1
|
Zhang Y, Qiao Z, Li J, Bertaccini A. Paulownia Witches' Broom Disease: A Comprehensive Review. Microorganisms 2024; 12:885. [PMID: 38792713 PMCID: PMC11123829 DOI: 10.3390/microorganisms12050885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
Phytoplasmas are insect-transmitted bacterial pathogens associated with diseases in a wide range of host plants, resulting in significant economic and ecological losses. Perennial deciduous trees in the genus Paulownia are widely planted for wood harvesting and ornamental purposes. Paulownia witches' broom (PaWB) disease, associated with a 16SrI-D subgroup phytoplasma, is a destructive disease of paulownia in East Asia. The PaWB phytoplasmas are mainly transmitted by insect vectors in the Pentatomidae (stink bugs), Miridae (mirid bugs) and Cicadellidae (leafhoppers) families. Diseased trees show typical symptoms, such as branch and shoot proliferation, which together are referred to as witches' broom. The phytoplasma presence affects the physiological and anatomical structures of paulownia. Gene expression in paulownia responding to phytoplasma presence have been studied at the transcriptional, post-transcriptional, translational and post-translational levels by high throughput sequencing techniques. A PaWB pathogenic mechanism frame diagram on molecular level is summarized. Studies on the interactions among the phytoplasma, the insect vectors and the plant host, including the mechanisms underlying how paulownia effectors modify processes of gene expression, will lead to a deeper understanding of the pathogenic mechanisms and to the development of efficient control measures.
Collapse
Affiliation(s)
- Yajie Zhang
- College of Forestry, Henan Agricultural University, Zhengzhou 450000, China; (Y.Z.); (Z.Q.)
- Henan Provincial Institute of Scientific and Technical Information, Zhengzhou 450003, China
| | - Zesen Qiao
- College of Forestry, Henan Agricultural University, Zhengzhou 450000, China; (Y.Z.); (Z.Q.)
| | - Jidong Li
- College of Forestry, Henan Agricultural University, Zhengzhou 450000, China; (Y.Z.); (Z.Q.)
- Department of Agriculture and Food Science, Alma Mater Studiorum—University of Bologna, 40127 Bologna, Italy
| | - Assunta Bertaccini
- Department of Agriculture and Food Science, Alma Mater Studiorum—University of Bologna, 40127 Bologna, Italy
| |
Collapse
|
2
|
Contaldo N, Zambon Y, Galbacs ZN, Miloro F, Havelda Z, Bertaccini A, Varallyay E. Small RNA Profiling of Aster Yellows Phytoplasma-Infected Catharanthus roseus Plants Showing Different Symptoms. Genes (Basel) 2023; 14:genes14051114. [PMID: 37239473 DOI: 10.3390/genes14051114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Micropropagated Catharantus roseus plants infected with 'Candidatus Phytoplasma asteris' showed virescence symptoms, witches' broom symptoms, or became asymptomatic after their planting in pots. Nine plants were grouped into three categories according to these symptoms, which were then employed for investigation. The phytoplasma concentration, as determined by qPCR, correlated well with the severity of symptoms. To reveal the changes in the small RNA profiles in these plants, small RNA high-throughput sequencing (HTS) was carried out. The bioinformatics comparison of the micro (mi) RNA and small interfering (si) RNA profiles of the symptomatic and asymptomatic plants showed changes, which could be correlated to some of the observed symptoms. These results complement previous studies on phytoplasmas and serve as a starting point for small RNA-omic studies in phytoplasma research.
Collapse
Affiliation(s)
- Nicoletta Contaldo
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
- Institute for Sustainable Plant Protection (IPSP), National Research Council of Italy (CNR), 70126 Bari, Italy
| | - Yuri Zambon
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Zsuszanna Nagyne Galbacs
- Genomics Research Group, Department of Plant Pathology, Institute of Plant Protection, Hungarian University of Agriculture and Life Sciences, Szent-Gyorgyi Albert Street 4, 2100 Godollo, Hungary
| | - Fabio Miloro
- Plant Developmental Biology Group, Department of Plant Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Gyorgyi Albert Street 4, 2100 Godollo, Hungary
| | - Zoltan Havelda
- Plant Developmental Biology Group, Department of Plant Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Gyorgyi Albert Street 4, 2100 Godollo, Hungary
| | - Assunta Bertaccini
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Eva Varallyay
- Genomics Research Group, Department of Plant Pathology, Institute of Plant Protection, Hungarian University of Agriculture and Life Sciences, Szent-Gyorgyi Albert Street 4, 2100 Godollo, Hungary
| |
Collapse
|
3
|
Dermastia M. Plant Hormones in Phytoplasma Infected Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:477. [PMID: 31057582 PMCID: PMC6478762 DOI: 10.3389/fpls.2019.00477] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 03/28/2019] [Indexed: 05/21/2023]
Abstract
Phytoplasmas are bacterial plant pathogens that need a plant host and an insect vector for their spread and survival. In plants, the physiological responses that phytoplasmas trigger result in symptom development through effects on hormonal, nutritional, and stress signaling pathways, and the interactions between these. In this review, recent advances on the involvement of plant hormones together with their known and deduced roles in plants infected with phytoplasmas are discussed. Several studies have directly, or in many cases indirectly, addressed plant hormone systems in phytoplasma-infected plants. These have provided accumulating evidence that phytoplasmas extensively affect plant hormone pathways. Phytoplasmas thus, with disturbing complex plant hormone networks, suppress plant immunity and modify plant structure, while optimizing their nutrient acquisition and facilitating their colonization of the plants, and their dissemination among plants by their insect vectors.
Collapse
Affiliation(s)
- Marina Dermastia
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| |
Collapse
|
4
|
Fan G, Wang Z, Zhai X, Cao Y. ceRNA Cross-Talk in Paulownia Witches' Broom Disease. Int J Mol Sci 2018; 19:ijms19082463. [PMID: 30127310 PMCID: PMC6121691 DOI: 10.3390/ijms19082463] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/05/2018] [Accepted: 08/17/2018] [Indexed: 12/15/2022] Open
Abstract
Long noncoding RNA (lncRNA), circular RNA (circRNA), and microRNA (miRNA) are important in the regulation of life activities. However, their function is unclear in Paulownia fortunei. To identify lncRNAs, circRNAs, and miRNA, and investigate their roles in the infection progress of Paulownia witches’ broom (PaWB) disease, we performed RNA sequencing of healthy and infected P. fortunei. A total of 3126 lncRNAs, 1634 circRNAs, and 550 miRNAs were identified. Among them, 229 lncRNAs, 65 circRNAs, and 65 miRNAs were differentially expressed in a significant manner. We constructed a competing endogenous RNA (ceRNA) network, which contains 5 miRNAs, 4 circRNAs, 5 lncRNAs, and 15 mRNAs, all of which were differentially expressed between healthy and infected P. fortunei. This study provides the first catalog of candidate ceRNAs in Paulownia and gives a revealing insight into the molecular mechanism responsible for PaWB.
Collapse
Affiliation(s)
- Guoqiang Fan
- Institute of Paulownia, Henan Agricultural University, Zhengzhou 450002, China.
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China.
| | - Zhe Wang
- Institute of Paulownia, Henan Agricultural University, Zhengzhou 450002, China.
| | | | - Yabing Cao
- Institute of Paulownia, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
5
|
Jian H, Ma J, Wei L, Liu P, Zhang A, Yang B, Li J, Xu X, Liu L. Integrated mRNA, sRNA, and degradome sequencing reveal oilseed rape complex responses to Sclerotinia sclerotiorum (Lib.) infection. Sci Rep 2018; 8:10987. [PMID: 30030454 PMCID: PMC6054686 DOI: 10.1038/s41598-018-29365-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/10/2018] [Indexed: 11/23/2022] Open
Abstract
Sclerotinia stem rot (SSR), caused by the fungal pathogen Sclerotinia sclerotiorum, is a devastating disease resulting in yield losses and decreases in seed quality in oilseed rape (Brassica napus) worldwide. However, the molecular mechanisms underlying the response of oilseed rape to S. sclerotiorum infection at the transcriptional and post-transcriptional levels are poorly understood. Here, we used an integrated omics approach (transcriptome, sRNAome, and degradome sequencing) on the Illumina platform to compare the RNA expression and post-transcriptional profiles of oilseed rape plants inoculated or not with S. sclerotiorum. In total, 7,065 differentially expressed genes (DEGs) compared with the mock-inoculated control at 48 hours post inoculation were identified. These DEGs were associated with protein kinases, signal transduction, transcription factors, hormones, pathogenesis-related proteins, secondary metabolism, and transport. In the sRNA-Seq analysis, 77 known and 176 novel miRNAs were identified; however, only 10 known and 41 novel miRNAs were differentially expressed between the samples inoculated or not with S. sclerotiorum. Degradome sequencing predicted 80 cleavage sites with 64 miRNAs. Integrated mRNA, sRNA and degradome sequencing analysis reveal oilseed rape complex responses to S. sclerotiorum infection. This study provides a global view of miRNA and mRNA expression profiles in oilseed rape following S. sclerotiorum infection.
Collapse
Affiliation(s)
- Hongju Jian
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, P. R. China
| | - Jinqi Ma
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, P. R. China
| | - Lijuan Wei
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, P. R. China
| | - Pu Liu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, P. R. China
| | - Aoxiang Zhang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, P. R. China
| | - Bo Yang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, P. R. China
| | - Jiana Li
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, P. R. China
| | - Xinfu Xu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, P. R. China
| | - Liezhao Liu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, P. R. China.
| |
Collapse
|
6
|
Comparative Analysis of MicroRNA Expression in Three Paulownia Species with Phytoplasma Infection. FORESTS 2018. [DOI: 10.3390/f9060302] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
7
|
Islam W, Noman A, Qasim M, Wang L. Plant Responses to Pathogen Attack: Small RNAs in Focus. Int J Mol Sci 2018; 19:E515. [PMID: 29419801 PMCID: PMC5855737 DOI: 10.3390/ijms19020515] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 02/04/2018] [Accepted: 02/05/2018] [Indexed: 12/25/2022] Open
Abstract
Small RNAs (sRNA) are a significant group of gene expression regulators for multiple biological processes in eukaryotes. In plants, many sRNA silencing pathways produce extensive array of sRNAs with specialized roles. The evidence on record advocates for the functions of sRNAs during plant microbe interactions. Host sRNAs are reckoned as mandatory elements of plant defense. sRNAs involved in plant defense processes via different pathways include both short interfering RNA (siRNA) and microRNA (miRNA) that actively regulate immunity in response to pathogenic attack via tackling pathogen-associated molecular patterns (PAMPs) and other effectors. In response to pathogen attack, plants protect themselves with the help of sRNA-dependent immune systems. That sRNA-mediated plant defense responses play a role during infections is an established fact. However, the regulations of several sRNAs still need extensive research. In this review, we discussed the topical advancements and findings relevant to pathogen attack and plant defense mediated by sRNAs. We attempted to point out diverse sRNAs as key defenders in plant systems. It is hoped that sRNAs would be exploited as a mainstream player to achieve food security by tackling different plant diseases.
Collapse
Affiliation(s)
- Waqar Islam
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Ali Noman
- Department of Botany, Government College University, Faisalabad 38040, Pakistan.
- College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Muhammad Qasim
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Liande Wang
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
8
|
Long Non-Coding RNAs Responsive to Witches’ Broom Disease in Paulownia tomentosa. FORESTS 2017. [DOI: 10.3390/f8090348] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
9
|
Differential expression of miRNAs and associated gene targets in grapevine leafroll-associated virus 3-infected plants. Arch Virol 2016; 162:987-996. [PMID: 28025711 DOI: 10.1007/s00705-016-3197-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/23/2016] [Indexed: 10/20/2022]
Abstract
MicroRNAs (miRNAs) are a class of endogenous small non-coding RNAs (sRNA) that play an essential role in the regulation of target mRNAs expressed during plant development and in response to stress. MicroRNA expression profiling has helped to identify miRNAs that regulate a range of processes, including the plant's defence response to pathogens. In this study, differential miRNA expression in own-rooted Vitis vinifera cv. Cabernet Sauvignon plants infected with grapevine leafroll-associated virus 3 was investigated with microarrays and next-generation sequencing (NGS) of sRNA and mRNA. These high-throughput approaches identified several differentially expressed miRNAs. Four miRNAs, identified by both approaches, were validated by stemloop RT-PCRs. Three of the predicted targets of the differentially expressed miRNAs were also differentially expressed in the transcriptome data of infected plants, and were validated by RT-qPCR. Identification of these miRNAs and their targets can lead to a better understanding of host-pathogen interactions involved in grapevine leafroll disease and the identification of possible targets for virus resistance.
Collapse
|
10
|
Niu S, Wang Y, Zhao Z, Deng M, Cao L, Yang L, Fan G. Transcriptome and Degradome of microRNAs and Their Targets in Response to Drought Stress in the Plants of a Diploid and Its Autotetraploid Paulownia australis. PLoS One 2016; 11:e0158750. [PMID: 27388154 PMCID: PMC4936700 DOI: 10.1371/journal.pone.0158750] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 06/21/2016] [Indexed: 01/07/2023] Open
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs that play vital roles in plant growth, development, and stress response. Increasing numbers of studies aimed at discovering miRNAs and analyzing their functions in plants are being reported. In this study, we investigated the effect of drought stress on the expression of miRNAs and their targets in plants of a diploid and derived autotetraploid Paulownia australis. Four small RNA (sRNA) libraries and four degradome libraries were constructed from diploid and autotetraploid P. australis plants treated with either 75% or 25% relative soil water content. A total of 33 conserved and 104 novel miRNAs (processing precision value > 0.1) were identified, and 125 target genes were identified for 36 of the miRNAs by using the degradome sequencing. Among the identified miRNAs, 54 and 68 were differentially expressed in diploid and autotetraploid plants under drought stress (25% relative soil water content), respectively. The expressions of miRNAs and target genes were also validated by quantitative real-time PCR. The results showed that the relative expression trends of the randomly selected miRNAs were similar to the trends predicted by Illumina sequencing. And the correlations between miRNAs and their target genes were also analyzed. Furthermore, the functional analysis showed that most of these miRNAs and target genes were associated with plant development and environmental stress response. This study provided molecular evidence for the possible involvement of certain miRNAs in the drought response and/or tolerance in P. australis, and certain level of differential expression between diploid and autotetraploid plants.
Collapse
Affiliation(s)
- Suyan Niu
- Institute of Paulownia, Henan Agricultural University, 95 Wenhua Road, Jinsui District, 450002, Zhengzhou, Henan, P.R. China
- College of Forestry, Henan Agricultural University, 95 Wenhua Road, Jinsui District, 450002, Zhengzhou, Henan, P.R. China
| | - Yuanlong Wang
- Institute of Paulownia, Henan Agricultural University, 95 Wenhua Road, Jinsui District, 450002, Zhengzhou, Henan, P.R. China
- College of Forestry, Henan Agricultural University, 95 Wenhua Road, Jinsui District, 450002, Zhengzhou, Henan, P.R. China
| | - Zhenli Zhao
- Institute of Paulownia, Henan Agricultural University, 95 Wenhua Road, Jinsui District, 450002, Zhengzhou, Henan, P.R. China
- College of Forestry, Henan Agricultural University, 95 Wenhua Road, Jinsui District, 450002, Zhengzhou, Henan, P.R. China
| | - Minjie Deng
- Institute of Paulownia, Henan Agricultural University, 95 Wenhua Road, Jinsui District, 450002, Zhengzhou, Henan, P.R. China
- College of Forestry, Henan Agricultural University, 95 Wenhua Road, Jinsui District, 450002, Zhengzhou, Henan, P.R. China
| | - Lin Cao
- Institute of Paulownia, Henan Agricultural University, 95 Wenhua Road, Jinsui District, 450002, Zhengzhou, Henan, P.R. China
- College of Forestry, Henan Agricultural University, 95 Wenhua Road, Jinsui District, 450002, Zhengzhou, Henan, P.R. China
| | - Lu Yang
- Institute of Paulownia, Henan Agricultural University, 95 Wenhua Road, Jinsui District, 450002, Zhengzhou, Henan, P.R. China
- College of Forestry, Henan Agricultural University, 95 Wenhua Road, Jinsui District, 450002, Zhengzhou, Henan, P.R. China
| | - Guoqiang Fan
- Institute of Paulownia, Henan Agricultural University, 95 Wenhua Road, Jinsui District, 450002, Zhengzhou, Henan, P.R. China
- College of Forestry, Henan Agricultural University, 95 Wenhua Road, Jinsui District, 450002, Zhengzhou, Henan, P.R. China
- * E-mail:
| |
Collapse
|
11
|
Fan G, Niu S, Zhao Z, Deng M, Xu E, Wang Y, Yang L. Identification of microRNAs and their targets in Paulownia fortunei plants free from phytoplasma pathogen after methyl methane sulfonate treatment. Biochimie 2016; 127:271-80. [PMID: 27328782 DOI: 10.1016/j.biochi.2016.06.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 06/15/2016] [Indexed: 12/28/2022]
Abstract
MicroRNAs (miRNAs) play major roles in plant responses to various biotic and abiotic stresses by regulating gene expression at the transcriptional and post-transcriptional levels. Paulownia witches' broom (PaWB) disease caused by phytoplasmas reduces Paulownia production worldwide. In this study, we investigated the miRNA-mediated plant response to PaWB phytoplasma by Illumina sequencing and degradome analysis of Paulownia fortunei small RNAs (sRNAs). The sRNA and degradome libraries were constructed from healthy and diseased P. fortunei plants and the plants free from phytoplasma pathogen after 60 mg L(-1) methyl methane sulfonate treatment. A total of 96 P. fortunei-conserved miRNAs and 83 putative novel miRNAs were identified. Among them, 37 miRNAs (17 conserved, 20 novel) were found to be differentially expressed in response to PaWB phytoplasma infection. In addition, 114 target genes for 18 of the conserved miRNA families and 33 target genes for 15 of the novel miRNAs in P. fortunei were detected. The expression patterns of 14 of the PaWB phytoplasma-responsive miRNAs and 12 target genes were determined by quantitative real-time polymerase chain reaction (qPCR) experiments. A functional analysis of the miRNA targets indicated that these targeted genes may regulate transcription, stress response, nitrogen metabolism, and various other activities. Our results will help identify the potential roles of miRNAs involved in protecting P. fortunei from diseases.
Collapse
Affiliation(s)
- Guoqiang Fan
- Institute of Paulownia, Henan Agricultural University, 450002 Zhengzhou, Henan, PR China; College of Forestry, Henan Agricultural University, 450002 Zhengzhou, Henan, PR China.
| | - Suyan Niu
- Institute of Paulownia, Henan Agricultural University, 450002 Zhengzhou, Henan, PR China; College of Forestry, Henan Agricultural University, 450002 Zhengzhou, Henan, PR China
| | - Zhenli Zhao
- Institute of Paulownia, Henan Agricultural University, 450002 Zhengzhou, Henan, PR China; College of Forestry, Henan Agricultural University, 450002 Zhengzhou, Henan, PR China
| | - Minjie Deng
- Institute of Paulownia, Henan Agricultural University, 450002 Zhengzhou, Henan, PR China; College of Forestry, Henan Agricultural University, 450002 Zhengzhou, Henan, PR China
| | - Enkai Xu
- Institute of Paulownia, Henan Agricultural University, 450002 Zhengzhou, Henan, PR China; College of Forestry, Henan Agricultural University, 450002 Zhengzhou, Henan, PR China
| | - Yuanlong Wang
- Institute of Paulownia, Henan Agricultural University, 450002 Zhengzhou, Henan, PR China; College of Forestry, Henan Agricultural University, 450002 Zhengzhou, Henan, PR China
| | - Lu Yang
- Institute of Paulownia, Henan Agricultural University, 450002 Zhengzhou, Henan, PR China; College of Forestry, Henan Agricultural University, 450002 Zhengzhou, Henan, PR China
| |
Collapse
|