 bases, these repeats are becoming one of the most popular genetic probes in determining their associations and phylogenetic relationships in closely related genomes. Currently, they have been widely used in molecular genetics, biotechnology and evolutionary biology. However, due to limited knowledge; there is a significant gap in research and lack of information concerning hypermutational mechanisms. These mechanisms play a key role in microsatellite loci point mutations and phase variations. This review will extend the understandings of impacts and contributions of microsatellite in genomic evolution and their universal applications in microbiology.
Collapse
Affiliation(s)
- Abdullah F. Saeed
- Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry UniversityFuzhou, China
| | | | | |
Collapse
|