1
|
Pszczolkowski VL, Connelly MK, Hoppman A, Benn AD, Laporta J, Hernandez LL, Arriola Apelo SI. Intravenous infusion of 5-hydroxytryptophan to mid-lactation Holstein cows transiently affects milk production and circulating amino acid concentrations. J Dairy Sci 2024; 107:3306-3318. [PMID: 38101740 DOI: 10.3168/jds.2023-23934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/17/2023] [Indexed: 12/17/2023]
Abstract
In dairy cows, the lactating mammary glands synthesize serotonin, which acts in an autocrine-paracrine manner in the glands and is secreted into the periphery. Serotonin signaling during lactation modulates nutrient metabolism in peripheral tissues such as adipose and liver. We hypothesized that the elevation of circulating serotonin during lactation would increase nutrient partitioning to the mammary glands, thereby promoting milk production. Our objective was to elevate circulating serotonin via intravenous infusion of the serotonin precursor 5-hydroxytryptophan (5-HTP) to determine its effects on mammary supply and extraction efficiency of AA, and milk components production. Twenty-two multiparous mid-lactation Holstein cows were intravenously infused with 5-HTP (1 mg/kg body weight) or saline, in a crossover design with two 21-d periods. Treatments were infused via jugular catheters for 1 h/d, on d 1 to 3, 8 to 10, and 15 to 17 of each period, to maintain consistent elevation of peripheral serotonin throughout the period. Milk and blood samples were collected in the last 96 h of each period. Whole-blood serotonin concentration was elevated above saline control for 96 h after the last 5-HTP infusion. Dry matter intake was decreased for cows receiving 5-HTP, and on average they lost body weight over the 21-d period, in contrast to saline cows who gained body weight. Milk production and milk protein yield were lower in cows receiving 5-HTP during the 3 infusion days, but both recovered to saline cow yields in the days after. Although milk fat yield exhibited a day-by-treatment interaction, no significant difference occurred on any given day. Milk urea nitrogen concentration was lower in 5-HTP cows on the days following the end of infusions, but not different from saline cows on infusion days. Meanwhile, plasma urea nitrogen was not affected by 5-HTP infusion. Circulating concentrations of AA were overall transiently decreased by 5-HTP, with concentrations mostly returning to baseline within 7 h after the end of 5-HTP infusion. Mammary extraction efficiency of AA was unaffected by 5-HTP infusion. Overall, both lactation performance and circulating AA were transiently reduced in cows infused with 5-HTP, despite sustained elevation of circulating serotonin concentration.
Collapse
Affiliation(s)
- Virginia L Pszczolkowski
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706; Endocrinology and Reproductive Physiology Graduate Training Program, University of Wisconsin-Madison, Madison, WI 53706
| | - Meghan K Connelly
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - August Hoppman
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - Amara D Benn
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - Jimena Laporta
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706; Endocrinology and Reproductive Physiology Graduate Training Program, University of Wisconsin-Madison, Madison, WI 53706
| | - Laura L Hernandez
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706; Endocrinology and Reproductive Physiology Graduate Training Program, University of Wisconsin-Madison, Madison, WI 53706
| | - Sebastian I Arriola Apelo
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706; Endocrinology and Reproductive Physiology Graduate Training Program, University of Wisconsin-Madison, Madison, WI 53706.
| |
Collapse
|
2
|
Du W, Zhang ZF, Xiao JY, Wang Y, Liu WY, Zheng HL. 5-Hydroxytryptophan inhibits β-casein biosynthesis and promotes goat mammary epithelial cell apoptosis through the JAK2/STAT5a axis and the HTR7. J Anim Sci 2023; 101:skad089. [PMID: 36964762 PMCID: PMC10132817 DOI: 10.1093/jas/skad089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 03/22/2023] [Indexed: 03/26/2023] Open
Abstract
5-Hydroxytryptamine (5-HT) is an amine produced in both the mammary gland and the central nervous system. Tryptophan hydroxylase 1 (TPH1) catalyzes the conversion of 5-hydroxytryptophan (5-HTP) into l-tryptophan, which is then converted into 5-HT by monoamine-oxidase (MAO-A). In the mammary gland, 5-HT has been shown to have a variety of paracrine-autocrine actions, including suppressing lactation, controlling the destiny of mammary epithelial cells, and maintaining calcium homeostasis throughout the transition from pregnancy to lactation. To examine the effects of 5-HT on the composition of colostrum and milk, a total of 30 transition Guan Zhong dairy goats were intramuscularly injected with 5-HTP (1.0 mg/kg) every morning before feeding from 10 d before the projected parturition date to the day of parturition. The average number of days animals received injections was 8.2 ± 3.2 d. 5-HTP treatment increased serum 5-HT concentration from days 5 to 2 relative to parturition (P < 0.05), and decreased the casein concentration of colostrum (P < 0.05). In the in vitro experiment, mammary epithelial cells isolated from three individual goats' mammary glands were separately treated with 200 μM 5-HTP, 30 μM PCPA (the specific inhibitor of TPH1), or 200 μM 5-HTP + 50 μM SB269970 (the selective antagonist of 5-HTR7). The results showed that 200 μM 5-HTP inhibited the expression of β-casein, downregulated the activity of the JAK2/ STAT5a signaling pathway, and promoted the apoptosis of goat mammary epithelial cells (GMECs) (P < 0.05). When GMECs were treated with 30 μM Four-chloro-dl-phenylalanine (PCPA), a specific inhibitor of 5-HT synthesis, the mRNA expression of STAT5a and the phosphorylated STAT5a protein level were upregulated. The 50 μM SB269970 treatment rescued the effects of 5-HTP on GMECs (P < 0.05). Taken together, the results indicated that 5-HTP exerted an inhibitory effect on β-casein synthesis and a proapoptotic effect in GMECs via HTR7 and the JAK2/STAT5a axis.
Collapse
Affiliation(s)
- Wei Du
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A and F University, Yangling, Shaanxi, China
| | - Zhi Fei Zhang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A and F University, Yangling, Shaanxi, China
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Jia Ying Xiao
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A and F University, Yangling, Shaanxi, China
| | - Ying Wang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A and F University, Yangling, Shaanxi, China
| | - Weng Yi Liu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A and F University, Yangling, Shaanxi, China
| | - Hui Ling Zheng
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A and F University, Yangling, Shaanxi, China
| |
Collapse
|
3
|
Sheftel CM, Liu L, Field SL, Weaver SR, Vezina CM, Peñagaricano F, Hernandez LL. Impact of Fluoxetine Treatment and Folic Acid Supplementation on the Mammary Gland Transcriptome During Peak Lactation. Front Pharmacol 2022; 13:828735. [PMID: 35281892 PMCID: PMC8904566 DOI: 10.3389/fphar.2022.828735] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/17/2022] [Indexed: 12/13/2022] Open
Abstract
Serotonin is a key regulator of mammary gland homeostasis during lactation. Selective serotonin reuptake inhibitors (SSRIs) are commonly used to treat peripartum depression, but also modulates mammary gland serotonin concentrations and signaling in part through DNA methylation. The objective of this study was to determine mouse mammary transcriptome changes in response to the SSRI fluoxetine and how methyl donor supplementation, achieved by folic acid supplementation, affected the transcriptome. Female C57BL/6J mice were fed either breeder diet (containing 4 mg/kg folic acid) or supplemented diet (containing 24 mg/kg folic acid) beginning 2 weeks prior to mating, then on embryonic day 13 mice were injected daily with either saline or 20 mg/kg fluoxetine. Mammary glands were harvested at peak lactation, lactation day 10, for transcriptomic analysis. Fluoxetine but not folic acid altered circulating serotonin and calcium concentrations, and folic acid reduced mammary serotonin concentrations, however only fluoxetine altered genes in the mammary transcriptome. Fluoxetine treatment altered fifty-six genes. Elovl6 was the most significantly altered gene by fluoxetine treatment along with gene pathways involving fatty acid homeostasis, PPARγ, and adipogenesis, which are critical for milk fat synthesis. Enriched pathways in the mammary gland by fluoxetine revealed pathways including calcium signaling, serotonin receptors, milk proteins, and cellular response to cytokine stimulus which are important for lactation. Although folic acid did not impact specific genes, a less stringent pathway analysis revealed more diffuse effects where folic acid enriched pathways involving negative regulation of gene expression as expected, but additionally enriched pathways involving serotonin, glycolysis, and lactalbumin which are critical for lactation. In conclusion, peripartal SSRI use and folic acid supplementation altered critical genes related to milk synthesis and mammary gland function that are important to a successful lactation. However, folic acid supplementation did not reverse changes in the mammary gland transcriptome altered by peripartal SSRI treatment.
Collapse
Affiliation(s)
- Celeste M Sheftel
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI, United States.,Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Lihe Liu
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Sena L Field
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Samantha R Weaver
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Chad M Vezina
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Francisco Peñagaricano
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Laura L Hernandez
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI, United States.,Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
4
|
Zhang Z, Du W, Liu W, Wong BT, Zheng H. Increasing serotonin concentrations alter calcium metabolism in periparturient dairy goats. J Anim Sci 2022; 100:6541332. [PMID: 35235945 PMCID: PMC9030229 DOI: 10.1093/jas/skac065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Abstract
Due to the large amounts of calcium transferred to milk from mammary glands, periparturient dairy goats face challenges with calcium metabolism disorder and hypocalcemia. Serotonin (5-hydroxytryptamine, 5-HT), the product of 5-hydroxy-l-tryptophan (5-HTP) catalyzed by tryptophan hydroxylase 1, is a multifunctional monoamine thought to be a homeostatic regulator of the animal. The objective of the current study was to investigate the effects and underlying mechanisms of intramuscular 5-HTP injections on calcium homeostasis in the goat mammary glands. In the in vivo experiment, 30 multiparous Guanzhong dairy goats were randomly assigned to 2 groups, one group was injected with 5-HTP intramuscularly and the other group was injected with normal saline. From the first 10 d of the expected date for delivery, 5-HTP or saline was injected into goats through the shoulder muscle every morning before feeding, with a dose of 1 mg/kg per body weight. In the in vitro experiment, goat mammary epithelial cells (GMEC) were treated with 100 μM 5-HT for the evaluation of 5-HT in calcium transportation. The results demonstrated that 5-HTP treatment had no effect on the basic composition of colostrum (P > 0.05) but increased the serum 5-HT concentrations on days -5, -4, -3, and 5 relative to parturition (P < 0.05). The 5-HTP injection group had greater serum calcium concentration on day 4 and greater serum parathyroid hormone-related protein (PTHrP) on days -5, -4, -1, 3, 4, and 5 compared with the saline injection group (P < 0.05). It was further confirmed that 5-HT could increase intracellular calcium levels by increasing PTHrP and decreasing plasma membrane Ca2+-ATPases1 (PMCA1) in GMEC (P < 0.05). In conclusion, 5-HTP treatment in multiparous goats during the transition period from pregnancy to lactation is a feasible way to protect goats from calcium metabolism disorder.
Collapse
Affiliation(s)
- ZhiFei Zhang
- Laboratory of Genetic Improvement and Healthy Breeding of Dairy Goats, Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People’s Republic of China
| | - Wei Du
- Laboratory of Genetic Improvement and Healthy Breeding of Dairy Goats, Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People’s Republic of China
| | - WenYi Liu
- Laboratory of Genetic Improvement and Healthy Breeding of Dairy Goats, Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People’s Republic of China
| | - Braden T Wong
- Department of Animal Science, University of California, Davis, CA 95616, USA
| | - HuiLing Zheng
- Laboratory of Genetic Improvement and Healthy Breeding of Dairy Goats, Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People’s Republic of China,Corresponding author:
| |
Collapse
|
5
|
CRISPR/Cas9-mediated tryptophan hydroxylase 1 knockout decreases calcium transportation in goat mammary epithelial cells. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Sheftel CM, Hernandez LL. Serotonin stimulated parathyroid hormone related protein induction in the mammary epithelia by transglutaminase-dependent serotonylation. PLoS One 2020; 15:e0241192. [PMID: 33095824 PMCID: PMC7584195 DOI: 10.1371/journal.pone.0241192] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/10/2020] [Indexed: 12/26/2022] Open
Abstract
Mammary-derived serotonin has been implicated in breast-to-bone communication during lactation by increasing parathyroid hormone related-protein (PTHrP) in the mammary gland. It is well established that PTHrP acts on the bone to liberate calcium for milk synthesis during lactation; however, the mechanism of serotonin’s regulation of PTHrP has not been fully elucidated. Recently, serotonylation has been shown to be involved in a variety of physiological processes mediated by serotonin. Therefore, we investigated whether serotonylation is involved in serotonin’s regulation of PTHrP in the mammary gland using lactogenically differentiated mouse mammary epithelial cells. We investigated the effect of increased intracellular serotonin using the antidepressant fluoxetine or 5-hydroxytryptophan (serotonin precursor), with or without transglutaminase inhibition and the corresponding action on PTHrP induction and activity. Treatment with fluoxetine or 5-hydroxytryptophan significantly increased intracellular serotonin concentrations and subsequently increased PTHrP gene expression, which was reduced with transglutaminase inhibition. Furthermore, we determined that transglutaminase activity is increased with lactogenic differentiation and 5-hydroxytryptophan or fluoxetine treatment. We investigated whether RhoA, Rac1, and Rab4 were potential serotonylation target proteins. We speculate that RhoA is potentially a serotonylation target protein. Our data suggest that serotonin regulates PTHrP induction in part through the process of serotonylation under lactogenic conditions in mouse mammary epithelial cells.
Collapse
Affiliation(s)
- Celeste M. Sheftel
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Laura L. Hernandez
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
7
|
Chen S, Zhao H, Yan X, Zhang Z, Hu K, Gao H, Du W, Luo J, Zheng H. 5-Hydroxy-l-tryptophan Promotes the Milk Calcium Level via the miR-99a-3p/ ATP2B1 Axis in Goat Mammary Epithelial Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3277-3285. [PMID: 32054265 DOI: 10.1021/acs.jafc.9b07869] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
5-Hydroxy-l-tryptophan (5-HTP) is the primary product that converts l-tryptophan into 5-hydroxytryptamine by a rate-limiting enzyme. Our previous study found that 5-HTP could promote the intracellular calcium level in goat mammary epithelial cells (GMECs). Herein, first, dairy goats were injected with 5-HTP or saline daily from 7 days before delivery, and the calcium level in colostrum of 5-HTP-injected goats was significantly higher than that of saline-injected goats. Moreover, miR-99a-3p expression was significantly increased after 5-HTP treatment from transcriptome sequencing analysis and quantitative real-time polymerase chain reaction. In addition, it was found that ATP2B1 is one of the target genes of miR-99a-3p predicted by bioinformatic methods, which plays a crucial role in the maintenance of intracellular calcium homeostasis of mammary epithelial cells. Next, we confirmed that miR-99a-3p could increase the intracellular calcium level via decreasing ATP2B1 in GMECs. Taken together, we draw the conclusion that 5-HTP promotes the calcium level in colostrum possibly by increasing intracellular calcium of mammary epithelial cells induced by the miR-99a-3p/ATP2B1 axis.
Collapse
Affiliation(s)
- Shunxin Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Haiying Zhao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoru Yan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhifei Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kaizhao Hu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huijie Gao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wei Du
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jun Luo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huiling Zheng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
8
|
Cheng AA, Li W, Hernandez LL. Transcriptomic analysis investigating the interaction between peripheral serotonin and high-fat diet feeding on mammary gene expression in midlactation mice. Physiol Genomics 2019; 52:47-55. [PMID: 31814535 DOI: 10.1152/physiolgenomics.00073.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
To understand the role of peripheral serotonin and its interaction with diet in midlactation mammary gene expression, our study uses tryptophan hydroxylase 1 knockout (Tph1-KO) mice fed a high-fat diet (HFD). It has previously been demonstrated that HFD feeding increases inflammatory and immune pathways in peak lactation mammary glands of mice and increases pup mortality in wild-type (WT) mice compared with dams fed a low-fat diet (LFD). Peripheral serotonin inhibition has been associated with resistance to obesity in male mice fed an HFD. Little is known about the function of Tph1 and how peripheral serotonin affects mammary gland function during pregnancy and lactation. In this study, WT and Tph1-KO models were used to investigate global transcriptomic changes in peak lactation mammary glands when dams were fed either an HFD or LFD. WT and Tph1-KO female mice were assigned to either an LFD or HFD beginning at 3 wk of age (n = 4/group). Dams were euthanized on lactation day 11. Differentially expressed genes (DEGs) were first filtered by adjusted P value (cutoff ≤ 0.05) and fold-change (FC, cutoff ≥2). Genes were further filtered by mean normalized read count with a cutoff 310. We did not observe many differentially expressed genes in WT and Tph1-KO dams fed LFD. However, 3,529 DEGs were observed between WT-HFD and Tph1-KO-HFD mice, including cell cycle regulation and MAPK pathways being significantly enriched. Further research is required to completely understand the physiological significance of our results on peak lactation mammary physiology and the contribution of serotonin.
Collapse
Affiliation(s)
- A A Cheng
- Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin
| | - W Li
- United States Department of Agriculture Dairy Forage, Madison, Wisconsin
| | - L L Hernandez
- Department of Dairy Sciences, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
9
|
Hernandez L. ADSA Foundation Scholar Award: A role for serotonin in lactation physiology—Where do we go from here? J Dairy Sci 2018; 101:5671-5678. [DOI: 10.3168/jds.2018-14562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 03/21/2018] [Indexed: 12/13/2022]
|
10
|
Lee S, Kelleher SL. Biological underpinnings of breastfeeding challenges: the role of genetics, diet, and environment on lactation physiology. Am J Physiol Endocrinol Metab 2016; 311:E405-22. [PMID: 27354238 PMCID: PMC5005964 DOI: 10.1152/ajpendo.00495.2015] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 06/22/2016] [Indexed: 02/06/2023]
Abstract
Lactation is a dynamic process that has evolved to produce a complex biological fluid that provides nutritive and nonnutritive factors to the nursing offspring. It has long been assumed that once lactation is successfully initiated, the primary factor regulating milk production is infant demand. Thus, most interventions have focused on improving breastfeeding education and early lactation support. However, in addition to infant demand, increasing evidence from studies conducted in experimental animal models, production animals, and breastfeeding women suggests that a diverse array of maternal factors may also affect milk production and composition. In this review, we provide an overview of our current understanding of the role of maternal genetics and modifiable factors, such as diet and environmental exposures, on reproductive endocrinology, lactation physiology, and the ability to successfully produce milk. To identify factors that may affect lactation in women, we highlight some information gleaned from studies in experimental animal models and production animals. Finally, we highlight the gaps in current knowledge and provide commentary on future research opportunities aimed at improving lactation outcomes in breastfeeding women to improve the health of mothers and their infants.
Collapse
Affiliation(s)
- Sooyeon Lee
- Departments of Cellular and Molecular Physiology
| | - Shannon L Kelleher
- Departments of Cellular and Molecular Physiology, Pharmacology, and Surgery, Pennsylvania State Hershey College of Medicine, Hershey, Pennsylvania; and Department of Nutritional Sciences, The Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
11
|
Suárez-Trujillo A, Casey TM. Serotoninergic and Circadian Systems: Driving Mammary Gland Development and Function. Front Physiol 2016; 7:301. [PMID: 27471474 PMCID: PMC4945644 DOI: 10.3389/fphys.2016.00301] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 06/29/2016] [Indexed: 12/23/2022] Open
Abstract
Since lactation is one of the most metabolically demanding states in adult female mammals, beautifully complex regulatory mechanisms are in place to time lactation to begin after birth and cease when the neonate is weaned. Lactation is regulated by numerous different homeorhetic factors, all of them tightly coordinated with the demands of milk production. Emerging evidence support that among these factors are the serotonergic and circadian clock systems. Here we review the serotoninergic and circadian clock systems and their roles in the regulation of mammary gland development and lactation physiology. We conclude by presenting our hypothesis that these two systems interact to accommodate the metabolic demands of lactation and thus adaptive changes in these systems occur to maintain mammary and systemic homeostasis through the reproductive cycles of female mammals.
Collapse
Affiliation(s)
- Aridany Suárez-Trujillo
- Animal Production and Biotechnology Group, Institute of Animal Health and Food Safety, Universidad de Las Palmas de Gran CanariaArucas, Spain
| | - Theresa M. Casey
- Department of Animal Sciences, Purdue UniversityWest Lafayette, IN, USA
| |
Collapse
|
12
|
Weaver SR, Laporta J, Moore SAE, Hernandez LL. Serotonin and calcium homeostasis during the transition period. Domest Anim Endocrinol 2016; 56 Suppl:S147-54. [PMID: 27345312 DOI: 10.1016/j.domaniend.2015.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 11/16/2015] [Accepted: 11/16/2015] [Indexed: 11/15/2022]
Abstract
The transition from pregnancy to lactation puts significant, sudden demands on maternal energy and calcium reserves. Although most mammals are able to effectively manage these metabolic adaptations, the lactating dairy cow is acutely susceptible to transition-related disorders because of the high amounts of milk being produced. Hypocalcemia is a common metabolic disorder that occurs at the onset of lactation. Hypocalcemia is also known to result in poor animal welfare conditions. In addition, cows that develop hypocalcemia are more susceptible to a host of other negative health outcomes. Different feeding tactics, including manipulating the dietary cation-anion difference and administering low-calcium diets, are commonly used preventative strategies. Despite these interventions, the incidence of hypocalcemia in the subclinical form is still as high as 25% to 30% in the United States dairy cow population, with a 5% to 10% incidence of clinical hypocalcemia. In addition, although there are various effective treatments in place, they are administered only after the cow has become noticeably ill, at which point there is already significant metabolic damage. This emphasizes the need for developing alternative prevention strategies, with the monoamine serotonin implicated as a potential therapeutic target. Our research in rodents has shown that serotonin is critical for the induction of mammary parathyroid hormone-related protein, which is necessary for the mobilization of bone tissue and subsequent restoration of maternal calcium stores during lactation. We have shown that circulating serotonin concentrations are positively correlated with serum total calcium on the first day of lactation in dairy cattle. Administration of serotonin's immediate precursor through feeding, injection, or infusion to various mammalian species has been shown to increase circulating serotonin concentrations, with positive effects on other components of maternal metabolism. Most recently, preliminary data suggest that manipulation of the serotonergic axis precalving may positively affect postcalving calcium dynamics. Combined, our research suggests a potential mechanism by which serotonin acts on the mammary gland to maintain circulating maternal calcium concentrations. Further research into serotonin's potential as a therapeutic target could contribute significantly as a preventive strategy against hypocalcemia in early lactation dairy cows.
Collapse
Affiliation(s)
- S R Weaver
- Department of Dairy Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - J Laporta
- Department of Dairy Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - S A E Moore
- Department of Dairy Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - L L Hernandez
- Department of Dairy Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|