1
|
Islam MSU, Shing P, Ahmed M, Zohra FT, Rownaq A, Paul SK, Rahman SM, Sarkar MAR. Genome-wide identification and characterization of NCED gene family in soybean (Glycine max L.) and their expression profiles in response to various abiotic stress treatments. PLoS One 2025; 20:e0319952. [PMID: 40131870 PMCID: PMC11936224 DOI: 10.1371/journal.pone.0319952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 02/11/2025] [Indexed: 03/27/2025] Open
Abstract
The NCED (9-cis-epoxy carotenoid dioxygenase) enzyme regulates the biosynthesis of abscisic acid (ABA), which is responsible for plant growth, development, and response to various environmental challenges. However, no genome-wide identification, characterization, functional regulatory element analysis, and expression profiles in response to different abiotic stresses of the NCED gene family have yet to be investigated in an economically important legume plant species, soybean (Glycine max L.). Through comprehensive analysis, 16 NCED genes (named GmNCED1 to GmNCED16) belonging to the RPE65 domain were identified in the soybean genome and found to be unequally distributed over 9 distinct chromosomes. The distinct intron-exon structures of GmNCED genes were categorized into six groups and shared a close relationship with the grapevine. Segmental gene duplication events and the purifying selection process were evident in GmNCED genes, according to evolutionary studies. Cis-acting regulatory element analysis revealed that GmNCED genes were largely associated with light response as well as stress response. ERF, MYB, bZIP, and LBD emerged as the major transcription factors in GmNCED genes. The protein-protein interactions demonstrated the close relationship between GmNCED and Arabidopsis thaliana proteins, while micro-RNA analysis revealed the involvement of GmNCED genes in plant growth and development as well as in the regulation of abiotic stress. The expression profiles of GmNCED2, GmNCED11, and GmNCED12 provided evidence of their engagement in dehydration and sodium salt stress, whereas GmNCED14 and GmNCED15 were up-regulated in drought stress. Moreover, the up-regulation of GmNCED13 and GmNCED14 genes in heat tolerant germinated seed stages at high temperature delta region. More specifically, GmNCED14 might be used as a novel candidate gene under drought stress, and influencing seed germination at high temperature. Overall, this study identified the crucial role of GmNCED in conferring resistance against abiotic stress such as dehydration, salt, and drought, and also uncovering the detailed regulatory mechanism of ABA biosynthesis during seed germination.
Collapse
Affiliation(s)
- Md Shohel Ul Islam
- Laboratory of Functional Genomics and Proteomics, Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Pollob Shing
- Laboratory of Functional Genomics and Proteomics, Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Mahin Ahmed
- Laboratory of Functional Genomics and Proteomics, Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Fatema Tuz Zohra
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Rajshahi, Rajshahi, Bangladesh
| | - Amina Rownaq
- Institute of Biological Sciences, University of Rajshahi, Rajshahi, Bangladesh
| | - Suronjeet Kumar Paul
- Laboratory of Functional Genomics and Proteomics, Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Shaikh Mizanur Rahman
- Laboratory of Functional Genomics and Proteomics, Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md. Abdur Rauf Sarkar
- Laboratory of Functional Genomics and Proteomics, Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| |
Collapse
|
2
|
Sudhakaran S, Thakral V, Mandlik R, Mahakalkar B, Sharma Y, Kumar V, Deshmukh R, Sharma TR, Sonah H. Potential Role of TIP3 Aquaporins in the Transport of H 2O 2 and Boric Acid During Seed Development and Germination in Soybean (Glycine max L.). PLANT, CELL & ENVIRONMENT 2025. [PMID: 39834037 DOI: 10.1111/pce.15399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 12/16/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025]
Abstract
Tonoplast intrinsic proteins (TIPs) are the channel-forming proteins predominantly found in the tonoplast of plant cells. Despite the identification of TIPs in numerous plant species, very less is known about the precise role of different TIP subgroups. In the present study, two genes belonging to the TIP3 subgroup were studied to understand tissue-specific role and solute transport activity. The soybean GmTIP3-1 and GmTIP3-2 were found to be expressed exclusively in seeds. Unlike rest of the aquaporins (AQPs), the expression of GmTIP3s gradually increased during seed maturation. The GmTIP3s also show higher expression during the initiation of seed germination, suggesting their potential role in the solute transport during seed maturation and germination. Further, GmTIP3-1 and GmTIP3-2 were functionally characterised to understand the structure, pore morphology, pore hydrophobicity, sub-cellular localization, and solute specificity. The solute specificity of TIPs is crucial in various physiological and developmental processes. Solute transport activity studied using yeast growth and survivability assay suggests that GmTIP3-1 and GmTIP3-2 can transport hydrogen peroxide (H2O2) and boric acid, both of which are known to play significant role in seed germination. The information provided here will help to understand the precise role of TIP3 genes in seed development and germination.
Collapse
Affiliation(s)
- Sreeja Sudhakaran
- Department of Biotechnology, Central University of Haryana, Mahendergarh, Haryana, India
| | - Vandana Thakral
- Department of Biotechnology, Central University of Haryana, Mahendergarh, Haryana, India
| | - Rushil Mandlik
- Department of Biotechnology, Central University of Haryana, Mahendergarh, Haryana, India
| | - Badal Mahakalkar
- Department of Biotechnology, Central University of Haryana, Mahendergarh, Haryana, India
| | - Yogesh Sharma
- National Agri-Food Biotechnology Institute, Mohali, Punjab, India
| | - Virender Kumar
- Department of Biotechnology, Central University of Haryana, Mahendergarh, Haryana, India
| | - Rupesh Deshmukh
- Department of Biotechnology, Central University of Haryana, Mahendergarh, Haryana, India
| | - Tilak Raj Sharma
- Division of Crop Science, Indian Council of Agricultural Research, New Delhi, India
| | - Humira Sonah
- Department of Biotechnology, Central University of Haryana, Mahendergarh, Haryana, India
| |
Collapse
|
3
|
Zhao Y, Day B. Subcellular spatial regulation of immunity-induced phosphorylation of RIN4 links PAMP-triggered immunity to Exo70B1. FRONTIERS IN PLANT SCIENCE 2024; 15:1473944. [PMID: 39735778 PMCID: PMC11681384 DOI: 10.3389/fpls.2024.1473944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/25/2024] [Indexed: 12/31/2024]
Abstract
RIN4 is a crucial regulator of plant immunity, playing a role in both PAMP-triggered immunity (PTI) and effector-triggered immunity (ETI). While the impact of post-translational modifications (PTMs) on RIN4 has been extensively studied, their specific effects on plant immune response regulation and the underlying mechanisms have remained unclear. In this study, we investigated the phosphorylation of RIN4 at threonine-166 (RIN4T166) in Arabidopsis transgenic lines expressing various RIN4 variants. Our pathological and molecular genetic analyses reveal that RIN4T166 phosphorylation disrupts its localization to the plasma membrane (PM) and represses plant defense activation. We found that RIN4's PM tethering relies on Exo70B1-mediated exocytosis and the integrity of the host cytoskeletal actin network. Phosphorylation at RIN4T166 disrupts its PM localization due to reduced binding affinity with Exo70B1. This disruption was further evidenced by the 35S::RIN4T166D/rin124 transgenic line, which exhibited suppressed PTI responses similar to the exo70b1 mutant. Our findings demonstrate that RIN4's subcellular localization is regulated by phosphorylation, suggesting that plants use a sophisticated network of signaling processes to precisely control the timing and localization of immune signaling activation. This study uncovers a mechanism by which PTI is repressed through RIN4 phosphorylation, providing new insights into the spatial regulation of RIN4 within plant immune signaling pathways.
Collapse
Affiliation(s)
- Yi Zhao
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | - Brad Day
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
- Plant Resilience Institute, Michigan State University, East Lansing, MI, United States
- Graduate Program in Genetics and Genome Sciences, Michigan State University, East Lansing, MI, United States
- Graduate Program in Molecular Plant Sciences, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
4
|
Yin Y, Ren Z, Zhang L, Qin L, Chen L, Liu L, Jia R, Xue K, Liu B, Wang X. In Situ Proteomic Analysis of Herbicide-Resistant Soybean and Hybrid Seeds via Matrix-Assisted Laser Desorption/Ionization-Mass Spectrometry Imaging. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7140-7151. [PMID: 37098110 DOI: 10.1021/acs.jafc.3c00301] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Transgenic soybean is the commercial crop with the largest cultivation area worldwide. During transgenic soybean cultivation, exogenous genes may be transferred to wild relatives through gene flow, posing unpredictable ecological risks. Accordingly, an environmental risk assessment should focus on fitness changes and underlying mechanisms in hybrids between transgenic and wild soybeans (Glycine soja). Matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) was used for in situ detection and imaging of protein changes in the seeds of transgenic herbicide-resistant soybean harboring epsps and pat genes, non-transgenic soybean, wild soybean, and their F2 hybrid. Protein data clearly distinguished wild soybeans, while the F2 seeds had protein characteristics of both parents and were distinguished from wild soybean seeds. Using UPLC-Q-TOF-MS, 22 differentially expressed proteins (DEPs) were identified, including 13 specific to wild soybean. Sucrose synthase and stress response-related DEPs were differentially expressed in parental and offspring. Differences in these may underpin the greater adaptability of the latter. MSI revealed DEP distribution in transgenic, wild, and F2 seeds. Identifying DEPs related to fitness may elucidate mechanisms underlying fitness differences among the studied varieties. Our study shows that MALDI-MSI has the potential to become a visual method for transgenic soybean analysis.
Collapse
Affiliation(s)
- Yue Yin
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
- Nanjing Agro-Tech Extension and Service Center, Agricultural and Rural Bureau of Nanjing, Nanjing, Jiangsu 210029, China
| | - Zhentao Ren
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Li Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Liang Qin
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (State Ethnic Affairs Commission), Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
| | - Lulu Chen
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (State Ethnic Affairs Commission), Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
| | - Laipan Liu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Ruizong Jia
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya 572025, China
| | - Kun Xue
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Biao Liu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Xiaodong Wang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (State Ethnic Affairs Commission), Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
| |
Collapse
|
5
|
Koltun A, Fuhrmann-Aoyagi MB, Cardoso Moraes LA, Lima Nepomuceno A, Simões Azeredo Gonçalves L, Mertz-Henning LM. Uncovering the roles of hemoglobins in soybean facing water stress. Gene 2022; 810:146055. [PMID: 34737003 DOI: 10.1016/j.gene.2021.146055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/14/2021] [Accepted: 10/28/2021] [Indexed: 11/22/2022]
Abstract
Water stress drastically hinders crop yield, including soybean - one of the world's most relevant feeding crops - threatening the food security of an ever-growing global population. Hemoglobins (GLBs) are involved in water stress tolerance; however, the role they effectively play in soybean remains underexplored. In this study, in silico and in vivo analyses were performed to identify soybean GLBs, capture their transcriptional profile under water stress, and overexpress promising members to assess how soybean cope with waterlogging. Seven GLBs were found, two GLB1 (non-symbiotic) and five GLB2 (symbiotic or leghemoglobins). Three out of the seven GLBs were differentially expressed in soybean RNA-seq libraries of water stress and were evaluated by real-time PCR. Consistently, GmGLB1-1 and GmGLB1-2 were moderately and highly expressed under waterlogging, respectively. Composite plants with roots overexpressing GmGLB1-1 or GmGLB1-2 (mostly) showed higher transcript abundance of stress-defensive genes involved in anaerobic, nitrogen, carbon, and antioxidant metabolism when subjected to waterlogging. In addition, soybean bearing p35S:GmGLB1-2 had lower H2O2 root content, a reactive oxygen species (ROS), under water excess compared with the control condition. Altogether these results suggest that GmGLB1-2 is a strong candidate for soybean genetic engineering to generate waterlogging-tolerant soybean cultivars.
Collapse
|
6
|
Zhou M, Hassan MJ, Peng Y, Liu L, Liu W, Zhang Y, Li Z. γ-Aminobutyric Acid (GABA) Priming Improves Seed Germination and Seedling Stress Tolerance Associated With Enhanced Antioxidant Metabolism, DREB Expression, and Dehydrin Accumulation in White Clover Under Water Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:776939. [PMID: 34925419 PMCID: PMC8678086 DOI: 10.3389/fpls.2021.776939] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/28/2021] [Indexed: 06/14/2023]
Abstract
As an important plant growth regulator, the role of γ-aminobutyric acid (GABA) in regulating seeds germination was less well elucidated under water stress. The present study was conducted to investigate the impact of GABA pretreatment on seeds germination of white clover (Trifolium repens) under water deficient condition. Results demonstrated that seeds pretreated with 2μmol/l GABA significantly alleviated decreases in endogenous GABA content, germination percentage, germination potential, germination index, root length, and fresh weight along with marked reduction in mean germination time after 7days of germination under drought stress. In addition, seeds priming with GABA significantly increased the accumulation of soluble sugars, non-enzymatic antioxidants [reduced ascorbate, dehydroascorbic acid, oxidized glutathione (GSSG), and reduced glutathione (GSH)], and enzymes [superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), glutathioe reductase, and monodehydroasorbate reductase (MDHR)] activities involved in antioxidant metabolism, which could be associated with significant reduction in osmotic potential and the accumulation of superoxide anion, hydrogen peroxide, electrical leakage, and malondialdehyde in seeds under drought stress. The GABA-pretreated seeds exhibited significantly higher abundance of dehydrin (DHN, 56 KDa) and expression levels of DHNs encoding genes (SK2, Y2K, Y2SK, and Dehydrin b) and transcription factors (DREB2, DREB3, DREB4, and DREB5) than the untreated seeds during germination under water-limited condition. These results indicated that the GABA regulated improvement in seeds germination associated with enhancement in osmotic adjustment, antioxidant metabolism, and DREB-related DHNs expression. Current study will provide a better insight about the GABA-regulated defense mechanism during seeds germination under water-limited condition.
Collapse
|
7
|
Sinha R, Bala M, Prabha P, Ranjan A, Chahota RK, Sharma TR, Singh AK. Identification and validation of reference genes for qRT-PCR based studies in horse gram ( Macrotyloma uniflorum). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2859-2873. [PMID: 35035141 PMCID: PMC8720121 DOI: 10.1007/s12298-021-01104-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 11/10/2021] [Accepted: 11/17/2021] [Indexed: 06/14/2023]
Abstract
UNLABELLED The quantitative real-time polymerase chain reaction (qRT-PCR) is the most sensitive and commonly used technique for gene expression studies in biological systems. However, the reliability of qRT-PCR results depends on the selection of reference gene(s) for data normalization. Horse gram (Macrotyloma uniflorum) is an important legume crop on which several molecular studies have been reported. However, the stability of reference genes has not been evaluated. In the present study, nine candidate reference genes were identified from horse gram RNA-seq data and evaluated in two horse gram genotypes, HPK4 and HPKM317 under six abiotic stresses viz. cold, drought, salinity, heat, abscisic acid and methyl viologen-induced oxidative stress. The results were evaluated using geNorm, Bestkeeper, Normfinder and delta-delta Ct methods and comprehensive ranking was assigned using RefFinder and RankAggreg software. The overall result showed that TCTP was one of the most stable genes in all samples and in genotype HPK4, while in HPKM317 profilin was most stably expressed. However, PSMA5 was identified as least stable in all the experimental conditions. Expression of target genes dehydrin and early response to dehydration 6 under drought stress was also validated using TCTP and profilin for data normalization, either alone or in combination, which confirmed their suitability for qRT-PCR data normalization. Thus, TCTP and profilin genes may be used for qRT-PCR data normalization for molecular and genomic studies in horse gram. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01104-0.
Collapse
Affiliation(s)
- Ragini Sinha
- School of Genetic Engineering, ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, 834010 India
| | - Meenu Bala
- School of Genetic Engineering, ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, 834010 India
| | - Pragya Prabha
- School of Genetic Engineering, ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, 834010 India
| | - Alok Ranjan
- School of Genetic Engineering, ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, 834010 India
| | - Rakesh K. Chahota
- Department of Agricultural Biotechnology, Choudhary Sarwan Kumar Himachal Pradesh Agricultural University, Palampur, 176061 India
| | - Tilak Raj Sharma
- School of Genetic Engineering, ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, 834010 India
| | - Anil Kumar Singh
- School of Genetic Engineering, ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, 834010 India
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012 India
| |
Collapse
|
8
|
Ferreira D, Figueiredo J, Laureano G, Machado A, Arrabaça JD, Duarte B, Figueiredo A, Matos AR. Membrane remodelling and triacylglycerol accumulation in drought stress resistance: The case study of soybean phospholipases A. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 169:9-21. [PMID: 34741889 DOI: 10.1016/j.plaphy.2021.10.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Agriculture is facing major constraints with the increase of global warming, being drought a major factor affecting productivity. Soybean (Glycine max) is among the most important food crops due to the high protein and lipid content of its seeds despite being considerably sensitive to drought. Previous knowledge has shown that drought induces a severe modulation in lipid and fatty acid content of leaves, related to alteration of membrane structure by lipolytic enzymes and activation of signalling pathways. In that sense, little is known on lipid modulation and lipolytic enzymes' role in soybean drought stress tolerance. In this work, we present for the first time, soybean leaves lipid content modulation in several drought stress levels, highlighting the involvement of phospholipases A. Moreover, a comprehensive analysis of the phospholipase A superfamily was performed, where 53 coding genes were identified and 7 were selected to gene expression analysis in order to elucidate their role in soybean lipid modulation under water deficit. Proportionally to the drought severity, our results revealed that galactolipids relative abundance and their content in linolenic acid decrease. At the same time an accumulation of neutral lipids, mainly due to triacylglycerol content increase, as well as their content in linolenic acid, is observed. Overall, PLA gene expression regulation and lipid modulation corroborate the hypothesis that phospholipases A may be channelling the plastidial fatty acids into extraplastidial lipids leading to a drought-induced accumulation of triacylglycerol in soybean leaves, a key feature to cope with water stress.
Collapse
Affiliation(s)
- Daniela Ferreira
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Joana Figueiredo
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal; Grapevine Pathogen Systems Lab, BioISI, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Gonçalo Laureano
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal; Grapevine Pathogen Systems Lab, BioISI, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - André Machado
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - João Daniel Arrabaça
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal; Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Bernardo Duarte
- Marine and Environmental Sciences Centre (MARE), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal; Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Andreia Figueiredo
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal; Grapevine Pathogen Systems Lab, BioISI, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal; Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Ana Rita Matos
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal; Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal.
| |
Collapse
|
9
|
Fuhrmann-Aoyagi MB, de Fátima Ruas C, Barbosa EGG, Braga P, Moraes LAC, de Oliveira ACB, Kanamori N, Yamaguchi-Shinozaki K, Nakashima K, Nepomuceno AL, Mertz-Henning LM. Constitutive expression of Arabidopsis bZIP transcription factor AREB1 activates cross-signaling responses in soybean under drought and flooding stresses. JOURNAL OF PLANT PHYSIOLOGY 2021; 257:153338. [PMID: 33401097 DOI: 10.1016/j.jplph.2020.153338] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/25/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
Abiotic stress, such as drought and flooding, are responsible for considerable losses in grain production worldwide. Soybean, the main cultivated oilseed in the world, is sensitive to both stresses. Plant molecular mechanisms answer via crosstalk of several signaling pathways, in which particular genes can respond to different stresses. Previous studies confirmed that overexpression of transcription factor AtAREB1 confers drought tolerance in soybean. However, plants containing this gene have not yet been tested under flooding. Thus, the objective of this study was to characterize genetically modified (GM) soybean plants overexpressing AtAREB1 under drought and flooding conditions in comparison to its genetic background. Physiological and biochemical measurements were performed. In addition, the expression level of genes commonly activated under both stresses was evaluated. The results supported the role of the AtAREB1 gene in conferring tolerance to water deficit in soybeans. Furthermore, under flooding, the GM line was efficient in maintaining a higher photosynthetic rate, intrinsic efficiency in water use, and instantaneous carboxylation efficiency, resulting in higher grain yield under stress. The GM line also presented higher protein content, lower concentration of hydrogen peroxide, and lower expression levels of genes related to fermentative metabolism and alanine biosynthesis. These results indicate that in addition to drought stress, plants overexpressing AtAREB1 exhibited better performance under flooding when compared to the non-GM line, suggesting a cross-signaling response to both abiotic factors.
Collapse
Affiliation(s)
- Martina Bianca Fuhrmann-Aoyagi
- Department of General Biology, Londrina State University, Rodovia Celso Garcia Cid, Campus Universitário, 86.057-970, Londrina, PR, Brazil.
| | - Claudete de Fátima Ruas
- Department of General Biology, Londrina State University, Rodovia Celso Garcia Cid, Campus Universitário, 86.057-970, Londrina, PR, Brazil.
| | - Elton Gargioni Grisoste Barbosa
- Fundação de Apoio à Pesquisa e ao Desenvolvimento (FAPED), Rua Dr. Campos Júnior, 49 - Centro, 35700-039, Sete Lagoas, MG, Brazil.
| | - Patricia Braga
- Agronomy Department, Universidade Estadual de Londrina (UEL), Rodovia Celso Garcia Cid, Pr 445, Km 380, 86050-900, Londrina, PR, Brazil.
| | | | | | - Norihito Kanamori
- Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki, 305-8686, Japan.
| | - Kazuko Yamaguchi-Shinozaki
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan; Research Institute for Agricultural and Life Sciences, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan.
| | - Kazuo Nakashima
- Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki, 305-8686, Japan.
| | - Alexandre Lima Nepomuceno
- Embrapa Soja, Rodovia Carlos João Strass, Acesso Orlando Amaral, Warta, PO. Box 231, 86001-970, Londrina, PR, Brazil.
| | - Liliane Marcia Mertz-Henning
- Embrapa Soja, Rodovia Carlos João Strass, Acesso Orlando Amaral, Warta, PO. Box 231, 86001-970, Londrina, PR, Brazil.
| |
Collapse
|
10
|
Yuan L, Xie GZ, Zhang S, Li B, Wang X, Li Y, Liu T, Xu X. GmLCLs negatively regulate ABA perception and signalling genes in soybean leaf dehydration response. PLANT, CELL & ENVIRONMENT 2021; 44:412-424. [PMID: 33125160 DOI: 10.1111/pce.13931] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/23/2020] [Accepted: 10/23/2020] [Indexed: 05/27/2023]
Abstract
The circadian clock allows plants to actively adapt to daily environmental changes through temporal regulation of physiological traits. In response to drought stress, circadian oscillators gate ABA signalling, but the molecular mechanisms remain unknown, especially in crops. Here, we investigated the role of soybean circadian oscillators GmLCLa1, GmLCLa2, GmLCLb1 and GmLCLb2 in leaf water stress response. Under dehydration stress, the GmLCL quadruple mutant had decreased leaf water loss. We found that the dehydration treatment delayed the peak expression of GmLCL genes by 4 hr. In addition, the circadian clock in hairy roots also responded to ABA, which led to a free-running rhythm with shortened period. Importantly, in the gmlclq quadruple mutant, diurnal expression phases of several circadian-regulated ABA receptor, ABA catabolism and ABA signalling-related genes were shifted significantly to daytime. Moreover, in the gmlclq mutant leaf, expression of GmPYL17, GmCYP707A, GmABI2 and GmSnRK2s was increased under water dehydration stress. In summary, our results show that GmLCLs act as negative regulators of ABA signalling in leaves during dehydration response.
Collapse
Affiliation(s)
- Li Yuan
- Key Laboratory of Molecular and Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Grace Z Xie
- Zhengzhou Foreign Language School, Zhengzhou, China
| | - Siyuan Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Baozhu Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Xianglong Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Yu Li
- Key Laboratory of Molecular and Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Tao Liu
- Key Laboratory of Molecular and Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Xiaodong Xu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
11
|
Reis RR, Mertz-Henning LM, Marcolino-Gomes J, Rodrigues FA, Rockenbach-Marin S, Fuganti-Pagliarini R, Koltun A, Gonçalves LSA, Nepomuceno AL. Differential gene expression in response to water deficit in leaf and root tissues of soybean genotypes with contrasting tolerance profiles. Genet Mol Biol 2020; 43:e20180290. [PMID: 32478791 PMCID: PMC7263426 DOI: 10.1590/1678-4685-gmb-2018-0290] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 09/25/2019] [Indexed: 11/22/2022] Open
Abstract
Water deficit is one of the major limitations to soybean production worldwide, yet the genetic basis of drought-responsive mechanisms in crops remains poorly understood. In order to study the gene expression patterns in leaves and roots of soybean, two contrasting genotypes, Embrapa 48 (drought-tolerant) and BR 16 (drought-sensitive), were evaluated under moderate and severe water deficit. Transcription factors from the AP2/EREBP and WRKY families were investigated. Embrapa 48 showed 770 more up-regulated genes than BR 16, in eight categories. In general, leaves presented more differentially expressed genes (DEGs) than roots. Embrapa 48 responded to water deficit faster than BR 16, presenting a greater number of DEGs since the first signs of drought. Embrapa 48 exhibited initial modulation of genes associated with stress, while maintaining the level of the ones related to basic functions. The genes expressed exclusively in the drought-tolerant cultivar, belonging to the category of dehydration responsive genes, and the ones with a contrasting expression pattern between the genotypes are examples of important candidates to confer tolerance to plants. Finally, this study identified genes of the AP2/EREBP and WRKY families related to drought tolerance.
Collapse
Affiliation(s)
- Rafaela Ribeiro Reis
- Universidade Estadual de Londrina, Departamento de Biologia e
Departamento de Agronomia, Londrina, PR, Brazil
| | | | - Juliana Marcolino-Gomes
- Embrapa Soybean, Empresa Brasileira de Pesquisa Agropecuária,
Londrina, PR, Brazil
- Conselho Nacional de Desenvolvimento Científico e Tecnológico -
CNPq, Brasília, DF, Brazil
| | | | - Silvana Rockenbach-Marin
- Universidade Estadual de Londrina, Departamento de Biologia e
Departamento de Agronomia, Londrina, PR, Brazil
- Conselho Nacional de Desenvolvimento Científico e Tecnológico -
CNPq, Brasília, DF, Brazil
| | - Renata Fuganti-Pagliarini
- Embrapa Soybean, Empresa Brasileira de Pesquisa Agropecuária,
Londrina, PR, Brazil
- Conselho Nacional de Desenvolvimento Científico e Tecnológico -
CNPq, Brasília, DF, Brazil
| | | | | | | |
Collapse
|
12
|
Dudziak K, Sozoniuk M, Szczerba H, Kuzdraliński A, Kowalczyk K, Börner A, Nowak M. Identification of stable reference genes for qPCR studies in common wheat ( Triticum aestivum L.) seedlings under short-term drought stress. PLANT METHODS 2020; 16:58. [PMID: 32355504 PMCID: PMC7183717 DOI: 10.1186/s13007-020-00601-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 04/16/2020] [Indexed: 06/01/2023]
Abstract
BACKGROUND Quantitative PCR (qPCR) is one of the most common and accurate methods of gene expression analysis. However, the biggest challenge for this kind of examinations is normalization of the results, which requires the application of dependable internal controls. The selection of appropriate reference genes (RGs) is one of the most crucial points in qPCR data analysis and for correct assessment of gene expression. Because of the fact that many reports indicate that the expression profiles of typically used RGs can be unstable in certain experimental conditions, species or tissues, reference genes with stable expression levels should be selected individually for each experiment. In this study, we analysed a set of ten candidate RGs for wheat seedlings under short-term drought stress. Our tests included five 'traditional' RGs (GAPDH, ACT, UBI, TUB, and TEF1) and five novel genes developed by the RefGenes tool from the Genevestigator database. RESULTS Expression stability was assessed using five different algorithms: geNorm, NormFinder, BestKeeper, RefFinder and the delta Ct method. In the final ranking, we identified three genes: CJ705892, ACT, and UBI, as the best candidates for housekeeping genes. However, our data indicated a slight variation between the different algorithms that were used. We revealed that the novel gene CJ705892, obtained by means of in silico analysis, showed the most stable expression in the experimental tissue and condition. CONCLUSIONS Our results support the statement, that novel genes selected for certain experimental conditions have a more stable level of expression in comparison to routinely applied RGs, like genes encoding actin, tubulin or GAPDH. Selected CJ705892 gene can be used as a housekeeping gene in the expression analysis in wheat seedlings under short-term drought. The results of our study will be useful for subsequent analyses of gene expression in wheat tissues subjected to drought.
Collapse
Affiliation(s)
- Karolina Dudziak
- Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland
- Chair and Department of Biochemistry and Molecular Biology, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland
| | - Magdalena Sozoniuk
- Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland
| | - Hubert Szczerba
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland
| | - Adam Kuzdraliński
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland
| | - Krzysztof Kowalczyk
- Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland
| | - Andreas Börner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, Stadt Seeland, 06466 Gatersleben, Germany
| | - Michał Nowak
- Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland
| |
Collapse
|
13
|
Liu A, Xiao Z, Li MW, Wong FL, Yung WS, Ku YS, Wang Q, Wang X, Xie M, Yim AKY, Chan TF, Lam HM. Transcriptomic reprogramming in soybean seedlings under salt stress. PLANT, CELL & ENVIRONMENT 2019; 42:98-114. [PMID: 29508916 DOI: 10.1111/pce.13186] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 02/25/2018] [Accepted: 02/26/2018] [Indexed: 05/22/2023]
Abstract
To obtain a comprehensive understanding of transcriptomic reprogramming under salt stress, we performed whole-transcriptome sequencing on the leaf and root of soybean seedlings subjected to salt treatment in a time-course experiment (0, 1, 2, 4, 24, and 48 hr). This time series dataset enabled us to identify important hubs and connections of gene expressions. We highlighted the analysis on phytohormone signaling pathways and their possible crosstalks. Differential expressions were also found among those genes involved in carbon and nitrogen metabolism. In general, the salt-treated seedlings slowed down their photosynthetic functions and ramped up sugar catabolism to provide extra energy for survival. Primary nitrogen assimilation was shut down whereas nitrogen resources were redistributed. Overall, the results from the transcriptomic analyses indicate that the plant uses a multipronged approach to overcome salt stress, with both fast-acting, immediate physiological responses, and longer term reactions that may involve metabolic adjustment.
Collapse
Affiliation(s)
- Ailin Liu
- Centre for Soybean Research, Partner State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Zhixia Xiao
- Centre for Soybean Research, Partner State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Man-Wah Li
- Centre for Soybean Research, Partner State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Fuk-Ling Wong
- Centre for Soybean Research, Partner State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Wai-Shing Yung
- Centre for Soybean Research, Partner State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Yee-Shan Ku
- Centre for Soybean Research, Partner State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Qianwen Wang
- Centre for Soybean Research, Partner State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Xin Wang
- Centre for Soybean Research, Partner State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Min Xie
- Centre for Soybean Research, Partner State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Aldrin Kay-Yuen Yim
- Centre for Soybean Research, Partner State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Ting-Fung Chan
- Centre for Soybean Research, Partner State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Hon-Ming Lam
- Centre for Soybean Research, Partner State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| |
Collapse
|
14
|
Zhang C, Zheng H, Wu X, Xu H, Han K, Peng J, Lu Y, Lin L, Xu P, Wu X, Li G, Chen J, Yan F. Genome-wide identification of new reference genes for RT-qPCR normalization in CGMMV-infected Lagenaria siceraria. PeerJ 2018; 6:e5642. [PMID: 30345167 PMCID: PMC6188008 DOI: 10.7717/peerj.5642] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 08/27/2018] [Indexed: 01/07/2023] Open
Abstract
Lagenaria siceraria is an economically important cucurbitaceous crop, but suitable reference genes (RGs) to use when the plants are infected by cucumber green mottle mosaic virus (CGMMV) have not been determined. Sixteen candidate RGs of both leaf and fruit and 18 candidate RGs mostly from separate RNA-Seq datasets of bottle gourd leaf or fruit were screened and assessed by RT-qPCR. The expression stability of these genes was determined and ranked using geNorm, NormFinder, BestKeeper and RefFinder. Comprehensive analysis resulted in the selection of LsCYP, LsH3, and LsTBP as the optimal RGs for bottle gourd leaves, and LsP4H, LsADP, and LsTBP for fruits. LsWD, LsGAPDH, and LsH3 were optimal for use in both leaves and fruits under the infection of CGMMV. Isopentenyl transferase (IPT) and DNA-directed RNA polymerase (DdRP) were used to validate the applicability of the most stable identified RGs from bottle gourd in response to CGMMV. All the candidate RGs performed in RT-qPCR consistently with the data from the transcriptome database. The results demonstrated that LsWD, LsGAPDH and LsH3 were the most suitable internal RGs for the leaf, and LsH3, LsGAPDH, LsP4H and LsCYP for the fruit.
Collapse
Affiliation(s)
- Chenhua Zhang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hongying Zheng
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xinyang Wu
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Heng Xu
- Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Kelei Han
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jiejun Peng
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yuwen Lu
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Lin Lin
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Pei Xu
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Institute of Vegetable, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiaohua Wu
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Institute of Vegetable, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Guojing Li
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Institute of Vegetable, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jianping Chen
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Fei Yan
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
15
|
Yan X, Qian C, Yin X, Fan X, Zhao X, Gu M, Wang T, Ma XF. A whole-transcriptome approach to evaluate reference genes for quantitative diurnal gene expression studies under natural field conditions in Tamarix ramosissima leaves. ELECTRON J BIOTECHN 2018. [DOI: 10.1016/j.ejbt.2018.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
16
|
Lan Z, Xu J, Wang Y, Lu W. Modulatory effect of glutamate GluR2 receptor on the caudal neurosecretory Dahlgren cells of the olive flounder, Paralichthys olivaceus. Gen Comp Endocrinol 2018; 261:9-22. [PMID: 29355533 DOI: 10.1016/j.ygcen.2018.01.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 01/13/2018] [Accepted: 01/14/2018] [Indexed: 11/26/2022]
Abstract
A neuromodulatory role for glutamate has been reported for magnocellular neuroendocrine cells in mammalian hypothalamus. We examined the potential role of glutamate as a local intercellular messenger in the neuroendocrine Dahlgren cell population of the caudal neurosecretory system (CNSS) in the euryhaline flounder Paralichthys olivaceus. In pharmacological experiments in vitro, glutamate (Glu) caused an increase in electrical activity of Dahlgren cells, recruitment of previously silent cells, together with a greater proportion of cells showing phasic (irregular) activity. The glutamate substrate, glutamine (Gln), led to increased firing frequency, cell recruitment and enhanced bursting activity. The glutamate effect was not blocked by the N-methyl-D-aspartate (NMDA) receptor antagonist MK-801, or the GluR1/GluR3 (AMPA) receptor antagonist IEm1795-2HBr, but was blocked by the broad-spectrum α-amino-3-hydroxy- 5- methyl-4-isoxazo-lepropionic acid (AMPA) receptor antagonist ZK200775. Our transcriptome sequencing study revealed three AMPA receptor (GluR1, GluR2 and GluR3) in the olive flounder CNSS. Quantitative RT-PCR revealed that GluR2 receptor mRNA expression was significant increased following dose-dependent superfusion with glutamate in the CNSS. GluR1 and GluR3 receptor mRNA expression were decreased following superfusion with glutamate. L-type Ca2+ channel mRNA expression had a significant dose-dependent decrease following superfusion with glutamate, compared to the control. In the salinity challenge experiment, acute transfer from SW to FW, GluR2 receptor mRNA expression was significantly higher than the control at 2 h. These findings suggest that GluR2 is one of the mechanisms which can medicate glutamate action within the CNSS, enhancing electrical activity and hence secretory output.
Collapse
Affiliation(s)
- Zhaohui Lan
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Jinling Xu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Youji Wang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China
| | - Weiqun Lu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China.
| |
Collapse
|
17
|
Figueredo DDS, Barbosa MR, Coimbra DG, Dos Santos JLA, Costa EFL, Koike BDV, Alexandre Moreira MS, de Andrade TG. Usual normalization strategies for gene expression studies impair the detection and analysis of circadian patterns. Chronobiol Int 2017; 35:378-391. [PMID: 29219623 DOI: 10.1080/07420528.2017.1410168] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Recent studies have shown that transcriptomes from different tissues present circadian oscillations. Therefore, the endogenous variation of total RNA should be considered as a potential bias in circadian studies of gene expression. However, normalization strategies generally include the equalization of total RNA concentration between samples prior to cDNA synthesis. Moreover, endogenous housekeeping genes (HKGs) frequently used for data normalization may exhibit circadian variation and distort experimental results if not detected or considered. In this study, we controlled experimental conditions from the amount of initial brain tissue samples through extraction steps, cDNA synthesis, and quantitative real time PCR (qPCR) to demonstrate a circadian oscillation of total RNA concentration. We also identified that the normalization of the RNA's yield affected the rhythmic profiles of different genes, including Per1-2 and Bmal1. Five widely used HKGs (Actb, Eif2a, Gapdh, Hprt1, and B2m) also presented rhythmic variations not detected by geNorm algorithm. In addition, the analysis of exogenous microRNAs (Cel-miR-54 and Cel-miR-39) spiked during RNA extraction suggests that the yield was affected by total RNA concentration, which may impact circadian studies of small RNAs. The results indicate that the approach of tissue normalization without total RNA equalization prior to cDNA synthesis can avoid bias from endogenous broad variations in transcript levels. Also, the circadian analysis of 2-Cycle threshold (Ct) data, without HKGs, may be an alternative for chronobiological studies under controlled experimental conditions.
Collapse
Affiliation(s)
- Diego de Siqueira Figueredo
- a Laboratory of Molecular Chronobiology , Federal University of Alagoas (UFAL) , Arapiraca , Alagoas , Brazil
| | - Mayara Rodrigues Barbosa
- a Laboratory of Molecular Chronobiology , Federal University of Alagoas (UFAL) , Arapiraca , Alagoas , Brazil
| | - Daniel Gomes Coimbra
- a Laboratory of Molecular Chronobiology , Federal University of Alagoas (UFAL) , Arapiraca , Alagoas , Brazil.,c Faculty of Medicine , Federal University of Alagoas (UFAL) , Maceió , Alagoas , Brazil
| | - José Luiz Araújo Dos Santos
- a Laboratory of Molecular Chronobiology , Federal University of Alagoas (UFAL) , Arapiraca , Alagoas , Brazil
| | - Ellyda Fernanda Lopes Costa
- a Laboratory of Molecular Chronobiology , Federal University of Alagoas (UFAL) , Arapiraca , Alagoas , Brazil
| | - Bruna Del Vechio Koike
- a Laboratory of Molecular Chronobiology , Federal University of Alagoas (UFAL) , Arapiraca , Alagoas , Brazil
| | | | - Tiago Gomes de Andrade
- a Laboratory of Molecular Chronobiology , Federal University of Alagoas (UFAL) , Arapiraca , Alagoas , Brazil.,c Faculty of Medicine , Federal University of Alagoas (UFAL) , Maceió , Alagoas , Brazil
| |
Collapse
|
18
|
de Bekker C, Will I, Hughes DP, Brachmann A, Merrow M. Daily rhythms and enrichment patterns in the transcriptome of the behavior-manipulating parasite Ophiocordyceps kimflemingiae. PLoS One 2017; 12:e0187170. [PMID: 29099875 PMCID: PMC5669440 DOI: 10.1371/journal.pone.0187170] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 10/13/2017] [Indexed: 12/22/2022] Open
Abstract
Various parasite-host interactions that involve adaptive manipulation of host behavior display time-of-day synchronization of certain events. One example is the manipulated biting behavior observed in Carpenter ants infected with Ophiocordyceps unilateralis sensu lato. We hypothesized that biological clocks play an important role in this and other parasite-host interactions. In order to identify candidate molecular clock components, we used two general strategies: bioinformatics and transcriptional profiling. The bioinformatics approach was used to identify putative homologs of known clock genes. For transcriptional profiling, RNA-Seq was performed on 48 h time courses of Ophiocordyceps kimflemingiae (a recently named species of the O. unilateralis complex), whose genome has recently been sequenced. Fungal blastospores were entrained in liquid media under 24 h light-dark (LD) cycles and were harvested at 4 h intervals either under LD or continuous darkness. Of all O. kimflemingiae genes, 5.3% had rhythmic mRNAs under these conditions (JTK Cycle, ≤ 0.057 statistical cutoff). Our data further indicates that a significant number of transcription factors have a peaked activity during the light phase (day time). The expression levels of a significant number of secreted enzymes, proteases, toxins and small bioactive compounds peaked during the dark phase or subjective night. These findings support a model whereby this fungal parasite uses its biological clock for phase-specific activity. We further suggest that this may be a general mechanism involved in parasite-host interactions.
Collapse
Affiliation(s)
- Charissa de Bekker
- University of Central Florida, Department of Biology, Orlando, Florida, United States of America
- LMU Munich, Institute of Medical Psychology, Faculty of Medicine, Munich, Germany
- LMU Munich, Genetics, Faculty of Biology, Planegg-Martinsried, Germany
- * E-mail:
| | - Ian Will
- University of Central Florida, Department of Biology, Orlando, Florida, United States of America
- LMU Munich, Institute of Medical Psychology, Faculty of Medicine, Munich, Germany
| | - David P. Hughes
- Pennsylvania State University, Departments of Biology and Entomology, University Park, Pennsylvania, United States of America
| | - Andreas Brachmann
- LMU Munich, Genetics, Faculty of Biology, Planegg-Martinsried, Germany
| | - Martha Merrow
- LMU Munich, Institute of Medical Psychology, Faculty of Medicine, Munich, Germany
| |
Collapse
|
19
|
Zhang X, Liu X, Zhang D, Tang H, Sun B, Li C, Hao L, Liu C, Li Y, Shi Y, Xie X, Song Y, Wang T, Li Y. Genome-wide identification of gene expression in contrasting maize inbred lines under field drought conditions reveals the significance of transcription factors in drought tolerance. PLoS One 2017; 12:e0179477. [PMID: 28700592 PMCID: PMC5507481 DOI: 10.1371/journal.pone.0179477] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 05/31/2017] [Indexed: 11/19/2022] Open
Abstract
Drought is a major threat to maize growth and production. Understanding the molecular regulation network of drought tolerance in maize is of great importance. In this study, two maize inbred lines with contrasting drought tolerance were tested in the field under natural soil drought and well-watered conditions. In addition, the transcriptomes of their leaves was analyzed by RNA-Seq. In total, 555 and 2,558 genes were detected to specifically respond to drought in the tolerant and the sensitive line, respectively, with a more positive regulation tendency in the tolerant genotype. Furthermore, 4,700, 4,748, 4,403 and 4,288 genes showed differential expression between the two lines under moderate drought, severe drought and their well-watered controls, respectively. Transcription factors were enriched in both genotypic differentially expressed genes and specifically responsive genes of the tolerant line. It was speculated that the genotype-specific response of 20 transcription factors in the tolerance line and the sustained genotypically differential expression of 22 transcription factors might enhance tolerance to drought in maize. Our results provide new insight into maize drought tolerance-related regulation systems and provide gene resources for subsequent studies and drought tolerance improvement.
Collapse
Affiliation(s)
- Xiaojing Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuyang Liu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dengfeng Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huaijun Tang
- Institute of Grain Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Baocheng Sun
- Institute of Grain Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Chunhui Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Luyang Hao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Cheng Liu
- Institute of Grain Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Yongxiang Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunsu Shi
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoqing Xie
- Institute of Grain Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Yanchun Song
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tianyu Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yu Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
20
|
Martins PK, Mafra V, de Souza WR, Ribeiro AP, Vinecky F, Basso MF, da Cunha BADB, Kobayashi AK, Molinari HBC. Selection of reliable reference genes for RT-qPCR analysis during developmental stages and abiotic stress in Setaria viridis. Sci Rep 2016; 6:28348. [PMID: 27321675 PMCID: PMC4913262 DOI: 10.1038/srep28348] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 06/01/2016] [Indexed: 12/28/2022] Open
Abstract
Real-time PCR (RT-qPCR) expression analysis is a powerful analytical technique, but reliable results depend on the use of stable reference genes for proper normalization. This study proposed to test the expression stability of 13 candidate reference genes in Setaria viridis, a monocot species recently proposed as a new C4 model plant. Gene expression stability of these genes was assayed across different tissues and developmental stages of Setaria and under drought or aluminum stress. In general, our results showed Protein Kinase, RNA Binding Protein and SDH as the most stable genes. Moreover, pairwise analysis showed that two reference genes were sufficient to normalize the gene expression data under each condition. By contrast, GAPDH and ACT were the least stably expressed genes tested. Validation of suitable reference genes was carried out to profile the expression of P5CS and GolS during abiotic stress. In addition, normalization of gene expression of SuSy, involved in sugar metabolism, was assayed in the developmental dataset. This study provides a list of reliable reference genes for transcript normalization in S. viridis in different tissues and stages of development and under abiotic stresses, which will facilitate genetic studies in this monocot model plant.
Collapse
Affiliation(s)
- Polyana Kelly Martins
- Genetics and Biotechnology Laboratory, Embrapa Agroenergy (CNPAE), Brasília, DF, 70770-901, Brazil
| | - Valéria Mafra
- Brazilian Bioethanol Science and Technology Laboratory/Brazilian Center of Research in Energy and Materials, Campinas, SP, 13083-100, Brazil
| | - Wagner Rodrigo de Souza
- Genetics and Biotechnology Laboratory, Embrapa Agroenergy (CNPAE), Brasília, DF, 70770-901, Brazil
| | - Ana Paula Ribeiro
- Genetics and Biotechnology Laboratory, Embrapa Agroenergy (CNPAE), Brasília, DF, 70770-901, Brazil
| | - Felipe Vinecky
- Genetics and Biotechnology Laboratory, Embrapa Agroenergy (CNPAE), Brasília, DF, 70770-901, Brazil
| | - Marcos Fernando Basso
- Genetics and Biotechnology Laboratory, Embrapa Agroenergy (CNPAE), Brasília, DF, 70770-901, Brazil
| | | | - Adilson Kenji Kobayashi
- Genetics and Biotechnology Laboratory, Embrapa Agroenergy (CNPAE), Brasília, DF, 70770-901, Brazil
| | | |
Collapse
|