1
|
Chen S, Meng L, Wang S, Xu Y, Chen W, Wei J. Effect assessment of a type of xeno-free and serum-free human adipose-derived mesenchymal stem cells culture medium by proliferation and differentiation capacities. Cytotechnology 2023; 75:403-420. [PMID: 37655274 PMCID: PMC10465441 DOI: 10.1007/s10616-023-00586-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/21/2023] [Indexed: 09/02/2023] Open
Abstract
Human mesenchymal stem cells (hMSCs) possess broad prospects in pre-clinical research. In vitro amplification of hMSCs requires appropriate medium to reach the number of seed cells with clinical significance. However, the uncertainty of the heterologous components of the traditional fetal bovine serum (FBS) culture medium has great safety risks. Moreover, existing commercial hMSCs medium is very expensive, therefore a safer and more optimal hMSCs medium is urgently needed. Accordingly, we developed five components adipose-derived hMSCs (hADMSCs) medium without xenogenic components, named E5 SFM. which is mainly composed of knockout serum replacement (KSR), and additionally four components such as fibroblast growth factor and transferrin. Here, we mainly compared the E5 SFM with traditional FBS-containing medium and a commercial medium by surface markers testing, proliferation assay as well as osteogenic, adipogenic and chondrogenic differentiation assessment. We demonstrated that hADMSCs cultured in the E5 SFM showed similar morphological characteristics and immunophenotypes to those in other media. Notably, cell proliferative capability was similar to that in the commercial medium, but higher than that in the FBS-containing medium and other media. Additionally, their capabilities of adipogenic and osteogenic differentiation were significantly higher than those of other media. Consequently, we concluded that the E5 SFM medium can not only effectively promote cell proliferation of hMSCs, but also has optimal differentiative capacity and clear and simple ingredients.
Collapse
Affiliation(s)
- Shanshan Chen
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
- Department of Histology and Embryology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Li Meng
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Shanshan Wang
- Department of Histology and Embryology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Yan Xu
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Wenbin Chen
- Department of Plastic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Burns and Plastic Surgery, The Affiliated Huai’an Hospital of Xuzhou Medical University and the Second People’s Hospital of Huai’an City, Huai’an, China
| | - Jianfeng Wei
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
- Department of Histology and Embryology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
2
|
Evaluating the RIST Molecular-Targeted Regimen in a Three-Dimensional Neuroblastoma Spheroid Cell Culture Model. Cancers (Basel) 2023; 15:cancers15061749. [PMID: 36980635 PMCID: PMC10046822 DOI: 10.3390/cancers15061749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023] Open
Abstract
Background: The outcome for patients with high-risk neuroblastoma remains poor and novel treatment strategies are urgently needed. The RIST protocol represents a novel metronomic and multimodal treatment strategy for high-risk neuroblastoma combining molecular-targeted drugs as ‘pre-treatment’ with a conventional chemotherapy backbone, currently evaluated in a phase II clinical trial. For preclinical drug testing, cancer cell growth as spheroid compared to mo-nolayer cultures is of advantage since it reproduces a wide range of tumor characteristics, including the three-dimensional architecture and cancer stem cell (CSC) properties. The objective of this study was to establish a neuroblastoma spheroid model for the rigorous assessment of the RIST treatment protocol. Methods: Evaluation of CSC marker expression was performed by mRNA and protein analysis and spheroid viability by luminescence-based assays. Aberrant expression of RNA-binding protein La in neuroblastoma was assessed by tissue microarray analysis and patients’ data mining. Results: Spheroid cultures showed increased expression of a subgroup of CSC-like markers (CXCR4, NANOG and BMI) and higher Thr389 phosphorylation of the neuroblastoma-associated RNA-binding protein La when compared to monolayer cultures. Molecular-targeted ‘pre-treatment’ of spheroids decreased neoplastic signaling and CSC marker expression. Conclusions: The RIST treatment protocol efficiently reduced the viability of neuroblastoma spheroids characterized by advanced CSC properties.
Collapse
|
3
|
Impact of Different Cell Counting Methods in Molecular Monitoring of Chronic Myeloid Leukemia Patients. Diagnostics (Basel) 2022; 12:diagnostics12051051. [PMID: 35626209 PMCID: PMC9140187 DOI: 10.3390/diagnostics12051051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/14/2022] [Accepted: 04/21/2022] [Indexed: 01/06/2023] Open
Abstract
Background: Detection of BCR-ABL1 transcript level via real-time quantitative-polymerase-chain reaction (Q-PCR) is a clinical routine for disease monitoring, assessing Tyrosine Kinase Inhibitor therapy efficacy and predicting long-term response in chronic myeloid leukemia (CML) patients. For valid Q-PCR results, each stage of the laboratory procedures need be optimized, including the cell-counting method that represents a critical step in obtaining g an appropriate amount of RNA and reliable Q-PCR results. Traditionally, manual or automated methods are used for the detection and enumeration of white blood cells (WBCs). Here, we compared the performance of the manual counting measurement to the flow cytometry (FC)-based automatic counting assay employing CytoFLEX platform. Methods: We tested five different types of measurements: one manual hemocytometer-based count and four FC-based automatic cell-counting methods, including absolute, based on beads, based on 7-amino actinomycin D, combining and associating beads and 7AAD. The recovery efficiency for each counting method was established considering the quality and quantity of total RNA isolated and the Q-PCR results in matched samples from 90 adults with CML. Results: Our analyses showed no consistent bias between the different types of measurements, with comparable number of WBCs counted for each type of measurement. Similarly, we observed a 100% concordance in the amount of RNA extracted and in the Q-PCR cycle threshold values for both BCR-ABL1 and ABL1 gene transcripts in matched counted specimens from all the investigated groups. Overall, we show that FC-based automatic absolute cell counting has comparable performance to manual measurements and allows accurate cell counts without the use of expensive beads or the addition of the time-consuming intercalator 7AAD. Conclusions: This automatic method can replace the more laborious manual workflow, especially when high-throughput isolations from blood of CML patients are needed.
Collapse
|
4
|
Massimino M, Vigneri P, Stella S, Tirrò E, Pennisi MS, Parrinello LN, Vetro C, Manzella L, Stagno F, Di Raimondo F. Combined Inhibition of Bcl2 and Bcr-Abl1 Exercises Anti-Leukemia Activity but Does Not Eradicate the Primitive Leukemic Cells. J Clin Med 2021; 10:jcm10235606. [PMID: 34884309 PMCID: PMC8658323 DOI: 10.3390/jcm10235606] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/13/2021] [Accepted: 11/25/2021] [Indexed: 12/11/2022] Open
Abstract
Background: The management of Philadelphia Chromosome-positive (Ph+) hematological malignancies is strictly correlated to the use of BCR-ABL1 tyrosine kinase inhibitors (TKIs). However, these drugs do not induce leukemic stem cells death and their persistence may generate a disease relapse. Published reports indicated that Venetoclax, a selective BCL2 inhibitor, could be effective in Ph+ diseases, as BCL2 anti-apoptotic activity is modulated by BCR-ABL1 kinase. We, therefore, investigated if BCL2 inhibition, alone or combined with Nilotinib, a BCR-ABL1 inhibitor, affects the primitive and committed Ph+ cells survival. Methods: We used Ph+ cells isolated from leukemic patients at diagnosis. To estimate the therapeutic efficacy of BCL2 and BCR-ABL1 inhibition we employed long-term culture, proliferation and apoptosis assay. Immunoblot was used to evaluate the ability of treatment to interfere with the down-stream targets of BCR-ABL1. Results: Blocking BCL2, we observed reduced proliferation and clonogenic potential of CML CD34-positive cells and this cytotoxicity was improved by combination with BCR-ABL1 inhibitor. However, BCL2 inhibition, alone or in combination regiment with BCR-ABL1 inhibitor, did not reduce the self-renewal of primitive leukemic cells, while strongly induced cell death on primary Ph+ Acute Lymphoblastic Leukemia (ALL). Conclusion: Our results suggest that primitive CML leukemic cells are not dependent on BCL2 for their persistence and support that committed CML and Ph + ALL cells are dependent by BCL2 and BCR-ABL1 cooperation for their survival. The antileukemic activity of BCL2 and BCR-ABL1 dual targeting may be a useful therapeutic strategy for Ph+ ALL patients.
Collapse
Affiliation(s)
- Michele Massimino
- Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy; (P.V.); (S.S.); (E.T.); (M.S.P.); (L.M.)
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico-S. Marco”, 95123 Catania, Italy
- Correspondence: ; Tel.: +39-095-3781952; Fax: +39-095-3781949
| | - Paolo Vigneri
- Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy; (P.V.); (S.S.); (E.T.); (M.S.P.); (L.M.)
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico-S. Marco”, 95123 Catania, Italy
| | - Stefania Stella
- Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy; (P.V.); (S.S.); (E.T.); (M.S.P.); (L.M.)
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico-S. Marco”, 95123 Catania, Italy
| | - Elena Tirrò
- Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy; (P.V.); (S.S.); (E.T.); (M.S.P.); (L.M.)
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico-S. Marco”, 95123 Catania, Italy
| | - Maria Stella Pennisi
- Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy; (P.V.); (S.S.); (E.T.); (M.S.P.); (L.M.)
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico-S. Marco”, 95123 Catania, Italy
| | - Laura Nunziatina Parrinello
- Division of Hematology, A.O.U. Policlinico “G. Rodolico-S. Marco”, 95123 Catania, Italy; (L.N.P.); (C.V.); (F.S.); (F.D.R.)
| | - Calogero Vetro
- Division of Hematology, A.O.U. Policlinico “G. Rodolico-S. Marco”, 95123 Catania, Italy; (L.N.P.); (C.V.); (F.S.); (F.D.R.)
| | - Livia Manzella
- Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy; (P.V.); (S.S.); (E.T.); (M.S.P.); (L.M.)
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico-S. Marco”, 95123 Catania, Italy
| | - Fabio Stagno
- Division of Hematology, A.O.U. Policlinico “G. Rodolico-S. Marco”, 95123 Catania, Italy; (L.N.P.); (C.V.); (F.S.); (F.D.R.)
| | - Francesco Di Raimondo
- Division of Hematology, A.O.U. Policlinico “G. Rodolico-S. Marco”, 95123 Catania, Italy; (L.N.P.); (C.V.); (F.S.); (F.D.R.)
| |
Collapse
|
5
|
A Novel System for Semiautomatic Sample Processing in Chronic Myeloid Leukaemia: Increasing Throughput without Impacting on Molecular Monitoring at Time of SARS-CoV-2 Pandemic. Diagnostics (Basel) 2021; 11:diagnostics11081502. [PMID: 34441436 PMCID: PMC8391152 DOI: 10.3390/diagnostics11081502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022] Open
Abstract
Molecular testing of the BCR-ABL1 transcript via real-time quantitative-polymerase-chain-reaction is the most sensitive approach for monitoring the response to tyrosine-kinase-inhibitors therapy in chronic myeloid leukaemia (CML) patients. Each stage of the molecular procedure has been standardized and optimized, including the total white blood cells (WBCs) and RNA isolation methods. Here, we compare the performance of our current manual protocol to a newly semiautomatic method based on the Biomek i-5 Automated Workstations integrated with the CytoFLEX Flow Cytometer, followed by the automatic QIAsymphony system to facilitate high-throughput processing samples and reduce the hands-on time and the risk associated with SARS-CoV-2. The recovery efficiency was investigated in blood samples from 100 adults with CML. We observe a 100% of concordance between the two methods, with similar total WBCs isolated (median 1.137 × 106 for manual method vs. 1.076 × 106 for semiautomatic system) and a comparable quality and quantity of RNA extracted (median 103 ng/μL with manual isolation kit vs. 99.95 ng/μL with the QIAsymphony system). Moreover, by stratifying patients according to their BCR-ABL1 transcript levels, we obtained similar BCR-ABL1/ABL1IS values and ABL1 copies, and matched samples were assigned to the same group of molecular response. We conclude that this newly semiautomatic workflow has a performance comparable to our more laborious standard manual, which can be replaced, particularly when specimens from patients with suspected or confirmed SARS-CoV-2 infection need to be processed.
Collapse
|
6
|
Massimino M, Tirrò E, Stella S, Manzella L, Pennisi MS, Romano C, Vitale SR, Puma A, Tomarchio C, Di Gregorio S, Antolino A, Di Raimondo F, Vigneri P. Impact of the Breakpoint Region on the Leukemogenic Potential and the TKI Responsiveness of Atypical BCR-ABL1 Transcripts. Front Pharmacol 2021; 12:669469. [PMID: 34276365 PMCID: PMC8277938 DOI: 10.3389/fphar.2021.669469] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/10/2021] [Indexed: 11/21/2022] Open
Abstract
Chronic Myeloid Leukemia (CML) is a hematological disorder characterized by the clonal expansion of a hematopoietic stem cell carrying the Philadelphia chromosome that juxtaposes the BCR and ABL1 genes. The ensuing BCR-ABL1 chimeric oncogene is characterized by a breakpoint region that generally involves exons 1, 13 or 14 in BCR and exon 2 in ABL1. Additional breakpoint regions, generating uncommon BCR-ABL1 fusion transcripts, have been detected in various CML patients. However, to date, the impact of these infrequent transcripts on BCR-ABL1-dependent leukemogenesis and sensitivity to tyrosine kinase inhibitors (TKIs) remain unclear. We analyzed the transforming potential and TKIs responsiveness of three atypical BCR-ABL1 fusions identified in CML patients, and of two additional BCR-ABL1 constructs with lab-engineered breakpoints. We observed that modifications in the DC2 domain of BCR and SH3 region of ABL1 affect BCR-ABL1 catalytic efficiency and leukemogenic ability. Moreover, employing immortalized cell lines and primary CD34-positive progenitors, we demonstrate that these modifications lead to reduced BCR-ABL1 sensitivity to imatinib, dasatinib and ponatinib but not nilotinib. We conclude that BCR-ABL1 oncoproteins displaying uncommon breakpoints involving the DC2 and SH3 domains are successfully inhibited by nilotinib treatment.
Collapse
Affiliation(s)
- Michele Massimino
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.,Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico - S. Marco", Catania, Italy
| | - Elena Tirrò
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.,Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico - S. Marco", Catania, Italy
| | - Stefania Stella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.,Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico - S. Marco", Catania, Italy
| | - Livia Manzella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.,Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico - S. Marco", Catania, Italy
| | - Maria Stella Pennisi
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.,Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico - S. Marco", Catania, Italy
| | - Chiara Romano
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.,Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico - S. Marco", Catania, Italy
| | - Silvia Rita Vitale
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.,Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico - S. Marco", Catania, Italy
| | - Adriana Puma
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.,Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico - S. Marco", Catania, Italy
| | - Cristina Tomarchio
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.,Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico - S. Marco", Catania, Italy
| | - Sandra Di Gregorio
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.,Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico - S. Marco", Catania, Italy
| | - Agostino Antolino
- Department of Transfusional Medicine, Maria Paternò-Arezzo Hospital, Ragusa, Italy
| | - Francesco Di Raimondo
- Division of Hematology and Bone Marrow Transplant, A.O.U. Policlinico "G. Rodolico - S. Marco", Catania, Italy.,Department of Surgery, Medical and Surgical Specialities, University of Catania, Catania, Italy
| | - Paolo Vigneri
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.,Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico - S. Marco", Catania, Italy
| |
Collapse
|
7
|
Gudagudi KB, Myburgh KH. Methods to Mimic In Vivo Muscle Cell Biology in Primary Human Myoblasts Using Quiescence as a Guidepost in Regenerative Medicine Research. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2021; 25:176-189. [PMID: 33635139 DOI: 10.1089/omi.2020.0211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Regenerative medicine research and testing of new therapeutics for muscle-related human diseases call for a deeper understanding of how human myoblasts gain and maintain quiescence in vitro versus in vivo. The more closely we can experimentally simulate the in vivo environment, the more relevance in vitro research on myoblasts will have. In this context, isolation of satellite cells from muscle tissue causes activation while myoblasts remain activated in culture, thus not simulating quiescence as in their in vivo niche. Cells synchronized for cell cycle present a good starting point for experimental intervention. In the past, myoblast quiescence has been induced using suspension culture (SuCu) and, recently, by knockout serum replacement (KOSR)-supplemented culture media. We assessed the proportion of cells in G0 and molecular regulators after combining the two quiescence-inducing approaches. Quiescence was induced in primary human myoblasts (PHMs) in vitro using KOSR-treatment for 10 days or suspension in viscous media for 2 days (SuCu), or suspension combined with KOSR-treatment for 2 days (blended method, SuCu-KOSR). Quiescence and synchronization were achieved with all three protocols (G0/G1 cell cycle arrest >90% cells). Fold-change of cell cycle controller p21 mRNA for KOSR and SuCu was 3.23 ± 0.30 and 2.86 ± 0.15, respectively. Since this was already a significant change (p < 0.05), no further change was gained with the blended method. But SuCu-KOSR significantly decreased Ki67 (p = 0.0019). Myogenic regulatory factors, Myf5 and MyoD gene expression in PHMs were much more suppressed (p = 0.0004 and p = 0.0034, respectively) in SuCu-KOSR, compared to SuCu alone. In conclusion, a homogenous pool of quiescent primary myoblasts synchronized in the G0 cell cycle phase was achieved with cells from three different donors regardless of the experimental protocol. Myogenic dedifferentiation at the level of Myogenic Regulatory Factors was greater when exposed to the blend of suspension and serum-free culture. We suggest that this blended new protocol can be considered in future biomedical research if differentiation is detected too early during myoblast expansion. This shall also inform new ways to bridge the in vitro and in vivo divides in regenerative medicine research.
Collapse
Affiliation(s)
- Kirankumar B Gudagudi
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Kathryn H Myburgh
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
8
|
Manzella L, Tirrò E, Vitale SR, Puma A, Consoli ML, Tambè L, Pennisi MS, DI Gregorio S, Romano C, Tomarchio C, DI Raimondo F, Stagno F. Optimal Response in a Patient With CML Expressing BCR-ABL1 E6A2 Fusion Transcript With Nilotinib Therapy: A Case Report. In Vivo 2021; 34:1481-1486. [PMID: 32354950 DOI: 10.21873/invivo.11933] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND/AIM The Philadelphia chromosome is considered the hallmark of chronic myeloid leukemia (CML). However, although most patients with CML are diagnosed with the e13a2 or e14a2 breakpoint cluster region (BCR)-Abelson 1 (ABL1) fusion transcripts, about 5% of them carry rare BCR-ABL1 fusion transcripts, such as e19a2, e8a2, e13a3, e14a3, e1a3 and e6a2. In particular, the e6a2 fusion transcript has been associated with clinically aggressive disease frequently presenting in accelerated or blast crisis phases; there is limited evidence on the efficacy of front-line second-generation tyrosine kinase inhibitors for this genotype. CASE REPORT We describe a case of atypical BCR-ABL1 e6a2 fusion transcript in a 46-year-old woman with CML. RESULTS The use of primers recognizing more distant exons from the common BCR-ABL1 breakpoint region correctly identified the atypical BCR-ABL1 e16a2 fusion transcript. Treatment with second-generation tyrosine kinase inhibitor nilotinib was effective in this patient expressing the atypical e6a2 BCR-ABL1 fusion transcript.
Collapse
Affiliation(s)
- Livia Manzella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy .,Center of Experimental Oncology and Hematology, A.O.U. Policlinico-Vittorio Emanuele, Catania, Italy
| | - Elena Tirrò
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.,Center of Experimental Oncology and Hematology, A.O.U. Policlinico-Vittorio Emanuele, Catania, Italy
| | - Silvia Rita Vitale
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.,Center of Experimental Oncology and Hematology, A.O.U. Policlinico-Vittorio Emanuele, Catania, Italy
| | - Adriana Puma
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.,Center of Experimental Oncology and Hematology, A.O.U. Policlinico-Vittorio Emanuele, Catania, Italy
| | - Maria Letizia Consoli
- Division of Hematology and Bone Marrow Transplant, A.O.U. Policlinico-Vittorio Emanuele, Catania, Italy
| | - Loredana Tambè
- Division of Hematology and Bone Marrow Transplant, A.O.U. Policlinico-Vittorio Emanuele, Catania, Italy
| | - Maria Stella Pennisi
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.,Center of Experimental Oncology and Hematology, A.O.U. Policlinico-Vittorio Emanuele, Catania, Italy
| | - Sandra DI Gregorio
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.,Center of Experimental Oncology and Hematology, A.O.U. Policlinico-Vittorio Emanuele, Catania, Italy
| | - Chiara Romano
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.,Center of Experimental Oncology and Hematology, A.O.U. Policlinico-Vittorio Emanuele, Catania, Italy
| | - Cristina Tomarchio
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.,Center of Experimental Oncology and Hematology, A.O.U. Policlinico-Vittorio Emanuele, Catania, Italy
| | - Francesco DI Raimondo
- Division of Hematology and Bone Marrow Transplant, A.O.U. Policlinico-Vittorio Emanuele, Catania, Italy.,Department of Surgery, Medical and Surgical Specialities, University of Catania, Catania, Italy
| | - Fabio Stagno
- Division of Hematology and Bone Marrow Transplant, A.O.U. Policlinico-Vittorio Emanuele, Catania, Italy
| |
Collapse
|
9
|
Massimino M, Tirrò E, Stella S, Pennisi MS, Vitale SR, Puma A, Romano C, DI Gregorio S, Romeo MA, DI Raimondo F, Manzella L. Targeting BCL-2 as a Therapeutic Strategy for Primary p210BCR-ABL1-positive B-ALL Cells. In Vivo 2020; 34:511-516. [PMID: 32111748 DOI: 10.21873/invivo.11802] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 12/19/2019] [Accepted: 01/05/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND/AIM Philadelphia-positive acute lymphoblastic leukemia (Ph+ B-ALL) is caused by the malignant transformation of lymphoid cells induced by BCR-ABL1 constitutive catalytic activity. BCR-ABL1 tyrosine kinase inhibitors (TKIs) are effective against chronic myeloid leukemia (CML) cells, inducing durable hematological, cytogenetic and molecular responses. However, in Ph+ B-ALL - as in CML progressing to blast crisis - TKIs fail to maintain disease remission. We, therefore, wanted to investigate if dual targeting of BCL-2 and BCR-ABL1 would be more effective in killing Ph+ B-ALL cells. MATERIALS AND METHODS p210-B-ALL CD34-positive cells were used to evaluate the BCR-ABL expression and pharmacological targeting of BCL-2, by venetoclax, alone or in combination with BCR-ABL1 inhibition. RESULTS We demonstrated the cytotoxic effect of BCL-2 inhibition and that dual targeting of BCL-2 and BCR-ABL1 with venetoclax and nilotinib further increases this cytotoxicity. CONCLUSION BCL-2 is a key survival factor for primary Ph+ B-ALL cells and its inhibition - alone or in combination with a BCR-ABL1 TKI - should be further investigated as a potential therapeutic strategy for these patients.
Collapse
Affiliation(s)
- Michele Massimino
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy .,Center of Experimental Oncology and Hematology, A.O.U. Policlinico Vittorio Emanuele, Catania, Italy
| | - Elena Tirrò
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.,Center of Experimental Oncology and Hematology, A.O.U. Policlinico Vittorio Emanuele, Catania, Italy
| | - Stefania Stella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.,Center of Experimental Oncology and Hematology, A.O.U. Policlinico Vittorio Emanuele, Catania, Italy
| | - Maria Stella Pennisi
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.,Center of Experimental Oncology and Hematology, A.O.U. Policlinico Vittorio Emanuele, Catania, Italy
| | - Silvia Rita Vitale
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.,Center of Experimental Oncology and Hematology, A.O.U. Policlinico Vittorio Emanuele, Catania, Italy
| | - Adriana Puma
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.,Center of Experimental Oncology and Hematology, A.O.U. Policlinico Vittorio Emanuele, Catania, Italy
| | - Chiara Romano
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.,Center of Experimental Oncology and Hematology, A.O.U. Policlinico Vittorio Emanuele, Catania, Italy
| | - Sandra DI Gregorio
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.,Center of Experimental Oncology and Hematology, A.O.U. Policlinico Vittorio Emanuele, Catania, Italy
| | - Maria Anna Romeo
- Division of Hematology and Bone Marrow Transplant, A.O.U. Policlinico Vittorio Emanuele, Catania, Italy
| | - Francesco DI Raimondo
- Division of Hematology and Bone Marrow Transplant, A.O.U. Policlinico Vittorio Emanuele, Catania, Italy
| | - Livia Manzella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.,Center of Experimental Oncology and Hematology, A.O.U. Policlinico Vittorio Emanuele, Catania, Italy
| |
Collapse
|
10
|
Gudagudi KB, d’Entrèves NP, Woudberg NJ, Steyn PJ, Myburgh KH. In vitro induction of quiescence in isolated primary human myoblasts. Cytotechnology 2020; 72:189-202. [PMID: 31993891 PMCID: PMC7192999 DOI: 10.1007/s10616-019-00365-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/30/2019] [Indexed: 02/06/2023] Open
Abstract
Adult skeletal muscle stem cells, satellite cells, remain in an inactive or quiescent state in vivo under physiological conditions. Progression through the cell cycle, including activation of quiescent cells, is a tightly regulated process. Studies employing in vitro culture of satellite cells, primary human myoblasts (PHMs), necessitate isolation myoblasts from muscle biopsies. Further studies utilizing these cells should endeavour to represent their native in vivo characteristics as closely as possible, also considering variability between individual donors. This study demonstrates the approach of utilizing KnockOut™ Serum Replacement (KOSR)-supplemented culture media as a quiescence-induction media for 10 days in PHMs isolated and expanded from three different donors. Cell cycle analysis demonstrated that treatment resulted in an increase in G1 phase and decreased S phase proportions in all donors (p < 0.005). The proportions of cells in G1 and G2 phases differed in proliferating myoblasts when comparing donors (p < 0.05 to p < 0.005), but following KOSR treatment, the proportion of cells in G1 (p = 0.558), S (p = 0.606) and G2 phases (p = 0.884) were equivalent between donors. When cultured in the quiescence-induction media, expression of CD34 and Myf5 remained constant above > 98% over time from day 0 to day 10. In contrast activation (CD56), proliferation (Ki67) and myogenic marker MyoD decreased, indicated de-differentiation. Induction of quiescence was accompanied in all three clones by fold change in p21 mRNA greater than 3.5 and up to tenfold. After induction of quiescence, differentiation into myotubes was not affected. In conclusion, we describe a method to induce quiescence in PHMs from different donors.
Collapse
Affiliation(s)
- Kirankumar B. Gudagudi
- Department of Physiological Sciences, Stellenbosch University, Matieland, Private Bag X1, Stellenbosch, 7602 South Africa
| | - Niccolò Passerin d’Entrèves
- Department of Physiological Sciences, Stellenbosch University, Matieland, Private Bag X1, Stellenbosch, 7602 South Africa
| | - Nicholas J. Woudberg
- Department of Physiological Sciences, Stellenbosch University, Matieland, Private Bag X1, Stellenbosch, 7602 South Africa
| | - Paul J. Steyn
- Department of Physiological Sciences, Stellenbosch University, Matieland, Private Bag X1, Stellenbosch, 7602 South Africa
- Department of Human Biology, University of Cape Town, Anzio Road, Observatory, South Africa
| | - Kathryn H. Myburgh
- Department of Physiological Sciences, Stellenbosch University, Matieland, Private Bag X1, Stellenbosch, 7602 South Africa
| |
Collapse
|
11
|
Massimino M, Stella S, Tirrò E, Consoli ML, Pennisi MS, Puma A, Vitale SR, Romano C, Zammit V, Stagno F, Di Raimondo F, Manzella L. Rapid decline of Philadelphia-positive metaphases after nilotinib treatment in a CML patient expressing a rare e14a3 BCR-ABL1 fusion transcript: A case report. Oncol Lett 2019; 18:2648-2653. [PMID: 31404304 DOI: 10.3892/ol.2019.10558] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/15/2019] [Indexed: 12/13/2022] Open
Abstract
We report a case of chronic myeloid leukemia in a 52-year-old male expressing a rare e14a3 BCR-ABL1 fusion transcript. Cytogenetic analysis showed the t(9;22) translocation and multiplex RT-PCR detected an atypical fragment of approximately 230 base pairs. Using two primers recognizing exon 10 of BCR and exon 4 of ABL1, a larger PCR product was identified, cloned, sequenced and defined as an e14a3 BCR-ABL1 rearrangement. The patient was treated with nilotinib and monitored measuring cytogenetic and hematological parameters, while BCR-ABL1 transcripts were surveyed by conventional and semi-nested PCR. The patient achieved a complete hematologic response after two months of treatment followed by a complete cytogenetic remission two months later. Furthermore, PCR and semi-nested PCR failed to detect the e14a3 BCR-ABL1 mRNA after 15 and 21 months of nilotinib, respectively.
Collapse
Affiliation(s)
- Michele Massimino
- Department of Clinical and Experimental Medicine, University of Catania, Catania I-95123, Italy.,Center of Experimental Oncology and Hematology, A.O.U. Policlinico-Vittorio Emanuele, Catania I-95123, Italy
| | - Stefania Stella
- Department of Clinical and Experimental Medicine, University of Catania, Catania I-95123, Italy.,Center of Experimental Oncology and Hematology, A.O.U. Policlinico-Vittorio Emanuele, Catania I-95123, Italy
| | - Elena Tirrò
- Department of Clinical and Experimental Medicine, University of Catania, Catania I-95123, Italy.,Center of Experimental Oncology and Hematology, A.O.U. Policlinico-Vittorio Emanuele, Catania I-95123, Italy
| | - Maria Letizia Consoli
- Division of Hematology and Bone Marrow Transplant, A.O.U. Policlinico-Vittorio Emanuele, Catania I-95123, Italy
| | - Maria Stella Pennisi
- Department of Clinical and Experimental Medicine, University of Catania, Catania I-95123, Italy.,Center of Experimental Oncology and Hematology, A.O.U. Policlinico-Vittorio Emanuele, Catania I-95123, Italy
| | - Adriana Puma
- Department of Clinical and Experimental Medicine, University of Catania, Catania I-95123, Italy.,Center of Experimental Oncology and Hematology, A.O.U. Policlinico-Vittorio Emanuele, Catania I-95123, Italy
| | - Silvia Rita Vitale
- Department of Clinical and Experimental Medicine, University of Catania, Catania I-95123, Italy.,Center of Experimental Oncology and Hematology, A.O.U. Policlinico-Vittorio Emanuele, Catania I-95123, Italy
| | - Chiara Romano
- Department of Clinical and Experimental Medicine, University of Catania, Catania I-95123, Italy.,Center of Experimental Oncology and Hematology, A.O.U. Policlinico-Vittorio Emanuele, Catania I-95123, Italy
| | - Valentina Zammit
- Division of Hematology and Bone Marrow Transplant, A.O.U. Policlinico-Vittorio Emanuele, Catania I-95123, Italy
| | - Fabio Stagno
- Division of Hematology and Bone Marrow Transplant, A.O.U. Policlinico-Vittorio Emanuele, Catania I-95123, Italy
| | - Francesco Di Raimondo
- Division of Hematology and Bone Marrow Transplant, A.O.U. Policlinico-Vittorio Emanuele, Catania I-95123, Italy.,Department of Surgery, Medical and Surgical Specialties, University of Catania, Catania I-95123, Italy
| | - Livia Manzella
- Department of Clinical and Experimental Medicine, University of Catania, Catania I-95123, Italy.,Center of Experimental Oncology and Hematology, A.O.U. Policlinico-Vittorio Emanuele, Catania I-95123, Italy
| |
Collapse
|
12
|
Stella S, Zammit V, Vitale SR, Pennisi MS, Massimino M, Tirrò E, Forte S, Spitaleri A, Antolino A, Siracusa S, Accurso V, Mannina D, Impera S, Musolino C, Russo S, Malato A, Mineo G, Musso M, Porretto F, Martino B, Di Raimondo F, Manzella L, Vigneri P, Stagno F. Clinical Implications of Discordant Early Molecular Responses in CML Patients Treated with Imatinib. Int J Mol Sci 2019; 20:ijms20092226. [PMID: 31064152 PMCID: PMC6539817 DOI: 10.3390/ijms20092226] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 05/01/2019] [Accepted: 05/02/2019] [Indexed: 11/16/2022] Open
Abstract
A reduction in BCR-ABL1/ABL1IS transcript levels to <10% after 3 months or <1% after 6 months of tyrosine kinase inhibitor therapy are associated with superior clinical outcomes in chronic myeloid leukemia (CML) patients. In this study, we investigated the reliability of multiple BCR-ABL1 thresholds in predicting treatment outcomes for 184 subjects diagnosed with CML and treated with standard-dose imatinib mesylate (IM). With a median follow-up of 61 months, patients with concordant BCR-ABL1/ABL1IS transcripts below the defined thresholds (10% at 3 months and 1% at 6 months) displayed significantly superior rates of event-free survival (86.1% vs. 26.6%) and deep molecular response (≥ MR4; 71.5% vs. 16.1%) compared to individuals with BCR-ABL1/ABL1IS levels above these defined thresholds. We then analyzed the outcomes of subjects displaying discordant molecular transcripts at 3- and 6-month time points. Among these patients, those with BCR-ABL1/ABL1IS values >10% at 3 months but <1% at 6 months fared significantly better than individuals with BCR-ABL1/ABL1IS <10% at 3 months but >1% at 6 months (event-free survival 68.2% vs. 32.7%; p < 0.001). Likewise, subjects with BCR-ABL1/ABL1IS at 3 months >10% but <1% at 6 months showed a higher cumulative incidence of MR4 compared to patients with BCR-ABL1/ABL1IS <10% at 3 months but >1% at 6 months (75% vs. 18.2%; p < 0.001). Finally, lower BCR-ABL1/GUSIS transcripts at diagnosis were associated with BCR-ABL1/ABL1IS values <1% at 6 months (p < 0.001). Our data suggest that when assessing early molecular responses to therapy, the 6-month BCR-ABL1/ABL1IS level displays a superior prognostic value compared to the 3-month measurement in patients with discordant oncogenic transcripts at these two pivotal time points.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Antineoplastic Agents/therapeutic use
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Female
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Humans
- Imatinib Mesylate/therapeutic use
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Male
- Middle Aged
- Protein Kinase Inhibitors/therapeutic use
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Treatment Outcome
Collapse
Affiliation(s)
- Stefania Stella
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy.
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico Vittorio Emanuele, 95123 Catania, Italy.
| | - Valentina Zammit
- Division of Hematology and Bone Marrow Transplant, AOU Policlinico - V. Emanuele, 95123 Catania, Italy.
| | - Silvia Rita Vitale
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy.
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico Vittorio Emanuele, 95123 Catania, Italy.
| | - Maria Stella Pennisi
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy.
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico Vittorio Emanuele, 95123 Catania, Italy.
| | - Michele Massimino
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy.
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico Vittorio Emanuele, 95123 Catania, Italy.
| | - Elena Tirrò
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy.
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico Vittorio Emanuele, 95123 Catania, Italy.
| | - Stefano Forte
- Mediterranean Institute of Oncology, 95029 Viagrande, Italy.
| | - Antonio Spitaleri
- Division of Hematology and Bone Marrow Transplant, AOU Policlinico - V. Emanuele, 95123 Catania, Italy.
| | - Agostino Antolino
- Department of Transfusional Medicine, Maria Paternò-Arezzo Hospital, 97100 Ragusa, Italy.
| | - Sergio Siracusa
- Division of Hematology, A.O.U. Policlinico "P. Giaccone", University of Palermo, 90127 Palermo, Italy.
| | - Vincenzo Accurso
- Division of Hematology, A.O.U. Policlinico "P. Giaccone", University of Palermo, 90127 Palermo, Italy.
| | - Donato Mannina
- Division of Hematology, Papardo Hospital, 98158 Messina, Italy.
| | - Stefana Impera
- Division of Oncology and Hematology, ARNAS Garibaldi-Nesima, 95122 Catania, Italy.
| | - Caterina Musolino
- Division of Hematology, University of Messina, 98125 Messina, Italy.
| | - Sabina Russo
- Division of Hematology, University of Messina, 98125 Messina, Italy.
| | - Alessandra Malato
- Division of Hematology and Bone Marrow Transplant, Villa Sofia-Cervello Hospital, 90146 Palermo, Italy.
| | - Giuseppe Mineo
- Division of Hematology, San Vincenzo Hospital, 98039 Taormina, Italy.
| | - Maurizio Musso
- Division of Hematology, La Maddalena Hospital, 90146 Palermo, Italy.
| | | | - Bruno Martino
- Hematology Department, Grande Ospedale Metropolitano, Reggio Calabria, 89124 Reggio Calabria, Italy.
| | - Francesco Di Raimondo
- Division of Hematology and Bone Marrow Transplant, AOU Policlinico - V. Emanuele, 95123 Catania, Italy.
- Department of Surgery, Medical and Surgical Specialities, University of Catania, 95123 Catania, Italy.
| | - Livia Manzella
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy.
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico Vittorio Emanuele, 95123 Catania, Italy.
| | - Paolo Vigneri
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy.
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico Vittorio Emanuele, 95123 Catania, Italy.
| | - Fabio Stagno
- Division of Hematology and Bone Marrow Transplant, AOU Policlinico - V. Emanuele, 95123 Catania, Italy.
| |
Collapse
|
13
|
Pan YH, Jiao L, Lin CY, Lu CH, Li L, Chen HY, Wang YB, He Y. Combined treatment with metformin and gefitinib overcomes primary resistance to EGFR-TKIs with EGFR mutation via targeting IGF-1R signaling pathway. Biologics 2018; 12:75-86. [PMID: 30154647 PMCID: PMC6108345 DOI: 10.2147/btt.s166867] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Aim Although EGFR tyrosine kinase inhibitors (TKIs) have shown dramatic effects against sensitizing EGFR mutations in non-small cell lung cancer (NSCLC), ~20%–30% of NSCLC patients with EGFR-sensitive mutation exhibit intrinsic resistance to EGFR-TKIs. The purpose of the current study was to investigate the enhanced antitumor effect of metformin (Met), a biguanide drug, in combination with gefitinib (Gef) in primary resistant human lung cancer cells and the associated molecular mechanism. Experimental design H1975 cell line was treated with Met and/or Gef to examine the inhibition of cell growth and potential mechanism of action by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), Ki67 incorporation assay, flow cytometry analysis, small interfering RNA technology, Western blot analysis and xenograft implantation. Results Insulin-like growth factor-1 receptor (IGF-1R) signaling pathway was markedly activated in EGFR-TKI primary resistant H1975 cells as compared to EGFR-TKI acquired resistance cells (PC-9GR, H1650-M3) and EGFR-TKI sensitivity cells (PC-9, HCC827). Inhibition of IGF-1R activity by AG-1024 (a small molecule of IGF-1R inhibitor), as well as downregulation of IGF-1R by siRNA, significantly enhanced the ability of Gef to suppress proliferation and induce apoptosis in H1975 cells via the inhibition of AKT activation and subsequent upregulation of Bcl-2-interacting mediator of cell death (BIM). Interestingly, the observation showed that Met combined with Gef treatment had similar tumor growth suppression effects in comparison with the addition of AG-1024 to therapy with Gef. A clear synergistic antiproliferative interaction between Met and Gef was observed with a combination index (CI) value of 0.65. Notably, IGF-1R silencing mediated by RNA interference (RNAi) attenuated anticancer effects of Met without obviously resensitizing H1975 cells to Gef. Finally, Met-based combinatorial therapy effectively blocked tumor growth in the xenograft with TKI primary resistant lung cancer cells. Conclusion Our findings demonstrated that Met combined with Gef would be a promising strategy to overcome EGFR-TKI primary resistance via suppressing IGF-1R signaling pathway in NSCLC.
Collapse
Affiliation(s)
- Yong-Hong Pan
- Department of Respiratory Disease, Daping Hospital, Third Military Medical University, Chongqing 400042, China,
| | - Lin Jiao
- Department of Respiratory Disease, Daping Hospital, Third Military Medical University, Chongqing 400042, China,
| | - Cai-Yu Lin
- Department of Respiratory Disease, Daping Hospital, Third Military Medical University, Chongqing 400042, China,
| | - Cong-Hua Lu
- Department of Respiratory Disease, Daping Hospital, Third Military Medical University, Chongqing 400042, China,
| | - Li Li
- Department of Respiratory Disease, Daping Hospital, Third Military Medical University, Chongqing 400042, China,
| | - Heng-Yi Chen
- Department of Respiratory Disease, Daping Hospital, Third Military Medical University, Chongqing 400042, China,
| | - Yu-Bo Wang
- Department of Respiratory Disease, Daping Hospital, Third Military Medical University, Chongqing 400042, China,
| | - Yong He
- Department of Respiratory Disease, Daping Hospital, Third Military Medical University, Chongqing 400042, China,
| |
Collapse
|
14
|
Jin SJ, Yang Y, Ma L, Ma BH, Ren LP, Guo LC, Wang WB, Zhang YX, Zhao ZJ, Cui M. In vivo and in vitro induction of the apoptotic effects of oxysophoridine on colorectal cancer cells via the Bcl-2/Bax/caspase-3 signaling pathway. Oncol Lett 2017; 14:8000-8006. [PMID: 29344242 PMCID: PMC5755128 DOI: 10.3892/ol.2017.7227] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 08/17/2017] [Indexed: 12/18/2022] Open
Abstract
Oxysophoridine (OSR) is a major active alkaloid extracted from Sophoraalopecuroides L. The aim of the present study was to investigate the induction of the apoptotic effects of OSR on colorectal cancer cells in vivo and in vitro. The results of the MTT and colony formation assays demonstrated that the proliferation of HCT116 cells was inhibited by OSR in vitro. The characteristics of cellular apoptosis in OSR-treated HCT116 cells were analyzed by Hoechst 33258 staining. It was also observed that the expression of caspase-3, B-cell lymphoma-2 (Bcl-2) associated X protein (Bax) and cytochrome c increased significantly upon OSR treatment. However, the expression of Bcl-2 and poly ADP-ribose polymerase-1 (PARP-1) was downregulated in OSR-treated cells compared with untreated cells. The in vivo experiments identified that OSR significantly inhibited the growth of the transplanted mouse CT26 tumor tissue, upregulated the expression of caspase-3, Bax and cytochrome c and downregulated the expression of Bcl-2 and PARP-1, as detected by reverse transcription-quantitative polymerase chain reaction and western blotting. It may be concluded that OSR significantly induced apoptotic effects on colorectal cancer cells in vivo and in vitro, and that its mechanism may be associated with the Bcl-2/Bax/caspase-3 signaling pathway.
Collapse
Affiliation(s)
- Shao-Ju Jin
- Department of Pharmacology, The First Affiliated Hospital, Luohe Medical College, Luohe, Henan 462002, P.R. China
| | - Yun Yang
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Lei Ma
- Department of Emergency, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Ben-Hui Ma
- Department of Pharmacology, The First Affiliated Hospital, Luohe Medical College, Luohe, Henan 462002, P.R. China
| | - Li-Ping Ren
- Department of Pharmacology, The First Affiliated Hospital, Luohe Medical College, Luohe, Henan 462002, P.R. China
| | - Liu-Cheng Guo
- Department of Pharmacology, The First Affiliated Hospital, Luohe Medical College, Luohe, Henan 462002, P.R. China
| | - Wen-Bao Wang
- Department of Pharmacology, The First Affiliated Hospital, Luohe Medical College, Luohe, Henan 462002, P.R. China
| | - Yan-Xin Zhang
- Department of Pharmacology, The First Affiliated Hospital, Luohe Medical College, Luohe, Henan 462002, P.R. China
| | - Zhi-Jun Zhao
- Department of Pharmacology, The First Affiliated Hospital, Luohe Medical College, Luohe, Henan 462002, P.R. China
| | - Mingchen Cui
- Department of Pharmacology, The First Affiliated Hospital, Luohe Medical College, Luohe, Henan 462002, P.R. China.,Tumor Occurrence and Prevention Research Innovation Team of Luohe, Luohe Medical College, Luohe, Henan 462002, P.R. China
| |
Collapse
|