1
|
Aizenbud I, Yoeli D, Beniaguev D, de Kock CPJ, London M, Segev I. What makes human cortical pyramidal neurons functionally complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.17.628883. [PMID: 39763809 PMCID: PMC11702691 DOI: 10.1101/2024.12.17.628883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
Humans exhibit unique cognitive abilities within the animal kingdom, but the neural mechanisms driving these advanced capabilities remain poorly understood. Human cortical neurons differ from those of other species, such as rodents, in both their morphological and physiological characteristics. Could the distinct properties of human cortical neurons help explain the superior cognitive capabilities of humans? Understanding this relationship requires a metric to quantify how neuronal properties contribute to the functional complexity of single neurons, yet no such standardized measure currently exists. Here, we propose the Functional Complexity Index (FCI), a generalized, deep learning-based framework to assess the input-output complexity of neurons. By comparing the FCI of cortical pyramidal neurons from different layers in rats and humans, we identified key morpho-electrical factors that underlie functional complexity. Human cortical pyramidal neurons were found to be significantly more functionally complex than their rat counterparts, primarily due to differences in dendritic membrane area and branching pattern, as well as density and nonlinearity of NMDA-mediated synaptic receptors. These findings reveal the structural-biophysical basis for the enhanced functional properties of human neurons.
Collapse
Affiliation(s)
- Ido Aizenbud
- The Edmond and Lily Safra center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Daniela Yoeli
- The Edmond and Lily Safra center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem, Israel
| | - David Beniaguev
- The Edmond and Lily Safra center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Christiaan PJ de Kock
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Neuroscience Campus Amsterdam, VU Amsterdam
| | - Michael London
- The Edmond and Lily Safra center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Idan Segev
- The Edmond and Lily Safra center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
2
|
Fan Y, Wei X, Lu M, Wang J, Yi G. Electric field effects on neuronal input-output relationship by regulating NMDA spikes. Cogn Neurodyn 2024; 18:199-215. [PMID: 38406200 PMCID: PMC10881955 DOI: 10.1007/s11571-022-09922-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/23/2022] [Accepted: 12/10/2022] [Indexed: 01/05/2023] Open
Abstract
Evidence shows that the dendritic polarization induced by weak electrical field (EF) can affect the neuronal input-output function via modulating dendritic integration of AMPA synapses, indicating that the supralinear dendritic integration of NMDA synapses can also be influenced by dendritic polarization. However, it remains unknown how dendritic polarization affects NMDA-type dendritic integration, and then contributes to neuronal input-output relationship. Here, we used a computational model of pyramidal neuron with inhomogeneous extracellular potentials to characterize the relationship among EF, dendritic integration, and somatic output. Basing on singular perturbation we analyzed the subthreshold dynamics of membrane potentials in response to NMDA synapses, and found that the equilibrium mapping of a fast subsystem can characterize the asymptotic subthreshold input-output (sI/O) relationship for EF-regulated supralinear dendritic integration, allowing us to predict the tendency of EF-regulated dendritic integration by showing the variation of equilibrium mapping under EF stimulation. EF-induced depolarization at distal dendrites receiving synapses plays a crucial role in shifting the steep change of sI/O left by facilitating dendritic NMDA spike generation and in decreasing the plateau of sI/O via reducing driving force. And more effective EF modulation appears at sparsely activated NMDA receptors compared with clustered synaptic inputs. During the action potential (AP) generation, the respective contribution of EF-regulated dendritic integration and EF-induced somatic polarization was identified to show their synergetic or antagonistic effect on AP generation, depending on neuronal excitability. These results provided insight in understanding the modulation effect of EF on neuronal computation, which is important for optimizing noninvasive brain stimulation. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-022-09922-y.
Collapse
Affiliation(s)
- Yaqin Fan
- Tianjin Key Laboratory of Process Measurement and Control, School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Xile Wei
- Tianjin Key Laboratory of Process Measurement and Control, School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Meili Lu
- School of Information Technology Engineering, Tianjin University of Technology and Education, Tianjin, 300222 China
| | - Jiang Wang
- Tianjin Key Laboratory of Process Measurement and Control, School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Guosheng Yi
- Tianjin Key Laboratory of Process Measurement and Control, School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| |
Collapse
|
3
|
Fan Y, Wei X, Lu M, Wang J, Yi G. State-dependent modulation of low-threshold-current-regulated dendritic Ca 2+ response in thalamic reticular neurons with extracellular electric fields. Sci Rep 2023; 13:16485. [PMID: 37779115 PMCID: PMC10543533 DOI: 10.1038/s41598-023-43611-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/26/2023] [Indexed: 10/03/2023] Open
Abstract
Deep brain stimulation (DBS) in thalamic reticular nucleus (TRN) neuron provides a novel treatment for drug-resistant epilepsy via the induced electrical field (EFs). However, the mechanisms underlying EF effects remain unclear. This paper investigated how EFs regulate low-threshold dendritic Ca2+ (dCa) response and thus contribute to the input-output relationship of TRN cell. Our results showed that EFs modulate firing modes differently in a neuronal state-dependent manner. At the depolarized state, EFs only regulate the spike timing of a somatic stimulus-evoked single action potential (AP) with less contribution in the regulation of dCa response but could induce the transition between a dendritic stimulus-evoked single AP and a tonic burst of APs via the moderate regulation of dCa response. At the hyperpolarized state, EFs have significant effects on the dCa response, which modulate the large dCa response-dependent burst discharge and even cause a transition from this type of burst discharge to a single AP with less dCa response. Moreover, EF effects on stimulation threshold of somatic spiking prominently depend on EF-regulated dCa responses and the onset time differences between the stimulus and EF give rise to the distinct effect in the EF regulation of dCa responses. Finally, the larger neuronal axial resistance tends to result in the dendritic stimulus-evoked dCa response independent of somatic state. Interestingly, in this case, the EF application could reproduce the similar somatic state-dependent dCa response to dendritic stimulus which occurs in the case of lower axial resistance. These results suggest that the influence of EF on neuronal activities depends on neuronal intrinsic properties, which provides insight into understanding how DBS in TRN neuron modulates epilepsy from the point of view of biophysics.
Collapse
Affiliation(s)
- Yaqin Fan
- Tianjin Key Laboratory of Process Measurement and Control, School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Xile Wei
- Tianjin Key Laboratory of Process Measurement and Control, School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Meili Lu
- School of Information Technology Engineering, Tianjin University of Technology and Education, Tianjin, 300222, China
| | - Jiang Wang
- Tianjin Key Laboratory of Process Measurement and Control, School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Guosheng Yi
- Tianjin Key Laboratory of Process Measurement and Control, School of Electrical and Information Engineering, Tianjin University, Tianjin, China.
| |
Collapse
|
4
|
Pitcher GM, Garzia L, Morrissy AS, Taylor MD, Salter MW. Synapse-specific diversity of distinct postsynaptic GluN2 subtypes defines transmission strength in spinal lamina I. Front Synaptic Neurosci 2023; 15:1197174. [PMID: 37503309 PMCID: PMC10368998 DOI: 10.3389/fnsyn.2023.1197174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 06/16/2023] [Indexed: 07/29/2023] Open
Abstract
The unitary postsynaptic response to presynaptic quantal glutamate release is the fundamental basis of excitatory information transfer between neurons. The view, however, of individual glutamatergic synaptic connections in a population as homogenous, fixed-strength units of neural communication is becoming increasingly scrutinized. Here, we used minimal stimulation of individual glutamatergic afferent axons to evoke single synapse resolution postsynaptic responses from central sensory lamina I neurons in an ex vivo adult rat spinal slice preparation. We detected unitary events exhibiting a NMDA receptor component with distinct kinetic properties across synapses conferred by specific GluN2 subunit composition, indicative of GluN2 subtype-based postsynaptic heterogeneity. GluN2A, 2A and 2B, or 2B and 2D synaptic predominance functioned on distinct lamina I neuron types to narrowly, intermediately, or widely tune, respectively, the duration of evoked unitary depolarization events from resting membrane potential, which enabled individual synapses to grade differentially depolarizing steps during temporally patterned afferent input. Our results lead to a model wherein a core locus of proteomic complexity prevails at this central glutamatergic sensory synapse that involves distinct GluN2 subtype configurations. These findings have major implications for subthreshold integrative capacity and transmission strength in spinal lamina I and other CNS regions.
Collapse
Affiliation(s)
- Graham M. Pitcher
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Livia Garzia
- Department of Surgery, Faculty of Medicine, McGill University, and Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - A. Sorana Morrissy
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Michael D. Taylor
- Brain Tumor Program, Texas Medical Centre, Houston, TX, United States
| | - Michael W. Salter
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
5
|
Moldwin T, Kalmenson M, Segev I. Asymmetric Voltage Attenuation in Dendrites Can Enable Hierarchical Heterosynaptic Plasticity. eNeuro 2023; 10:ENEURO.0014-23.2023. [PMID: 37414554 PMCID: PMC10354808 DOI: 10.1523/eneuro.0014-23.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 05/16/2023] [Accepted: 06/14/2023] [Indexed: 07/08/2023] Open
Abstract
Long-term synaptic plasticity is mediated via cytosolic calcium concentrations ([Ca2+]). Using a synaptic model that implements calcium-based long-term plasticity via two sources of Ca2+ - NMDA receptors and voltage-gated calcium channels (VGCCs) - we show in dendritic cable simulations that the interplay between these two calcium sources can result in a diverse array of heterosynaptic effects. When spatially clustered synaptic input produces a local NMDA spike, the resulting dendritic depolarization can activate VGCCs at nonactivated spines, resulting in heterosynaptic plasticity. NMDA spike activation at a given dendritic location will tend to depolarize dendritic regions that are located distally to the input site more than dendritic sites that are proximal to it. This asymmetry can produce a hierarchical effect in branching dendrites, where an NMDA spike at a proximal branch can induce heterosynaptic plasticity primarily at branches that are distal to it. We also explored how simultaneously activated synaptic clusters located at different dendritic locations synergistically affect the plasticity at the active synapses, as well as the heterosynaptic plasticity of an inactive synapse "sandwiched" between them. We conclude that the inherent electrical asymmetry of dendritic trees enables sophisticated schemes for spatially targeted supervision of heterosynaptic plasticity.
Collapse
Affiliation(s)
| | - Menachem Kalmenson
- Department of Neurobiology, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - Idan Segev
- Edmond and Lily Safra Center for Brain Sciences
- Department of Neurobiology, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| |
Collapse
|
6
|
Trpevski D, Khodadadi Z, Carannante I, Hellgren Kotaleski J. Glutamate spillover drives robust all-or-none dendritic plateau potentials-an in silico investigation using models of striatal projection neurons. Front Cell Neurosci 2023; 17:1196182. [PMID: 37469606 PMCID: PMC10352111 DOI: 10.3389/fncel.2023.1196182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/31/2023] [Indexed: 07/21/2023] Open
Abstract
Plateau potentials are a critical feature of neuronal excitability, but their all-or-none behavior is not easily captured in modeling. In this study, we investigated models of plateau potentials in multi-compartment neuron models and found that including glutamate spillover provides robust all-or-none behavior. This result arises due to the prolonged duration of extrasynaptic glutamate. When glutamate spillover is not included, the all-or-none behavior is very sensitive to the steepness of the Mg2+ block. These results suggest a potentially significant role of glutamate spillover in plateau potential generation, providing a mechanism for robust all-or-none behavior across a wide range of slopes of the Mg2+ block curve. We also illustrate the importance of the all-or-none plateau potential behavior for nonlinear computation with regard to the nonlinear feature binding problem.
Collapse
Affiliation(s)
- Daniel Trpevski
- Science for Life Laboratory, Department of Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Zahra Khodadadi
- Science for Life Laboratory, Department of Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Ilaria Carannante
- Science for Life Laboratory, Department of Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Jeanette Hellgren Kotaleski
- Science for Life Laboratory, Department of Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
7
|
Griesius S, O'Donnell C, Waldron S, Thomas KL, Dwyer DM, Wilkinson LS, Hall J, Robinson ESJ, Mellor JR. Reduced expression of the psychiatric risk gene DLG2 (PSD93) impairs hippocampal synaptic integration and plasticity. Neuropsychopharmacology 2022; 47:1367-1378. [PMID: 35115661 PMCID: PMC9117295 DOI: 10.1038/s41386-022-01277-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/04/2022] [Accepted: 01/12/2022] [Indexed: 11/15/2022]
Abstract
Copy number variants indicating loss of function in the DLG2 gene have been associated with markedly increased risk for schizophrenia, autism spectrum disorder, and intellectual disability. DLG2 encodes the postsynaptic scaffolding protein DLG2 (PSD93) that interacts with NMDA receptors, potassium channels, and cytoskeletal regulators but the net impact of these interactions on synaptic plasticity, likely underpinning cognitive impairments associated with these conditions, remains unclear. Here, hippocampal CA1 neuronal excitability and synaptic function were investigated in a novel clinically relevant heterozygous Dlg2+/- rat model using ex vivo patch-clamp electrophysiology, pharmacology, and computational modelling. Dlg2+/- rats had reduced supra-linear dendritic integration of synaptic inputs resulting in impaired associative long-term potentiation. This impairment was not caused by a change in synaptic input since NMDA receptor-mediated synaptic currents were, conversely, increased and AMPA receptor-mediated currents were unaffected. Instead, the impairment in associative long-term potentiation resulted from an increase in potassium channel function leading to a decrease in input resistance, which reduced supra-linear dendritic integration. Enhancement of dendritic excitability by blockade of potassium channels or activation of muscarinic M1 receptors with selective allosteric agonist 77-LH-28-1 reduced the threshold for dendritic integration and 77-LH-28-1 rescued the associative long-term potentiation impairment in the Dlg2+/- rats. These findings demonstrate a biological phenotype that can be reversed by compound classes used clinically, such as muscarinic M1 receptor agonists, and is therefore a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Simonas Griesius
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Cian O'Donnell
- Computational Neuroscience Unit, School of Computer Science, Electrical and Electronic Engineering, and Engineering Mathematics, University of Bristol, Bristol, BS8 1UB, UK
| | - Sophie Waldron
- Neuroscience and Mental Health Research Institute, Cardiff, CF24 4HQ, UK
- School of Psychology, Cardiff, CF24 4HQ, UK
| | - Kerrie L Thomas
- Neuroscience and Mental Health Research Institute, Cardiff, CF24 4HQ, UK
- School of Medicine, Cardiff, CF24 4HQ, UK
| | - Dominic M Dwyer
- Neuroscience and Mental Health Research Institute, Cardiff, CF24 4HQ, UK
- School of Psychology, Cardiff, CF24 4HQ, UK
| | - Lawrence S Wilkinson
- Neuroscience and Mental Health Research Institute, Cardiff, CF24 4HQ, UK
- School of Psychology, Cardiff, CF24 4HQ, UK
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff, CF24 4HQ, UK
| | - Jeremy Hall
- Neuroscience and Mental Health Research Institute, Cardiff, CF24 4HQ, UK
- School of Medicine, Cardiff, CF24 4HQ, UK
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff, CF24 4HQ, UK
| | - Emma S J Robinson
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Jack R Mellor
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, University Walk, Bristol, BS8 1TD, UK.
| |
Collapse
|
8
|
Sepers MD, Mackay JP, Koch E, Xiao D, Mohajerani MH, Chan AW, Smith-Dijak AI, Ramandi D, Murphy TH, Raymond LA. Altered cortical processing of sensory input in Huntington disease mouse models. Neurobiol Dis 2022; 169:105740. [PMID: 35460870 DOI: 10.1016/j.nbd.2022.105740] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 04/10/2022] [Accepted: 04/16/2022] [Indexed: 11/24/2022] Open
Abstract
Huntington disease (HD), a hereditary neurodegenerative disorder, manifests as progressively impaired movement and cognition. Although early abnormalities of neuronal activity in striatum are well established in HD models, there are fewer in vivo studies of the cortex. Here, we record local field potentials (LFPs) in YAC128 HD model mice versus wild-type mice. In multiple cortical areas, limb sensory stimulation evokes a greater change in LFP power in YAC128 mice. Mesoscopic imaging using voltage-sensitive dyes reveals more extensive spread of evoked sensory signals across the cortical surface in YAC128 mice. YAC128 layer 2/3 sensory cortical neurons ex vivo show increased excitatory events, which could contribute to enhanced sensory responses in vivo. Cortical LFP responses to limb stimulation, visual and auditory input are also significantly increased in zQ175 HD mice. Results presented here extend knowledge of HD beyond ex vivo studies of individual neurons to the intact cortical network.
Collapse
Affiliation(s)
- Marja D Sepers
- Department of Psychiatry and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T1Z3, Canada
| | - James P Mackay
- Department of Psychiatry and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T1Z3, Canada
| | - Ellen Koch
- Department of Psychiatry and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T1Z3, Canada
| | - Dongsheng Xiao
- Department of Psychiatry and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T1Z3, Canada
| | - Majid H Mohajerani
- Canadian Center for Behavioural Neuroscience, University of Lethbridge, Lethbridge T1K 3M4, Canada
| | - Allan W Chan
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Amy I Smith-Dijak
- Department of Psychiatry and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T1Z3, Canada
| | - Daniel Ramandi
- Department of Psychiatry and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T1Z3, Canada
| | - Timothy H Murphy
- Department of Psychiatry and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T1Z3, Canada
| | - Lynn A Raymond
- Department of Psychiatry and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T1Z3, Canada.
| |
Collapse
|
9
|
Input rate encoding and gain control in dendrites of neocortical pyramidal neurons. Cell Rep 2022; 38:110382. [PMID: 35172157 PMCID: PMC8967317 DOI: 10.1016/j.celrep.2022.110382] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 11/15/2021] [Accepted: 01/23/2022] [Indexed: 01/06/2023] Open
Abstract
Elucidating how neurons encode network activity is essential to understanding how the brain processes information. Neocortical pyramidal cells receive excitatory input onto spines distributed along dendritic branches. Local dendritic branch nonlinearities can boost the response to spatially clustered and synchronous input, but how this translates into the integration of patterns of ongoing activity remains unclear. To examine dendritic integration under naturalistic stimulus regimes, we use two-photon glutamate uncaging to repeatedly activate multiple dendritic spines at random intervals. In the proximal dendrites of two populations of layer 5 pyramidal neurons in the mouse motor cortex, spatially restricted synchrony is not a prerequisite for dendritic boosting. Branches encode afferent inputs with distinct rate sensitivities depending upon cell and branch type. Thus, inputs distributed along a dendritic branch can recruit supralinear boosting and the window of this nonlinearity may provide a mechanism by which dendrites can preferentially amplify slow-frequency network oscillations.
Collapse
|
10
|
Leleo EG, Segev I. Burst control: Synaptic conditions for burst generation in cortical layer 5 pyramidal neurons. PLoS Comput Biol 2021; 17:e1009558. [PMID: 34727124 PMCID: PMC8589150 DOI: 10.1371/journal.pcbi.1009558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 11/12/2021] [Accepted: 10/12/2021] [Indexed: 11/30/2022] Open
Abstract
The output of neocortical layer 5 pyramidal cells (L5PCs) is expressed by a train of single spikes with intermittent bursts of multiple spikes at high frequencies. The bursts are the result of nonlinear dendritic properties, including Na+, Ca2+, and NMDA spikes, that interact with the ~10,000 synapses impinging on the neuron's dendrites. Output spike bursts are thought to implement key dendritic computations, such as coincidence detection of bottom-up inputs (arriving mostly at the basal tree) and top-down inputs (arriving mostly at the apical tree). In this study we used a detailed nonlinear model of L5PC receiving excitatory and inhibitory synaptic inputs to explore the conditions for generating bursts and for modulating their properties. We established the excitatory input conditions on the basal versus the apical tree that favor burst and show that there are two distinct types of bursts. Bursts consisting of 3 or more spikes firing at < 200 Hz, which are generated by stronger excitatory input to the basal versus the apical tree, and bursts of ~2-spikes at ~250 Hz, generated by prominent apical tuft excitation. Localized and well-timed dendritic inhibition on the apical tree differentially modulates Na+, Ca2+, and NMDA spikes and, consequently, finely controls the burst output. Finally, we explored the implications of different burst classes and respective dendritic inhibition for regulating synaptic plasticity.
Collapse
Affiliation(s)
- Eilam Goldenberg Leleo
- The Edmond and Lily Safra Center for Brain Sciences, the Hebrew University of Jerusalem, Jerusalem, Israel
| | - Idan Segev
- The Edmond and Lily Safra Center for Brain Sciences, the Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Neurobiology, the Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
11
|
A synaptic learning rule for exploiting nonlinear dendritic computation. Neuron 2021; 109:4001-4017.e10. [PMID: 34715026 PMCID: PMC8691952 DOI: 10.1016/j.neuron.2021.09.044] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/10/2021] [Accepted: 09/23/2021] [Indexed: 11/23/2022]
Abstract
Information processing in the brain depends on the integration of synaptic input distributed throughout neuronal dendrites. Dendritic integration is a hierarchical process, proposed to be equivalent to integration by a multilayer network, potentially endowing single neurons with substantial computational power. However, whether neurons can learn to harness dendritic properties to realize this potential is unknown. Here, we develop a learning rule from dendritic cable theory and use it to investigate the processing capacity of a detailed pyramidal neuron model. We show that computations using spatial or temporal features of synaptic input patterns can be learned, and even synergistically combined, to solve a canonical nonlinear feature-binding problem. The voltage dependence of the learning rule drives coactive synapses to engage dendritic nonlinearities, whereas spike-timing dependence shapes the time course of subthreshold potentials. Dendritic input-output relationships can therefore be flexibly tuned through synaptic plasticity, allowing optimal implementation of nonlinear functions by single neurons.
Collapse
|
12
|
Ebner C, Clopath C, Jedlicka P, Cuntz H. Unifying Long-Term Plasticity Rules for Excitatory Synapses by Modeling Dendrites of Cortical Pyramidal Neurons. Cell Rep 2020; 29:4295-4307.e6. [PMID: 31875541 PMCID: PMC6941234 DOI: 10.1016/j.celrep.2019.11.068] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 05/02/2019] [Accepted: 11/15/2019] [Indexed: 11/30/2022] Open
Abstract
A large number of experiments have indicated that precise spike times, firing rates, and synapse locations crucially determine the dynamics of long-term plasticity induction in excitatory synapses. However, it remains unknown how plasticity mechanisms of synapses distributed along dendritic trees cooperate to produce the wide spectrum of outcomes for various plasticity protocols. Here, we propose a four-pathway plasticity framework that is well grounded in experimental evidence and apply it to a biophysically realistic cortical pyramidal neuron model. We show in computer simulations that several seemingly contradictory experimental landmark studies are consistent with one unifying set of mechanisms when considering the effects of signal propagation in dendritic trees with respect to synapse location. Our model identifies specific spatiotemporal contributions of dendritic and axo-somatic spikes as well as of subthreshold activation of synaptic clusters, providing a unified parsimonious explanation not only for rate and timing dependence but also for location dependence of synaptic changes. A phenomenological synaptic plasticity rule is applied to a pyramidal neuron model Model reproduces rate-, timing-, and location-dependent plasticity results Active dendrites allow plasticity via dendritic spikes and subthreshold events Cooperative plasticity exists across the dendritic tree and within single branches
Collapse
Affiliation(s)
- Christian Ebner
- Frankfurt Institute for Advanced Studies, 60438 Frankfurt am Main, Germany; Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt am Main, Germany; NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; Institute for Biology, Humboldt-Universität zu Berlin, 10117 Berlin, Germany.
| | - Claudia Clopath
- Computational Neuroscience Laboratory, Bioengineering Department, Imperial College London, London SW7 2AZ, UK
| | - Peter Jedlicka
- Frankfurt Institute for Advanced Studies, 60438 Frankfurt am Main, Germany; Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University Frankfurt, 60528 Frankfurt am Main, Germany; ICAR3R-Interdisciplinary Centre for 3Rs in Animal Research, Faculty of Medicine, Justus-Liebig-University, 35392 Giessen, Germany
| | - Hermann Cuntz
- Frankfurt Institute for Advanced Studies, 60438 Frankfurt am Main, Germany; Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt am Main, Germany
| |
Collapse
|
13
|
Poirazi P, Papoutsi A. Illuminating dendritic function with computational models. Nat Rev Neurosci 2020; 21:303-321. [PMID: 32393820 DOI: 10.1038/s41583-020-0301-7] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2020] [Indexed: 02/06/2023]
Abstract
Dendrites have always fascinated researchers: from the artistic drawings by Ramon y Cajal to the beautiful recordings of today, neuroscientists have been striving to unravel the mysteries of these structures. Theoretical work in the 1960s predicted important dendritic effects on neuronal processing, establishing computational modelling as a powerful technique for their investigation. Since then, modelling of dendrites has been instrumental in driving neuroscience research in a targeted manner, providing experimentally testable predictions that range from the subcellular level to the systems level, and their relevance extends to fields beyond neuroscience, such as machine learning and artificial intelligence. Validation of modelling predictions often requires - and drives - new technological advances, thus closing the loop with theory-driven experimentation that moves the field forward. This Review features the most important, to our understanding, contributions of modelling of dendritic computations, including those pending experimental verification, and highlights studies of successful interactions between the modelling and experimental neuroscience communities.
Collapse
Affiliation(s)
- Panayiota Poirazi
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology - Hellas, Heraklion, Crete, Greece.
| | - Athanasia Papoutsi
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology - Hellas, Heraklion, Crete, Greece
| |
Collapse
|
14
|
Pena RFO, Ceballos CC, De Deus JL, Roque AC, Garcia-Cairasco N, Leão RM, Cunha AOS. Modeling Hippocampal CA1 Gabaergic Synapses of Audiogenic Rats. Int J Neural Syst 2020; 30:2050022. [PMID: 32285725 DOI: 10.1142/s0129065720500227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Wistar Audiogenic Rats (WARs) are genetically susceptible to sound-induced seizures that start in the brainstem and, in response to repetitive stimulation, spread to limbic areas, such as hippocampus. Analysis of the distribution of interevent intervals of GABAergic inhibitory postsynaptic currents (IPSCs) in CA1 pyramidal cells showed a monoexponential trend in Wistar rats, suggestive of a homogeneous population of synapses, but a biexponential trend in WARs. Based on this, we hypothesize that there are two populations of GABAergic synaptic release sites in CA1 pyramidal neurons from WARs. To address this hypothesis, we used a well-established neuronal computational model of a CA1 pyramidal neuron previously developed to replicate physiological properties of these cells. Our simulations replicated the biexponential trend only when we decreased the release frequency of synaptic currents by a factor of six in at least 40% of distal synapses. Our results suggest that almost half of the GABAergic synapses of WARs have a drastically reduced spontaneous release frequency. The computational model was able to reproduce the temporal dynamics of GABAergic inhibition that could underlie susceptibility to the spread of seizures.
Collapse
Affiliation(s)
- Rodrigo F O Pena
- Department of Physics, School of Philosophy, Sciences and Letters, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Cesar Celis Ceballos
- Department of Physics, School of Philosophy, Sciences and Letters, University of São Paulo, Ribeirão Preto, SP, Brazil.,Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Júnia Lara De Deus
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Antonio Carlos Roque
- Department of Physics, School of Philosophy, Sciences and Letters, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Norberto Garcia-Cairasco
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Ricardo Maurício Leão
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | |
Collapse
|
15
|
Doron M, Chindemi G, Muller E, Markram H, Segev I. Timed Synaptic Inhibition Shapes NMDA Spikes, Influencing Local Dendritic Processing and Global I/O Properties of Cortical Neurons. Cell Rep 2018; 21:1550-1561. [PMID: 29117560 DOI: 10.1016/j.celrep.2017.10.035] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/17/2017] [Accepted: 10/08/2017] [Indexed: 10/18/2022] Open
Abstract
The NMDA spike is a long-lasting nonlinear phenomenon initiated locally in the dendritic branches of a variety of cortical neurons. It plays a key role in synaptic plasticity and in single-neuron computations. Combining dynamic system theory and computational approaches, we now explore how the timing of synaptic inhibition affects the NMDA spike and its associated membrane current. When impinging on its early phase, individual inhibitory synapses strongly, but transiently, dampen the NMDA spike; later inhibition prematurely terminates it. A single inhibitory synapse reduces the NMDA-mediated Ca2+ current, a key player in plasticity, by up to 45%. NMDA spikes in distal dendritic branches/spines are longer-lasting and more resilient to inhibition, enhancing synaptic plasticity at these branches. We conclude that NMDA spikes are highly sensitive to dendritic inhibition; sparse weak inhibition can finely tune synaptic plasticity both locally at the dendritic branch level and globally at the level of the neuron's output.
Collapse
Affiliation(s)
- Michael Doron
- Edmond and Lily Safra Center for Brain Sciences, the Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Giuseppe Chindemi
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Biotech Campus, 1202 Geneva, Switzerland
| | - Eilif Muller
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Biotech Campus, 1202 Geneva, Switzerland
| | - Henry Markram
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Biotech Campus, 1202 Geneva, Switzerland
| | - Idan Segev
- Edmond and Lily Safra Center for Brain Sciences, the Hebrew University of Jerusalem, Jerusalem 91904, Israel; Department of Neurobiology, the Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
16
|
Cazé RD, Jarvis S, Foust AJ, Schultz SR. Dendrites Enable a Robust Mechanism for Neuronal Stimulus Selectivity. Neural Comput 2017; 29:2511-2527. [PMID: 28599119 DOI: 10.1162/neco_a_00989] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Hearing, vision, touch: underlying all of these senses is stimulus selectivity, a robust information processing operation in which cortical neurons respond more to some stimuli than to others. Previous models assume that these neurons receive the highest weighted input from an ensemble encoding the preferred stimulus, but dendrites enable other possibilities. Nonlinear dendritic processing can produce stimulus selectivity based on the spatial distribution of synapses, even if the total preferred stimulus weight does not exceed that of nonpreferred stimuli. Using a multi-subunit nonlinear model, we demonstrate that stimulus selectivity can arise from the spatial distribution of synapses. We propose this as a general mechanism for information processing by neurons possessing dendritic trees. Moreover, we show that this implementation of stimulus selectivity increases the neuron's robustness to synaptic and dendritic failure. Importantly, our model can maintain stimulus selectivity for a larger range of loss of synapses or dendrites than an equivalent linear model. We then use a layer 2/3 biophysical neuron model to show that our implementation is consistent with two recent experimental observations: (1) one can observe a mixture of selectivities in dendrites that can differ from the somatic selectivity, and (2) hyperpolarization can broaden somatic tuning without affecting dendritic tuning. Our model predicts that an initially nonselective neuron can become selective when depolarized. In addition to motivating new experiments, the model's increased robustness to synapses and dendrites loss provides a starting point for fault-resistant neuromorphic chip development.
Collapse
Affiliation(s)
- Romain D Cazé
- Center for Neurotechnology and Department of Bioengineering, Imperial College London, London SW7 2AZ, U.K.
| | - Sarah Jarvis
- Center for Neurotechnology and Department of Bioengineering, Imperial College London, London SW7 2AZ, U.K.
| | - Amanda J Foust
- Center for Neurotechnology and Department of Bioengineering, Imperial College London, London SW7 2AZ, U.K.
| | - Simon R Schultz
- Center for Neurotechnology and Department of Bioengineering, Imperial College London, London SW7 2AZ, U.K.
| |
Collapse
|