1
|
Determination of anti-phage antibodies in calf sera following application of Escherichia coli and Mannheimia haemolytica-specific bacteriophages. J Vet Res 2022; 66:353-360. [PMID: 36349127 PMCID: PMC9597941 DOI: 10.2478/jvetres-2022-0041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 07/21/2022] [Indexed: 11/20/2022] Open
Abstract
Introduction The widespread occurrence of drug-resistant bacteria has increased interest in alternatives to antibiotics for combatting bacterial infections, among which bacteriophages play an important role. The ability of phage proteins to induce an anti-phage immune response can significantly limit the effectiveness of treatment, which was the basis for the study described in this article. The aim of the study was to assess the effects of bacteriophages on the induction of an anti-phage humoral response in calves. Material and Methods The study was conducted using phage components of experimental preparations and sera from calves treated and not treated with phages. Levels of G, M and A immunoglobulins were analysed by ELISA. The assay plates were coated with whole Escherichia coli and Mannheimia haemolytica phages and selected phage proteins obtained in sodium dodecyl sulphate-polyacrylamide gel electrophoresis and two-dimensional electrophoresis. Neutralisation of phages by immunoglobulins was assessed by determining phage titres using double-layer plates. Results The results confirmed an increased anti-phage response affecting all immunoglobulin classes in the calf sera. The highest significant (P ≤ 0.05) level of antibodies was observed for IgG in the sera of calves receiving phages. The phage neutralisation test showed a significant differences (P ≤ 0.05) in the reduction of phage titres in comparison to untreated calves. Conclusion Despite the induction of an anti-phage response, no significant negative effect on the antibacterial activity of phages was observed in vitro.
Collapse
|
2
|
Pollution by Antibiotics and Antimicrobial Resistance in LiveStock and Poultry Manure in China, and Countermeasures. Antibiotics (Basel) 2021; 10:antibiotics10050539. [PMID: 34066587 PMCID: PMC8148549 DOI: 10.3390/antibiotics10050539] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/02/2021] [Accepted: 05/04/2021] [Indexed: 01/18/2023] Open
Abstract
The demand for animal protein has increased considerably worldwide, especially in China, where large numbers of livestock and poultry are produced. Antibiotics have been widely applied to promote growth and prevent diseases. However, the overuse of antibiotics in animal feed has caused serious environmental and health risks, especially the wide spread of antimicrobial resistance (AMR), which seriously affects animal and human health, food safety, ecosystems, and the sustainable future development of animal protein production. Unfortunately, AMR has already become a worldwide challenge, so international cooperation is becoming more important for combatting it. China’s efforts and determination to restrict antibiotic usage through law enforcement and effective management are of significance. In this review, we address the pollution problems of antibiotics; in particular, the AMR in water, soil, and plants caused by livestock and poultry manure in China. The negative impact of widespread and intensive use of antibiotics in livestock production is discussed. To reduce and mitigate AMR problems, we emphasize in this review the development of antibiotic substitutes for the era of antibiotic prohibition.
Collapse
|
3
|
Abdulrahman RF, Davies RL. Diversity and characterization of temperate bacteriophages induced in Pasteurella multocida from different host species. BMC Microbiol 2021; 21:97. [PMID: 33784980 PMCID: PMC8008546 DOI: 10.1186/s12866-021-02155-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 02/25/2021] [Indexed: 12/31/2022] Open
Abstract
Background Bacteriophages play important roles in the evolution of bacteria and in the emergence of new pathogenic strains by mediating the horizontal transfer of virulence genes. Pasteurella multocida is responsible for different disease syndromes in a wide range of domesticated animal species. However, very little is known about the influence of bacteriophages on disease pathogenesis in this species. Results Temperate bacteriophage diversity was assessed in 47 P. multocida isolates of avian (9), bovine (8), ovine (10) and porcine (20) origin. Induction of phage particles with mitomycin C identified a diverse range of morphological types representing both Siphoviridae and Myoviridae family-types in 29 isolates. Phage of both morphological types were identified in three isolates indicating that a single bacterial host may harbour multiple prophages. DNA was isolated from bacteriophages recovered from 18 P. multocida isolates and its characterization by restriction endonuclease (RE) analysis identified 10 different RE types. Phage of identical RE types were identified in certain closely-related strains but phage having different RE types were present in other closely-related isolates suggesting possible recent acquisition. The host range of the induced phage particles was explored using plaque assay but only 11 (38%) phage lysates produced signs of infection in a panel of indicator strains comprising all 47 isolates. Notably, the majority (9/11) of phage lysates which caused infection originated from two groups of phylogenetically unrelated ovine and porcine strains that uniquely possessed the toxA gene. Conclusions Pasteurella multocida possesses a wide range of Siphoviridae- and Myoviridae-type bacteriophages which likely play key roles in the evolution and virulence of this pathogen. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02155-9.
Collapse
Affiliation(s)
- Rezheen F Abdulrahman
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK.,Pathology and Microbiology Department, Collage of Veterinary Medicine, University of Duhok, Kurdistan Region, Iraq
| | - Robert L Davies
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK.
| |
Collapse
|
4
|
Timsit E, McMullen C, Amat S, Alexander TW. Respiratory Bacterial Microbiota in Cattle: From Development to Modulation to Enhance Respiratory Health. Vet Clin North Am Food Anim Pract 2020; 36:297-320. [PMID: 32451027 DOI: 10.1016/j.cvfa.2020.03.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The respiratory tract of cattle is colonized by complex bacterial ecosystems also known as bacterial microbiotas. These microbiotas evolve over time and are shaped by numerous factors, including maternal vaginal microbiota, environment, age, diet, parenteral antimicrobials, and stressful events. The resulting microbiota can be diverse and enriched with known beneficial bacteria that can provide colonization resistance against bacterial pathogens or, on the contrary, with opportunistic pathogens that can predispose cattle to respiratory disease. The respiratory microbiota can be modulated by nonantimicrobial approaches to promote health, creating new potential strategies for prevention and treatment of bovine respiratory disease.
Collapse
Affiliation(s)
- Edouard Timsit
- Ceva Santé Animale, 10 Avenue de la Ballastière, Libourne 33500, France.
| | - Chris McMullen
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Samat Amat
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada; Lethbridge Research and Development Center, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada; Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Trevor W Alexander
- Lethbridge Research and Development Center, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
| |
Collapse
|
5
|
Abstract
Bacteriophages are the most abundant form of life on earth and are present everywhere. The total number of bacteriophages has been estimated to be 1032 virions. The main division of bacteriophages is based on the type of nucleic acid (DNA or RNA) and on the structure of the capsid. Due to the significant increase in the number of multi-drug-resistant bacteria, bacteriophages could be a useful tool as an alternative to antibiotics in experimental therapies to prevent and to control bacterial infections in people and animals. The aim of this review was to discuss the history of phage therapy as a replacement for antibiotics, in response to EU regulations prohibiting the use of antibiotics in livestock, and to present current examples and results of experimental phage treatments in comparison to antibiotics. The use of bacteriophages to control human infections has had a high success rate, especially in mixed infections caused mainly by Staphylococcus, Pseudomonas, Enterobacter, and Enterococcus. Bacteriophages have also proven to be an effective tool in experimental treatments for combating diseases in livestock.
Collapse
|
6
|
Urban-Chmiel R, Wernicki A, Wawrzykowski J, Puchalski A, Nowaczek A, Dec M, Stęgierska D, Alomari MMM. Protein profiles of bacteriophages of the family Myoviridae-like induced on M. haemolytica. AMB Express 2018; 8:102. [PMID: 29923151 PMCID: PMC6008273 DOI: 10.1186/s13568-018-0630-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 06/14/2018] [Indexed: 01/03/2023] Open
Abstract
The aim of study was to isolate, characterize and analyse the protein profiles of Myoviridae-like bacteriophages obtained from M. haemolytica using MALDI TOF mass spectrometry. The material consisted of the M. haemolytica reference strain ATCC® BAA410, reference serotypes A1, A2, A5, A6, A7, A9, and A11, and wild-type isolates of serotype A1. Bacteriophage morphology was examined with a transmission electron microscope. The proteins were separated in SDS-PAGE and two-dimensional electrophoresis and characterized by MALDI-TOF. Among the phages obtained, seven were specific for strains A1, A2, A5, A6, A7 and 25, and PHL-1 was specific for the BAA410 strain. The protein profiles for the phages were very similar to one another, but differed from the reference phage in that they lacked protein fractions with molecular weights of 22.9, 56.3 and 73.1 kDa. 2D electrophoresis revealed significant differences in the size of proteins and their localization in the pH gradient. The most similar profiles were observed in phages specific for strains BAA-410 and A6. In all profiles two main spots were observed in the molecular weight range from 44 to 70 kDa at pH < 4. The results indicate that 2D electrophoresis is a very useful tool for characterization of phage protein profiles. An important objective was to determine the molecular differences between morphologically similar phages belonging to one family and to find similarities to phages specific for other pathogens. The study also assessed the suitability of the methods used to characterize phages.
Collapse
|
7
|
McAllister TA, Wang Y, Diarra MS, Alexander T, Stanford K. Challenges of a one-health approach to the development of alternatives to antibiotics. Anim Front 2018; 8:10-20. [PMID: 32002214 PMCID: PMC6952028 DOI: 10.1093/af/vfy002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Tim A McAllister
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge Alberta, Canada
| | - Yuxi Wang
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge Alberta, Canada
| | - Moussa S Diarra
- Guelph Research and Development Centre, West Guelph, ON, Canada
| | - Trevor Alexander
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge Alberta, Canada
| | - Kim Stanford
- Alberta Agriculture and Forestry, Lethbrisdge, Alberta, Canada
| |
Collapse
|
8
|
Wernicki A, Nowaczek A, Urban-Chmiel R. Bacteriophage therapy to combat bacterial infections in poultry. Virol J 2017; 14:179. [PMID: 28915819 PMCID: PMC5602926 DOI: 10.1186/s12985-017-0849-7] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 09/13/2017] [Indexed: 01/21/2023] Open
Abstract
Infections in poultry are an economic and health problem in Europe and worldwide. The most common infections are associated with salmonellosis, colibacillosis, campylobacteriosis, and others. The prevalence of Campylobacter-positive poultry flocks in European countries varies from 18% to 90%. In the United States, the prevalence of infected flocks is nearly 90%. A similar percentage of infection has been noted for salmonellosis (about 75-90%) and E. coli (90-95%). The occurence of Clostridium perfringens is a major problem for the poultry industry, with some estimates suggesting colonization of as many as 95% of chickens, resulting in clinical or subclinical infections. In the US, annual economic losses due to Salmonella infections run from $1.188 billion to over $11.588 billion, based on an estimated 1.92 million cases. Similar costs are observed in the case of other types of infections. In 2005 economic losses in the the poultry industry due to mortalities reached 1,000,000 USD.Infections caused by these pathogens, often through poultry products, are also a serious public health issue.The progressive increase in the number of multi-drug resistant bacteria and the complete ban on the use of antibiotics in livestock feed in the EU, as well as the partial ban in the US, have led to the growth of research on the use of bacteriophages to combat bacterial infections in humans and animals.The high success rate and safety of phage therapy in comparison with antibiotics are partly due to their specificity for selected bacteria and the ability to infect only one species, serotype or strain. This mechanism does not cause the destruction of commensal bacterial flora. Phages are currently being used with success in humans and animals in targeted therapies for slow-healing infections. They have also found application in the US in eliminating pathogens from the surface of foods of animal and plant origin. At a time of growing antibiotic resistance in bacteria and the resulting restrictions on the use of antibiotics, bacteriophages can provide an alternative means of eliminating pathogens.
Collapse
Affiliation(s)
- Andrzej Wernicki
- Sub-Department of Veterinary Prevention and Avian Diseases, Institute of Biological Basis of Animal Diseases, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 12, 20-033 Lublin, Poland
| | - Anna Nowaczek
- Sub-Department of Veterinary Prevention and Avian Diseases, Institute of Biological Basis of Animal Diseases, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 12, 20-033 Lublin, Poland
| | - Renata Urban-Chmiel
- Sub-Department of Veterinary Prevention and Avian Diseases, Institute of Biological Basis of Animal Diseases, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 12, 20-033 Lublin, Poland
| |
Collapse
|