1
|
Zou Z, Zheng Y, Chang L, Zou L, Zhang L, Min Y, Zhao Y. TIP aquaporins in Cyperus esculentus: genome-wide identification, expression profiles, subcellular localizations, and interaction patterns. BMC PLANT BIOLOGY 2024; 24:298. [PMID: 38632542 PMCID: PMC11025170 DOI: 10.1186/s12870-024-04969-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 03/31/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Tonoplast intrinsic proteins (TIPs), which typically mediate water transport across vacuolar membranes, play an essential role in plant growth, development, and stress responses. However, their characterization in tigernut (Cyperus esculentus L.), an oil-bearing tuber plant of the Cyperaceae family, is still in the infancy. RESULTS In this study, a first genome-wide characterization of the TIP subfamily was conducted in tigernut, resulting in ten members representing five previously defined phylogenetic groups, i.e., TIP1-5. Although the gene amounts are equal to that present in two model plants Arabidopsis and rice, the group composition and/or evolution pattern were shown to be different. Except for CeTIP1;3 that has no counterpart in both Arabidopsis and rice, complex orthologous relationships of 1:1, 1:2, 1:3, 2:1, and 2:2 were observed. Expansion of the CeTIP subfamily was contributed by whole-genome duplication (WGD), transposed, and dispersed duplications. In contrast to the recent WGD-derivation of CeTIP3;1/-3;2, synteny analyses indicated that TIP4 and - 5 are old WGD repeats of TIP2, appearing sometime before monocot-eudicot divergence. Expression analysis revealed that CeTIP genes exhibit diverse expression profiles and are subjected to developmental and diurnal fluctuation regulation. Moreover, when transiently overexpressed in tobacco leaves, CeTIP1;1 was shown to locate in the vacuolar membrane and function in homo/heteromultimer, whereas CeTIP2;1 is located in the cell membrane and only function in heteromultimer. Interestingly, CeTIP1;1 could mediate the tonoplast-localization of CeTIP2;1 via protein interaction, implying complex regulatory patterns. CONCLUSIONS Our findings provide a global view of CeTIP genes, which provide valuable information for further functional analysis and genetic improvement through manipulating key members in tigernut.
Collapse
Affiliation(s)
- Zhi Zou
- National Key Laboratory for Tropical Crop Breeding/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Institute of Tropical Biosciences and Biotechnology/Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, P. R. China.
| | - Yujiao Zheng
- National Key Laboratory for Tropical Crop Breeding/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Institute of Tropical Biosciences and Biotechnology/Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, P. R. China
| | - Lili Chang
- National Key Laboratory for Tropical Crop Breeding/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Institute of Tropical Biosciences and Biotechnology/Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, P. R. China
| | - Liangping Zou
- National Key Laboratory for Tropical Crop Breeding/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Institute of Tropical Biosciences and Biotechnology/Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, P. R. China
| | - Li Zhang
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Science, South-Central Minzu University, Wuhan, Hubei, 430074, P. R. China
| | - Yi Min
- Hainan University, Haikou, Hainan, 570228, P. R. China.
| | - Yongguo Zhao
- National Key Laboratory for Tropical Crop Breeding/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Institute of Tropical Biosciences and Biotechnology/Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, P. R. China.
- College of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, P. R. China.
| |
Collapse
|
2
|
Zou Z, Zheng Y, Xie Z. Analysis of Carica papaya Informs Lineage-Specific Evolution of the Aquaporin (AQP) Family in Brassicales. PLANTS (BASEL, SWITZERLAND) 2023; 12:3847. [PMID: 38005748 PMCID: PMC10674200 DOI: 10.3390/plants12223847] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/15/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023]
Abstract
Aquaporins (AQPs), a type of intrinsic membrane proteins that transport water and small solutes across biological membranes, play crucial roles in plant growth and development. This study presents a first genome-wide identification and comparative analysis of the AQP gene family in papaya (Carica papaya L.), an economically and nutritionally important fruit tree of tropical and subtropical regions. A total of 29 CpAQP genes were identified, which represent five subfamilies, i.e., nine plasma intrinsic membrane proteins (PIPs), eight tonoplast intrinsic proteins (TIPs), seven NOD26-like intrinsic proteins (NIPs), two X intrinsic proteins (XIPs), and three small basic intrinsic proteins (SIPs). Although the family is smaller than the 35 members reported in Arabidopsis, it is highly diverse, and the presence of CpXIP genes as well as orthologs in Moringa oleifera and Bretschneidera sinensis implies that the complete loss of the XIP subfamily in Arabidopsis is lineage-specific, sometime after its split with papaya but before Brassicaceae-Cleomaceae divergence. Reciprocal best hit-based sequence comparison of 530 AQPs and synteny analyses revealed that CpAQP genes belong to 29 out of 61 identified orthogroups, and lineage-specific evolution was frequently observed in Brassicales. Significantly, the well-characterized NIP3 group was completely lost; lineage-specific loss of the NIP8 group in Brassicaceae occurred sometime before the divergence with Cleomaceae, and lineage-specific loss of NIP2 and SIP3 groups in Brassicaceae occurred sometime after the split with Cleomaceae. In contrast to a predominant role of recent whole-genome duplications (WGDs) on the family expansion in B. sinensis, Tarenaya hassleriana, and Brassicaceae plants, no recent AQP repeats were identified in papaya, and ancient WGD repeats are mainly confined to the PIP subfamily. Subfamily even group-specific evolution was uncovered via comparing exon-intron structures, conserved motifs, the aromatic/arginine selectivity filter, and gene expression profiles. Moreover, down-regulation during fruit ripening and expression divergence of duplicated CpAQP genes were frequently observed in papaya. These findings will not only improve our knowledge on lineage-specific family evolution in Brassicales, but also provide valuable information for further studies of AQP genes in papaya and species beyond.
Collapse
Affiliation(s)
- Zhi Zou
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Institute of Tropical Biosciences and Biotechnology/Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Y.Z.); (Z.X.)
| | | | | |
Collapse
|
3
|
Guo Z, Ma D, Li J, Wei M, Zhang L, Zhou L, Zhou X, He S, Wang L, Shen Y, Li QQ, Zheng HL. Genome-wide identification and characterization of aquaporins in mangrove plant Kandelia obovata and its role in response to the intertidal environment. PLANT, CELL & ENVIRONMENT 2022; 45:1698-1718. [PMID: 35141923 DOI: 10.1111/pce.14286] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 01/30/2022] [Indexed: 05/26/2023]
Abstract
Aquaporins (AQPs) play important roles in plant growth, development and tolerance to environmental stresses. To understand the role of AQPs in the mangrove plant Kandelia obovata, which has the ability to acquire water from seawater, we identified 34 AQPs in the K. obovata genome and analysed their structural features. Phylogenetic analysis revealed that KoAQPs are homologous to AQPs of Populus and Arabidopsis, which are evolutionarily conserved. The key amino acid residues were used to assess water-transport ability. Analysis of cis-acting elements in the promoters indicated that KoAQPs may be stress- and hormone-responsive. Subcellular localization of KoAQPs in yeast showed most KoAQPs function in the membrane system. That transgenic yeast with increased cell volume showed that some KoAQPs have significant water-transport activity, and the substrate sensitivity assay indicates that some KoAQPs can transport H2 O2 . The transcriptome data were used to analyze the expression patterns of KoAQPs in different tissues and developing fruits of K. obovata. In addition, real-time quantitative PCR analyses combined transcriptome data showed that KoAQPs have complex responses to environmental factors, including salinity, flooding and cold. Collectively, the transport of water and solutes by KoAQPs contributed to the adaptation of K. obovata to the coastal intertidal environment.
Collapse
Affiliation(s)
- Zejun Guo
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Dongna Ma
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Jing Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Mingyue Wei
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Ludan Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Lichun Zhou
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Xiaoxuan Zhou
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Shanshan He
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Lin Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Yingjia Shen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Qingshun Quinn Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, California, USA
| | - Hai-Lei Zheng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| |
Collapse
|
4
|
Li S, Wang L, Zhang Y, Zhu G, Zhu X, Xia Y, Li J, Gao X, Wang S, Zhang J, Wuyun TN, Mo W. Genome-Wide Identification and Function of Aquaporin Genes During Dormancy and Sprouting Periods of Kernel-Using Apricot ( Prunus armeniaca L.). FRONTIERS IN PLANT SCIENCE 2021; 12:690040. [PMID: 34671366 PMCID: PMC8520955 DOI: 10.3389/fpls.2021.690040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
Aquaporins (AQPs) are essential channel proteins that play a major role in plant growth and development, regulate plant water homeostasis, and transport uncharged solutes across biological membranes. In this study, 33 AQP genes were systematically identified from the kernel-using apricot (Prunus armeniaca L.) genome and divided into five subfamilies based on phylogenetic analyses. A total of 14 collinear blocks containing AQP genes between P. armeniaca and Arabidopsis thaliana were identified by synteny analysis, and 30 collinear blocks were identified between P. armeniaca and P. persica. Gene structure and conserved functional motif analyses indicated that the PaAQPs exhibit a conserved exon-intron pattern and that conserved motifs are present within members of each subfamily. Physiological mechanism prediction based on the aromatic/arginine selectivity filter, Froger's positions, and three-dimensional (3D) protein model construction revealed marked differences in substrate specificity between the members of the five subfamilies of PaAQPs. Promoter analysis of the PaAQP genes for conserved regulatory elements suggested a greater abundance of cis-elements involved in light, hormone, and stress responses, which may reflect the differences in expression patterns of PaAQPs and their various functions associated with plant development and abiotic stress responses. Gene expression patterns of PaAQPs showed that PaPIP1-3, PaPIP2-1, and PaTIP1-1 were highly expressed in flower buds during the dormancy and sprouting stages of P. armeniaca. A PaAQP coexpression network showed that PaAQPs were coexpressed with 14 cold resistance genes and with 16 cold stress-associated genes. The expression pattern of 70% of the PaAQPs coexpressed with cold stress resistance genes was consistent with the four periods [Physiological dormancy (PD), ecological dormancy (ED), sprouting period (SP), and germination stage (GS)] of flower buds of P. armeniaca. Detection of the transient expression of GFP-tagged PaPIP1-1, PaPIP2-3, PaSIP1-3, PaXIP1-2, PaNIP6-1, and PaTIP1-1 revealed that the fusion proteins localized to the plasma membrane. Predictions of an A. thaliana ortholog-based protein-protein interaction network indicated that PaAQP proteins had complex relationships with the cold tolerance pathway, PaNIP6-1 could interact with WRKY6, PaTIP1-1 could interact with TSPO, and PaPIP2-1 could interact with ATHATPLC1G. Interestingly, overexpression of PaPIP1-3 and PaTIP1-1 increased the cold tolerance of and protein accumulation in yeast. Compared with wild-type plants, PaPIP1-3- and PaTIP1-1-overexpressing (OE) Arabidopsis plants exhibited greater tolerance to cold stress, as evidenced by better growth and greater antioxidative enzyme activities. Overall, our study provides insights into the interaction networks, expression patterns, and functional analysis of PaAQP genes in P. armeniaca L. and contributes to the further functional characterization of PaAQPs.
Collapse
Affiliation(s)
- Shaofeng Li
- State Key Laboratory of Tree Genetics and Breeding, Experimental Center of Forestry in North China, National Permanent Scientific Research Base for Warm Temperate Zone Forestry of Jiulong Mountain in Beijing, Chinese Academy of Forestry, Beijing, China
| | - Lin Wang
- State Key Laboratory of Tree Genetics and Breeding, Non-timber Forestry Research and Development Center, Chinese Academy of Forestry, Zhengzhou, China
| | - Yaoxiang Zhang
- State Key Laboratory of Tree Genetics and Breeding, Experimental Center of Forestry in North China, National Permanent Scientific Research Base for Warm Temperate Zone Forestry of Jiulong Mountain in Beijing, Chinese Academy of Forestry, Beijing, China
| | - Gaopu Zhu
- State Key Laboratory of Tree Genetics and Breeding, Non-timber Forestry Research and Development Center, Chinese Academy of Forestry, Zhengzhou, China
| | - Xuchun Zhu
- State Key Laboratory of Tree Genetics and Breeding, Non-timber Forestry Research and Development Center, Chinese Academy of Forestry, Zhengzhou, China
| | - Yongxiu Xia
- State Key Laboratory of Tree Genetics and Breeding, Experimental Center of Forestry in North China, National Permanent Scientific Research Base for Warm Temperate Zone Forestry of Jiulong Mountain in Beijing, Chinese Academy of Forestry, Beijing, China
| | - Jianbo Li
- State Key Laboratory of Tree Genetics and Breeding, Experimental Center of Forestry in North China, National Permanent Scientific Research Base for Warm Temperate Zone Forestry of Jiulong Mountain in Beijing, Chinese Academy of Forestry, Beijing, China
| | - Xu Gao
- State Key Laboratory of Tree Genetics and Breeding, Experimental Center of Forestry in North China, National Permanent Scientific Research Base for Warm Temperate Zone Forestry of Jiulong Mountain in Beijing, Chinese Academy of Forestry, Beijing, China
| | - Shaoli Wang
- State Key Laboratory of Tree Genetics and Breeding, Experimental Center of Forestry in North China, National Permanent Scientific Research Base for Warm Temperate Zone Forestry of Jiulong Mountain in Beijing, Chinese Academy of Forestry, Beijing, China
| | - Jianhui Zhang
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, United States
| | - Ta-na Wuyun
- State Key Laboratory of Tree Genetics and Breeding, Non-timber Forestry Research and Development Center, Chinese Academy of Forestry, Zhengzhou, China
| | - Wenjuan Mo
- State Key Laboratory of Tree Genetics and Breeding, Experimental Center of Forestry in North China, National Permanent Scientific Research Base for Warm Temperate Zone Forestry of Jiulong Mountain in Beijing, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
5
|
Ye X, Gao Y, Chen C, Xie F, Hua Q, Zhang Z, Zhang R, Zhao J, Hu G, Qin Y. Genome-Wide Identification of Aquaporin Gene Family in Pitaya Reveals an HuNIP6;1 Involved in Flowering Process. Int J Mol Sci 2021; 22:7689. [PMID: 34299311 PMCID: PMC8306030 DOI: 10.3390/ijms22147689] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/11/2021] [Accepted: 07/14/2021] [Indexed: 11/16/2022] Open
Abstract
Aquaporins (AQPs) are essential membrane proteins involved in seed maturation and germination, stomata movement, photosynthesis, and regulation of plant flowering processes. Pitaya flowers are open at night and wither at daybreak, which shows an obvious circadian rhythm. In this study, a comprehensive genome-wide analysis of AQPs in Hylocereus undantus was conducted to screen key genes associated with flowering processes. A total of 33 HuAQP genes were identified from the H. undantus genome. The 33 HuAQPs were grouped into four subfamilies: 10 PIPs, 13 TIPs, 8 NIPs, and 2 SIPs, which were distributed on 9 out of 11 pitaya chromosomes (Chr) (except for Chr7 and Chr10). Results from expression profiles showed that HuNIP6;1 may be involved in pitaya's floral opening. HuNIP6;1 was localized exclusively in the cell membrane. Overexpression of HuNIP6;1 in Arabidopsis thaliana significantly promoted early flowering through regulating negative flowering regulators of MJM30, COL9, and PRR5, suggesting that HuNIP6;1 plays key roles in regulating flowering time. The present study provides the first genome-wide analysis of the AQP gene family in pitaya and valuable information for utilization of HuAQPs.
Collapse
Affiliation(s)
- Xiaoying Ye
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (X.Y.); (C.C.); (F.X.); (Q.H.); (Z.Z.); (R.Z.); (J.Z.); (G.H.)
- Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Yongshun Gao
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China;
| | - Canbin Chen
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (X.Y.); (C.C.); (F.X.); (Q.H.); (Z.Z.); (R.Z.); (J.Z.); (G.H.)
| | - Fangfang Xie
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (X.Y.); (C.C.); (F.X.); (Q.H.); (Z.Z.); (R.Z.); (J.Z.); (G.H.)
| | - Qingzhu Hua
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (X.Y.); (C.C.); (F.X.); (Q.H.); (Z.Z.); (R.Z.); (J.Z.); (G.H.)
| | - Zhike Zhang
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (X.Y.); (C.C.); (F.X.); (Q.H.); (Z.Z.); (R.Z.); (J.Z.); (G.H.)
| | - Rong Zhang
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (X.Y.); (C.C.); (F.X.); (Q.H.); (Z.Z.); (R.Z.); (J.Z.); (G.H.)
| | - Jietang Zhao
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (X.Y.); (C.C.); (F.X.); (Q.H.); (Z.Z.); (R.Z.); (J.Z.); (G.H.)
| | - Guibing Hu
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (X.Y.); (C.C.); (F.X.); (Q.H.); (Z.Z.); (R.Z.); (J.Z.); (G.H.)
| | - Yonghua Qin
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (X.Y.); (C.C.); (F.X.); (Q.H.); (Z.Z.); (R.Z.); (J.Z.); (G.H.)
| |
Collapse
|
6
|
Venisse JS, Õunapuu-Pikas E, Dupont M, Gousset-Dupont A, Saadaoui M, Faize M, Chen S, Chen S, Petel G, Fumanal B, Roeckel-Drevet P, Sellin A, Label P. Genome-Wide Identification, Structure Characterization, and Expression Pattern Profiling of the Aquaporin Gene Family in Betula pendula. Int J Mol Sci 2021; 22:7269. [PMID: 34298887 PMCID: PMC8304918 DOI: 10.3390/ijms22147269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 01/12/2023] Open
Abstract
Aquaporin water channels (AQPs) constitute a large family of transmembrane proteins present throughout all kingdoms of life. They play key roles in the flux of water and many solutes across the membranes. The AQP diversity, protein features, and biological functions of silver birch are still unknown. A genome analysis of Betula pendula identified 33 putative genes encoding full-length AQP sequences (BpeAQPs). They are grouped into five subfamilies, representing ten plasma membrane intrinsic proteins (PIPs), eight tonoplast intrinsic proteins (TIPs), eight NOD26-like intrinsic proteins (NIPs), four X intrinsic proteins (XIPs), and three small basic intrinsic proteins (SIPs). The BpeAQP gene structure is conserved within each subfamily, with exon numbers ranging from one to five. The predictions of the aromatic/arginine selectivity filter (ar/R), Froger's positions, specificity-determining positions, and 2D and 3D biochemical properties indicate noticeable transport specificities to various non-aqueous substrates between members and/or subfamilies. Nevertheless, overall, the BpePIPs display mostly hydrophilic ar/R selective filter and lining-pore residues, whereas the BpeTIP, BpeNIP, BpeSIP, and BpeXIP subfamilies mostly contain hydrophobic permeation signatures. Transcriptional expression analyses indicate that 23 BpeAQP genes are transcribed, including five organ-related expressions. Surprisingly, no significant transcriptional expression is monitored in leaves in response to cold stress (6 °C), although interesting trends can be distinguished and will be discussed, notably in relation to the plasticity of this pioneer species, B. pendula. The current study presents the first detailed genome-wide analysis of the AQP gene family in a Betulaceae species, and our results lay a foundation for a better understanding of the specific functions of the BpeAQP genes in the responses of the silver birch trees to cold stress.
Collapse
Affiliation(s)
- Jean-Stéphane Venisse
- Université Clermont Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France; (M.D.); (A.G.-D.); (M.S.); (G.P.); (B.F.); (P.R.-D.)
| | - Eele Õunapuu-Pikas
- Institute of Ecology and Earth Sciences, University of Tartu, 51005 Tartu, Estonia; (E.Õ.-P.); (A.S.)
| | - Maxime Dupont
- Université Clermont Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France; (M.D.); (A.G.-D.); (M.S.); (G.P.); (B.F.); (P.R.-D.)
| | - Aurélie Gousset-Dupont
- Université Clermont Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France; (M.D.); (A.G.-D.); (M.S.); (G.P.); (B.F.); (P.R.-D.)
| | - Mouadh Saadaoui
- Université Clermont Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France; (M.D.); (A.G.-D.); (M.S.); (G.P.); (B.F.); (P.R.-D.)
- National Institute of Agronomy of Tunisia (INAT), Crop Improvement Laboratory, INRAT, Tunis CP 1004, Tunisia
| | - Mohamed Faize
- Laboratory of Plant Biotechnology, Ecology and Ecosystem Valorization, Faculty of Sciences, University Chouaib Doukkali, El Jadida 24000, Morocco;
| | - Song Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China; (S.C.); (S.C.)
| | - Su Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China; (S.C.); (S.C.)
| | - Gilles Petel
- Université Clermont Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France; (M.D.); (A.G.-D.); (M.S.); (G.P.); (B.F.); (P.R.-D.)
| | - Boris Fumanal
- Université Clermont Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France; (M.D.); (A.G.-D.); (M.S.); (G.P.); (B.F.); (P.R.-D.)
| | - Patricia Roeckel-Drevet
- Université Clermont Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France; (M.D.); (A.G.-D.); (M.S.); (G.P.); (B.F.); (P.R.-D.)
| | - Arne Sellin
- Institute of Ecology and Earth Sciences, University of Tartu, 51005 Tartu, Estonia; (E.Õ.-P.); (A.S.)
| | - Philippe Label
- Université Clermont Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France; (M.D.); (A.G.-D.); (M.S.); (G.P.); (B.F.); (P.R.-D.)
| |
Collapse
|
7
|
Faize M, Fumanal B, Luque F, Ramírez-Tejero JA, Zou Z, Qiao X, Faize L, Gousset-Dupont A, Roeckel-Drevet P, Label P, Venisse JS. Genome Wild Analysis and Molecular Understanding of the Aquaporin Diversity in Olive Trees ( Olea Europaea L.). Int J Mol Sci 2020; 21:E4183. [PMID: 32545387 PMCID: PMC7312470 DOI: 10.3390/ijms21114183] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 12/15/2022] Open
Abstract
Cellular aquaporin water channels (AQPs) constitute a large family of transmembrane proteins present throughout all kingdoms of life, playing important roles in the uptake of water and many solutes across the membranes. In olive trees, AQP diversity, protein features and their biological functions are still largely unknown. This study focuses on the structure and functional and evolution diversity of AQP subfamilies in two olive trees, the wild species Olea europaea var. sylvestris (OeuAQPs) and the domesticated species Olea europaea cv. Picual (OleurAQPs), and describes their involvement in different physiological processes of early plantlet development and in biotic and abiotic stress tolerance in the domesticated species. A scan of genomes from the wild and domesticated olive species revealed the presence of 52 and 79 genes encoding full-length AQP sequences, respectively. Cross-genera phylogenetic analysis with orthologous clustered OleaAQPs into five established subfamilies: PIP, TIP, NIP, SIP, and XIP. Subsequently, gene structures, protein motifs, substrate specificities and cellular localizations of the full length OleaAQPs were predicted. Functional prediction based on the NPA motif, ar/R selectivity filter, Froger's and specificity-determining positions suggested differences in substrate specificities of Olea AQPs. Expression analysis of the OleurAQP genes indicates that some genes are tissue-specific, whereas few others show differential expressions at different developmental stages and in response to various biotic and abiotic stresses. The current study presents the first detailed genome-wide analysis of the AQP gene family in olive trees and it provides valuable information for further functional analysis to infer the role of AQP in the adaptation of olive trees in diverse environmental conditions in order to help the genetic improvement of domesticated olive trees.
Collapse
Affiliation(s)
- Mohamed Faize
- Laboratory of Plant Biotechnology, Ecology and Ecosystem Valorization, Faculty of Sciences, University Chouaib Doukkali, El Jadida 24000, Morocco
| | - Boris Fumanal
- Université Clermont Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France; (B.F.); (A.G.-D.); (P.R.-D.); (P.L.)
| | - Francisco Luque
- Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, University of Jaén, 23071 Jaén, Spain; (F.L.); (J.A.R.-T.)
| | - Jorge A. Ramírez-Tejero
- Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, University of Jaén, 23071 Jaén, Spain; (F.L.); (J.A.R.-T.)
| | - Zhi Zou
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, Hainan, China; (Z.Z.); (X.Q.)
| | - Xueying Qiao
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, Hainan, China; (Z.Z.); (X.Q.)
| | - Lydia Faize
- Group of Fruit Tree Biotechnology, Department of Plant Breeding, Murcia University, CEBAS CSIC, 30100 Murcia, Spain;
| | - Aurélie Gousset-Dupont
- Université Clermont Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France; (B.F.); (A.G.-D.); (P.R.-D.); (P.L.)
| | - Patricia Roeckel-Drevet
- Université Clermont Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France; (B.F.); (A.G.-D.); (P.R.-D.); (P.L.)
| | - Philippe Label
- Université Clermont Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France; (B.F.); (A.G.-D.); (P.R.-D.); (P.L.)
| | - Jean-Stéphane Venisse
- Université Clermont Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France; (B.F.); (A.G.-D.); (P.R.-D.); (P.L.)
| |
Collapse
|
8
|
Qian W, Yang X, Li J, Luo R, Yan X, Pang Q. Genome-wide characterization and expression analysis of aquaporins in salt cress ( Eutrema salsugineum). PeerJ 2019; 7:e7664. [PMID: 31565576 PMCID: PMC6745184 DOI: 10.7717/peerj.7664] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 08/13/2019] [Indexed: 01/24/2023] Open
Abstract
Aquaporins (AQPs) serve as water channel proteins and belong to major intrinsic proteins (MIPs) family, functioning in rapidly and selectively transporting water and other small solutes across biological membranes. Importantly, AQPs have been shown to play a critical role in abiotic stress response pathways of plants. As a species closely related to Arabidopsis thaliana, Eutrema salsugineum has been proposed as a model for studying salt resistance in plants. Here we surveyed 35 full-length AQP genes in E. salsugineum, which could be grouped into four subfamilies including 12 plasma membrane intrinsic proteins (PIPs), 11 tonoplast intrinsic proteins (TIPs), nine NOD-like intrinsic proteins (NIPs), and three small basic intrinsic proteins (SIPs) by phylogenetic analysis. EsAQPs were comprised of 237-323 amino acids, with a theoretical molecular weight (MW) of 24.31-31.80 kDa and an isoelectric point (pI) value of 4.73-10.49. Functional prediction based on the NPA motif, aromatic/arginine (ar/R) selectivity filter, Froger's position and specificity-determining position suggested quite differences in substrate specificities of EsAQPs. EsAQPs exhibited global expressions in all organs as shown by gene expression profiles and should be play important roles in response to salt, cold and drought stresses. This study provides comprehensive bioinformation on AQPs in E. salsugineum, which would be helpful for gene function analysis for further studies.
Collapse
Affiliation(s)
- Weiguo Qian
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University/Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin, China
| | - Xiaomin Yang
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University/Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin, China
| | - Jiawen Li
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University/Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin, China
| | - Rui Luo
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University/Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin, China
| | - Xiufeng Yan
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University/Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin, China
| | - Qiuying Pang
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University/Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin, China
| |
Collapse
|
9
|
Zhou Y, Tao J, Ahammed GJ, Li J, Yang Y. Genome-wide identification and expression analysis of aquaporin gene family related to abiotic stress in watermelon. Genome 2019; 62:643-656. [PMID: 31418287 DOI: 10.1139/gen-2019-0061] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The plant aquaporins (AQPs) are highly conserved integral membrane proteins that participate in multiple developmental processes and responses to various stresses. In this study, a total of 35 AQP genes were identified in the watermelon genome. The phylogenetic analysis showed that these AQPs can be divided into five types, including 16 plasma membrane intrinsic proteins (PIPs), eight tonoplast intrinsic proteins (TIPs), eight nodulin 26-like intrinsic proteins (NIPs), two small basic intrinsic proteins (SIPs), and one uncategorized X intrinsic protein (XIP). A number of cis-elements related to plant responses to hormones and stresses were detected in the promoter sequences of ClAQP genes. Chromosome distribution analysis revealed that the genes are unevenly distributed on eight chromosomes, with chromosomes 1 and 4 possessing the most genes. Expression analysis at different developmental stages in flesh and rind indicated that most of ClAQPs have tissue-specific expression. Meanwhile, some other AQP genes showed differential expression in response to cold, salt, and ABA treatments, which is consistent with the organization of the stress-responsive cis-elements detected in the promoter regions. Our results lay a foundation for understanding the specific functions of ClAQP genes to help the genetic improvement of watermelon.
Collapse
Affiliation(s)
- Yong Zhou
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China
| | - Junjie Tao
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China.,Department of Horticulture, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Golam Jalal Ahammed
- College of Forestry, Henan University of Science and Technology, Luoyang 471023, China
| | - Jingwen Li
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China.,Department of Horticulture, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Youxin Yang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China.,Department of Horticulture, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
10
|
Zhao Y, Zou Z. Genomics analysis of genes encoding respiratory burst oxidase homologs (RBOHs) in jatropha and the comparison with castor bean. PeerJ 2019; 7:e7263. [PMID: 31338257 PMCID: PMC6626655 DOI: 10.7717/peerj.7263] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/31/2019] [Indexed: 11/20/2022] Open
Abstract
Respiratory burst oxidase homologs (RBOHs), which catalyze the production of superoxide from oxygen and NADPH, play key roles in plant growth and development, hormone signaling, and stress responses. Compared with extensive studies in model plants arabidopsis and rice, little is known about RBOHs in other species. This study presents a genome-wide analysis of Rboh family genes in jatropha (Jatropha curcas) as well as the comparison with castor bean (Ricinus communis), another economically important non-food oilseed crop of the Euphorbiaceae family. The family number of seven members identified from the jatropha genome is equal to that present in castor bean, and further phylogenetic analysis assigned these genes into seven groups named RBOHD, -C, -B, -E, -F, -N, and -H. In contrast to a high number of paralogs present in arabidopsis and rice that experienced several rounds of recent whole-genome duplications, no duplicate was identified in both jatropha and castor bean. Conserved synteny and one-to-one orthologous relationship were observed between jatropha and castor bean Rboh genes. Although exon-intron structures are usually highly conserved between orthologs, loss of certain introns was observed for JcRbohB, JcRbohD, and RcRbohN, supporting their divergence. Global gene expression profiling revealed diverse patterns of JcRbohs over various tissues. Moreover, expression patterns of JcRbohs during flower development as well as various stresses were also investigated. These findings will not only improve our knowledge on species-specific evolution of the Rboh gene family, but also provide valuable information for further functional analysis of Rboh genes in jatropha.
Collapse
Affiliation(s)
- Yongguo Zhao
- Guangdong University of Petrochemical Technology, Maoming, Guangdong, China.,Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture and Rural Affairs, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Zhi Zou
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture and Rural Affairs, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| |
Collapse
|
11
|
Li W, Zhang D, Zhu G, Mi X, Guo W. Combining genome-wide and transcriptome-wide analyses reveal the evolutionary conservation and functional diversity of aquaporins in cotton. BMC Genomics 2019; 20:538. [PMID: 31262248 PMCID: PMC6604486 DOI: 10.1186/s12864-019-5928-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 06/23/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Aquaporins (AQPs) are integral membrane proteins from a larger family of major intrinsic proteins (MIPs) and function in a huge variety of processes such as water transport, plant growth and stress response. The availability of the whole-genome data of different cotton species allows us to study systematic evolution and function of cotton AQPs on a genome-wide level. RESULTS Here, a total of 53, 58, 113 and 111 AQP genes were identified in G. arboreum, G. raimondii, G. hirsutum and G. barbadense, respectively. A comprehensive analysis of cotton AQPs, involved in exon/intron structure, functional domains, phylogenetic relationships and gene duplications, divided these AQPs into five subfamilies (PIP, NIP, SIP, TIP and XIP). Comparative genome analysis among 30 species from algae to angiosperm as well as common tandem duplication events in 24 well-studied plants further revealed the evolutionary conservation of AQP family in the organism kingdom. Combining transcriptome analysis and Quantitative Real-time PCR (qRT-PCR) verification, most AQPs exhibited tissue-specific expression patterns both in G. raimondii and G. hirsutum. Meanwhile, a bias of time to peak expression of several AQPs was also detected after treating G. davidsonii and G. hirsutum with 200 mM NaCl. It is interesting that both PIP1;4 h/i/j and PIP2;2a/e showed the highly conserved tandem structure, but differentially contributed to tissue development and stress response in different cotton species. CONCLUSIONS These results demonstrated that cotton AQPs were structural conservation while experienced the functional differentiation during the process of evolution and domestication. This study will further broaden our insights into the evolution and functional elucidation of AQP gene family in cotton.
Collapse
Affiliation(s)
- Weixi Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Engineering Research Center of Hybrid Cotton Development Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, People's Republic of China
| | - Dayong Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Engineering Research Center of Hybrid Cotton Development Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, People's Republic of China
| | - Guozhong Zhu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Engineering Research Center of Hybrid Cotton Development Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, People's Republic of China
| | - Xinyue Mi
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Engineering Research Center of Hybrid Cotton Development Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, People's Republic of China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Engineering Research Center of Hybrid Cotton Development Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, People's Republic of China.
| |
Collapse
|
12
|
Zou Z, Yang J. Genomics analysis of the light-harvesting chlorophyll a/b-binding (Lhc) superfamily in cassava (Manihot esculenta Crantz). Gene 2019; 702:171-181. [DOI: 10.1016/j.gene.2019.03.071] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/15/2019] [Accepted: 03/30/2019] [Indexed: 12/11/2022]
|
13
|
Zou Z, Yang J. Genome-wide comparison reveals divergence of cassava and rubber aquaporin family genes after the recent whole-genome duplication. BMC Genomics 2019; 20:380. [PMID: 31092186 PMCID: PMC6521647 DOI: 10.1186/s12864-019-5780-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/07/2019] [Indexed: 12/19/2022] Open
Abstract
Background Aquaporins (AQPs) are a class of integral membrane proteins that facilitate the passive transport of water and other small solutes across biological membranes. Despite their importance, little information is available in cassava (Manihot esculenta), a perennial shrub of the Euphorbiaceae family that serves the sixth major staple crop in the world. Results This study presents a genome-wide analysis of the AQP gene family in cassava. The family of 42 members in this species could be divided into five subfamilies based on phylogenetic analysis, i.e., 14 plasma membrane intrinsic proteins (PIPs), 13 tonoplast intrinsic proteins (TIPs), nine NOD26-like intrinsic proteins (NIPs), four X intrinsic proteins (XIPs), and two small basic intrinsic proteins (SIPs). Best-reciprocal-hit-based sequence comparison and synteny analysis revealed 34 orthologous groups (OGs) present in the Euphorbiaceae ancestor, and nearly one-to-one or two-to-one orthologous relationships were observed between cassava with rubber/physic nut, reflecting the occurrence of one so-called ρ recent whole-genome duplication (WGD) in the last common ancestor of cassava and rubber. In contrast to a predominant role of the ρ WGD on family expansion in rubber, cassava AQP duplicates were derived from the WGD as well as local duplication. Species-specific gene loss was also observed in cassava, which includes the entire NIP4 group and/or six OGs. Comparison of conserved motifs and gene expression profiles revealed divergence of paralogs in cassava as observed in rubber. Conclusions Our findings will not only improve our knowledge on family evolution in Euphorbiaceae, but also provide valuable information for further functional analysis of AQP genes in cassava and rubber. Electronic supplementary material The online version of this article (10.1186/s12864-019-5780-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhi Zou
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture and Rural Affairs, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, People's Republic of China.
| | - Jianghua Yang
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, People's Republic of China
| |
Collapse
|
14
|
Zou Z, Zhang X. Genome-wide identification and comparative evolutionary analysis of the Dof transcription factor family in physic nut and castor bean. PeerJ 2019; 7:e6354. [PMID: 30740272 PMCID: PMC6368027 DOI: 10.7717/peerj.6354] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 12/27/2018] [Indexed: 11/20/2022] Open
Abstract
DNA-binding with one finger (Dof) proteins comprise a plant-specific transcription factor family involved in plant growth, development and stress responses. This study presents a genome-wide comparison of Dof family genes in physic nut (Jatropha curcas) and castor bean (Ricinus communis), two Euphorbiaceae plants that have not experienced any recent whole-genome duplication. A total of 25 or 24 Dof genes were identified from physic nut and castor genomes, respectively, where JcDof genes are distributed across nine out of 11 chromosomes. Phylogenetic analysis assigned these genes into nine groups representing four subfamilies, and 24 orthologous groups were also proposed based on comparison of physic nut, castor, Arabidopsis and rice Dofs. Conserved microsynteny was observed between physic nut and castor Dof-coding scaffolds, which allowed anchoring of 23 RcDof genes to nine physic nut chromosomes. In contrast to how no recent duplicate was present in castor, two tandem duplications and one gene loss were found in the Dof gene family of physic nut. Global transcriptome profiling revealed diverse patterns of Jc/RcDof genes over various tissues, and key Dof genes involved in flower development and stress response were also identified in physic nut. These findings provide valuable information for further studies of Dof genes in physic nut and castor.
Collapse
Affiliation(s)
- Zhi Zou
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture and Rural Affairs, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, P. R. China.,Danzhou Investigation & Experiment Station of Tropical Crops, Ministry of Agriculture and Rural Affairs, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, P. R. China
| | - Xicai Zhang
- Danzhou Investigation & Experiment Station of Tropical Crops, Ministry of Agriculture and Rural Affairs, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, P. R. China
| |
Collapse
|
15
|
Routray P, Li T, Yamasaki A, Yoshinari A, Takano J, Choi WG, Sams CE, Roberts DM. Nodulin Intrinsic Protein 7;1 Is a Tapetal Boric Acid Channel Involved in Pollen Cell Wall Formation. PLANT PHYSIOLOGY 2018; 178:1269-1283. [PMID: 30266747 PMCID: PMC6236609 DOI: 10.1104/pp.18.00604] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 09/03/2018] [Indexed: 05/23/2023]
Abstract
Boron is an essential plant micronutrient that plays a structural role in the rhamnogalacturonan II component of the pectic cell wall. To prevent boron deficiency under limiting conditions, its uptake, distribution, and homeostasis are mediated by boric acid transporters and channel proteins. Among the membrane channels that facilitate boric acid uptake are the type II nodulin intrinsic protein (NIP) subfamily of aquaporin-like proteins. Arabidopsis (Arabidopsis thaliana) possesses three NIP II genes (NIP5;1, NIP6;1, and NIP7;1) that show distinct tissue expression profiles (predominantly expressed in roots, stem nodes, and developing flowers, respectively). Orthologs of each are represented in all dicots. Here, we show that purified and reconstituted NIP7;1 is a boric acid facilitator. By using native promoter-reporter fusions, we show that NIP7;1 is expressed predominantly in anthers of young flowers in a narrow developmental window, floral stages 9 and 10, with protein accumulation solely within tapetum cells, where it is localized to the plasma membrane. Under limiting boric acid conditions, loss-of-function T-DNA mutants (nip7;1-1 and nip7;1-2) show reduced fertility, including shorter siliques and an increase in aborted seeds, compared with the wild type. Under these conditions, nip7;1 mutant pollen grains show morphological defects, increased aggregation, defective exine cell wall formation, reduced germination frequency, and decreased viability. During stages 9 and 10, the tapetum is essential for supplying materials to the pollen microspore cell wall. We propose that NIP7;1 serves as a gated boric acid channel in developing anthers that aids in the uptake of this critical micronutrient by tapetal cells.
Collapse
Affiliation(s)
- Pratyush Routray
- Department of Biochemistry and Cellular and Molecular Biology and Program in Genome Science and Technology, University of Tennessee, Knoxville, Tennessee 37996
| | - Tian Li
- Department of Biochemistry and Cellular and Molecular Biology and Program in Genome Science and Technology, University of Tennessee, Knoxville, Tennessee 37996
| | - Arisa Yamasaki
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai-shi, Osaka 599-8531, Japan
| | - Akira Yoshinari
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai-shi, Osaka 599-8531, Japan
| | - Junpei Takano
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai-shi, Osaka 599-8531, Japan
| | - Won Gyu Choi
- Department of Biochemistry and Cellular and Molecular Biology and Program in Genome Science and Technology, University of Tennessee, Knoxville, Tennessee 37996
| | - Carl E Sams
- Department of Plant Sciences, University of Tennessee Institute of Agriculture, Knoxville, Tennessee 37996
| | - Daniel M Roberts
- Department of Biochemistry and Cellular and Molecular Biology and Program in Genome Science and Technology, University of Tennessee, Knoxville, Tennessee 37996
| |
Collapse
|
16
|
Huang F, Peng M, Chen X, Li G, Di J, Zhao Y, Yang L, Chang R, Chen Y. cDNA-AFLP analysis of transcript derived fragments during seed development in castor bean ( Ricinus communis L.). BIOTECHNOL BIOTEC EQ 2018. [DOI: 10.1080/13102818.2018.1506710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Affiliation(s)
- Fenglan Huang
- Department of Biotechnology, College of Life Science, Inner Mongolia University for the Nationalities, Tongliao, PR China
- Inner Mongolia Industrial Engineering Research Center of Universities for Castor, Tongliao, PR China
- Inner Mongolia Key Laboratory of Castor Breeding, Tongliao, PR China
- Inner Mongolia Collaborate Innovation Cultivate Center for Castor, Tongliao, PR China
- Department of Genetics, College of Life Science, Northeast Forestry University, Harbin, PR China
| | - Mu Peng
- Department of Biotechnology, College of Life Science, Inner Mongolia University for the Nationalities, Tongliao, PR China
- Department of Genetics, College of Life Science, Northeast Forestry University, Harbin, PR China
| | - Xiaofeng Chen
- Department of Biotechnology, College of Life Science, Inner Mongolia University for the Nationalities, Tongliao, PR China
- Inner Mongolia Industrial Engineering Research Center of Universities for Castor, Tongliao, PR China
| | - Guorui Li
- Department of Biotechnology, College of Life Science, Inner Mongolia University for the Nationalities, Tongliao, PR China
- Inner Mongolia Industrial Engineering Research Center of Universities for Castor, Tongliao, PR China
- Inner Mongolia Key Laboratory of Castor Breeding, Tongliao, PR China
- Inner Mongolia Collaborate Innovation Cultivate Center for Castor, Tongliao, PR China
| | - Jianjun Di
- Department of Biotechnology, College of Life Science, Inner Mongolia University for the Nationalities, Tongliao, PR China
- Inner Mongolia Industrial Engineering Research Center of Universities for Castor, Tongliao, PR China
- Inner Mongolia Key Laboratory of Castor Breeding, Tongliao, PR China
- Inner Mongolia Collaborate Innovation Cultivate Center for Castor, Tongliao, PR China
| | - Yong Zhao
- Department of Biotechnology, College of Life Science, Inner Mongolia University for the Nationalities, Tongliao, PR China
| | - Lifeng Yang
- Department of Biotechnology, College of Life Science, Inner Mongolia University for the Nationalities, Tongliao, PR China
| | - Ruihui Chang
- Department of Biotechnology, College of Life Science, Inner Mongolia University for the Nationalities, Tongliao, PR China
| | - Yongshen Chen
- Department of Biotechnology, College of Life Science, Inner Mongolia University for the Nationalities, Tongliao, PR China
- Inner Mongolia Industrial Engineering Research Center of Universities for Castor, Tongliao, PR China
- Inner Mongolia Key Laboratory of Castor Breeding, Tongliao, PR China
- Inner Mongolia Collaborate Innovation Cultivate Center for Castor, Tongliao, PR China
- Department of Genetics, College of Life Science, Northeast Forestry University, Harbin, PR China
| |
Collapse
|
17
|
Genome-Wide Identification and Characterization of Aquaporins and Their Role in the Flower Opening Processes in Carnation ( Dianthus caryophyllus). Molecules 2018; 23:molecules23081895. [PMID: 30060619 PMCID: PMC6222698 DOI: 10.3390/molecules23081895] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 07/23/2018] [Accepted: 07/25/2018] [Indexed: 02/07/2023] Open
Abstract
Aquaporins (AQPs) are associated with the transport of water and other small solutes across biological membranes. Genome-wide identification and characterization will pave the way for further insights into the AQPs’ roles in the commercial carnation (Dianthus caryophyllus). This study focuses on the analysis of AQPs in carnation (DcaAQPs) involved in flower opening processes. Thirty DcaAQPs were identified and grouped to five subfamilies: nine PIPs, 11 TIPs, six NIPs, three SIPs, and one XIP. Subsequently, gene structure, protein motifs, and co-expression network of DcaAQPs were analyzed and substrate specificity of DcaAQPs was predicted. qRT-PCR, RNA-seq, and semi-qRTRCR were used for DcaAQP genes expression analysis. The analysis results indicated that DcaAQPs were relatively conserved in gene structure and protein motifs, that DcaAQPs had significant differences in substrate specificity among different subfamilies, and that DcaAQP genes’ expressions were significantly different in roots, stems, leaves and flowers. Five DcaAQP genes (DcaPIP1;3, DcaPIP2;2, DcaPIP2;5, DcaTIP1;4, and DcaTIP2;2) might play important roles in flower opening process. However, the roles they play are different in flower organs, namely, sepals, petals, stamens, and pistils. Overall, this study provides a theoretical basis for further functional analysis of DcaAQPs.
Collapse
|
18
|
Kong W, Yang S, Wang Y, Bendahmane M, Fu X. Genome-wide identification and characterization of aquaporin gene family in Beta vulgaris. PeerJ 2017; 5:e3747. [PMID: 28948097 PMCID: PMC5609522 DOI: 10.7717/peerj.3747] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 08/08/2017] [Indexed: 01/09/2023] Open
Abstract
Aquaporins (AQPs) are essential channel proteins that execute multi-functions throughout plant growth and development, including water transport, uncharged solutes uptake, stress response, and so on. Here, we report the first genome-wide identification and characterization AQP (BvAQP) genes in sugar beet (Beta vulgaris), an important crop widely cultivated for feed, for sugar production and for bioethanol production. Twenty-eight sugar beet AQPs (BvAQPs) were identified and assigned into five subfamilies based on phylogenetic analyses: seven of plasma membrane (PIPs), eight of tonoplast (TIPs), nine of NOD26-like (NIPs), three of small basic (SIPs), and one of x-intrinsic proteins (XIPs). BvAQP genes unevenly mapped on all chromosomes, except on chromosome 4. Gene structure and motifs analyses revealed that BvAQP have conserved exon-intron organization and that they exhibit conserved motifs within each subfamily. Prediction of BvAQPs functions, based on key protein domains conservation, showed a remarkable difference in substrate specificity among the five subfamilies. Analyses of BvAQPs expression, by mean of RNA-seq, in different plant organs and in response to various abiotic stresses revealed that they were ubiquitously expressed and that their expression was induced by heat and salt stresses. These results provide a reference base to address further the function of sugar beet aquaporins and to explore future applications for plants growth and development improvements as well as in response to environmental stresses.
Collapse
Affiliation(s)
- Weilong Kong
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, Hubei, China
| | - Shaozong Yang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, Hubei, China
| | - Yulu Wang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, Hubei, China
| | - Mohammed Bendahmane
- INRA-CNRS-Lyon1-ENS, Laboratoire Reproduction et Developpement des Plantes, Ecole Normale Supérieure Lyon, France
| | - Xiaopeng Fu
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, Hubei, China
| |
Collapse
|
19
|
Groszmann M, Osborn HL, Evans JR. Carbon dioxide and water transport through plant aquaporins. PLANT, CELL & ENVIRONMENT 2017; 40:938-961. [PMID: 27739588 DOI: 10.1111/pce.12844] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 09/01/2016] [Accepted: 09/22/2016] [Indexed: 05/25/2023]
Abstract
Aquaporins are channel proteins that function to increase the permeability of biological membranes. In plants, aquaporins are encoded by multigene families that have undergone substantial diversification in land plants. The plasma membrane intrinsic proteins (PIPs) subfamily of aquaporins is of particular interest given their potential to improve plant water relations and photosynthesis. Flowering plants have between 7 and 28 PIP genes. Their expression varies with tissue and cell type, through development and in response to a variety of factors, contributing to the dynamic and tissue specific control of permeability. There are a growing number of PIPs shown to act as water channels, but those altering membrane permeability to CO2 are more limited. The structural basis for selective substrate specificities has not yet been resolved, although a few key amino acid positions have been identified. Several regions important for dimerization, gating and trafficking are also known. PIP aquaporins assemble as tetramers and their properties depend on the monomeric composition. PIPs control water flux into and out of veins and stomatal guard cells and also increase membrane permeability to CO2 in mesophyll and stomatal guard cells. The latter increases the effectiveness of Rubisco and can potentially influence transpiration efficiency.
Collapse
Affiliation(s)
- Michael Groszmann
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology, The Australian National University, Acton, ACT, 2601, Australia
| | - Hannah L Osborn
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology, The Australian National University, Acton, ACT, 2601, Australia
| | - John R Evans
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology, The Australian National University, Acton, ACT, 2601, Australia
| |
Collapse
|
20
|
Genome-wide identification, characterization, and expression profile of aquaporin gene family in flax (Linum usitatissimum). Sci Rep 2017; 7:46137. [PMID: 28447607 PMCID: PMC5406838 DOI: 10.1038/srep46137] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 03/13/2017] [Indexed: 01/25/2023] Open
Abstract
Membrane intrinsic proteins (MIPs) form transmembrane channels and facilitate transport of myriad substrates across the cell membrane in many organisms. Majority of plant MIPs have water transporting ability and are commonly referred as aquaporins (AQPs). In the present study, we identified aquaporin coding genes in flax by genome-wide analysis, their structure, function and expression pattern by pan-genome exploration. Cross-genera phylogenetic analysis with known aquaporins from rice, arabidopsis, and poplar showed five subgroups of flax aquaporins representing 16 plasma membrane intrinsic proteins (PIPs), 17 tonoplast intrinsic proteins (TIPs), 13 NOD26-like intrinsic proteins (NIPs), 2 small basic intrinsic proteins (SIPs), and 3 uncharacterized intrinsic proteins (XIPs). Amongst aquaporins, PIPs contained hydrophilic aromatic arginine (ar/R) selective filter but TIP, NIP, SIP and XIP subfamilies mostly contained hydrophobic ar/R selective filter. Analysis of RNA-seq and microarray data revealed high expression of PIPs in multiple tissues, low expression of NIPs, and seed specific expression of TIP3 in flax. Exploration of aquaporin homologs in three closely related Linum species bienne, grandiflorum and leonii revealed presence of 49, 39 and 19 AQPs, respectively. The genome-wide identification of aquaporins, first in flax, provides insight to elucidate their physiological and developmental roles in flax.
Collapse
|
21
|
Shivaraj SM, Deshmukh R, Bhat JA, Sonah H, Bélanger RR. Understanding Aquaporin Transport System in Eelgrass ( Zostera marina L.), an Aquatic Plant Species. FRONTIERS IN PLANT SCIENCE 2017; 8:1334. [PMID: 28824671 PMCID: PMC5541012 DOI: 10.3389/fpls.2017.01334] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 07/17/2017] [Indexed: 05/14/2023]
Abstract
Aquaporins (AQPs) are a class of integral membrane proteins involved in the transport of water and many other small solutes. The AQPs have been extensively studied in many land species obtaining water and nutrients from the soil, but their distribution and evolution have never been investigated in aquatic plant species, where solute assimilation is mostly through the leaves. In this regard, identification of AQPs in the genome of Zostera marina L. (eelgrass), an aquatic ecological model species could reveal important differences underlying solute uptake between land and aquatic species. In the present study, genome-wide analysis led to the identification of 25 AQPs belonging to four subfamilies, plasma membrane intrinsic proteins (PIPs), tonoplast intrinsic proteins (TIPs), nodulin 26-like intrinsic proteins (NIPs), small basic intrinsic proteins (SIPs) in eelgrass. As in other monocots, the XIP subfamily was found to be absent from the eelgrass genome. Further classification of subfamilies revealed a unique distribution pattern, namely the loss of the NIP2 (NIP-III) subgroup, which is known for silicon (Si) transport activity and ubiquitously present in monocot species. This finding has great importance, since the eelgrass population stability in natural niche is reported to be associated with Si concentrations in water. In addition, analysis of available RNA-seq data showed evidence of expression in 24 out of the 25 AQPs across four different tissues such as root, vegetative tissue, male flower and female flower. In contrast to land plants, higher expression of PIPs was observed in shoot compared to root tissues. This is likely explained by the unique plant architecture of eelgrass where most of the nutrients and water are absorbed by shoot rather than root tissues. Similarly, higher expression of the TIP1 and TIP5 families was observed specifically in male flowers suggesting a role in pollen maturation. This genome-wide analysis of AQP distribution, evolution and expression dynamics can find relevance in understanding the adaptation of aquatic and land species to their respective environments.
Collapse
Affiliation(s)
- S. M. Shivaraj
- National Research Centre on Plant BiotechnologyNew Delhi, India
| | - Rupesh Deshmukh
- Département de Phytologie–Faculté des Sciences de l’Agriculture et de l’Alimentation, Université Laval, QuébecQC, Canada
| | - Javaid A. Bhat
- Department of Genetics and Plant Breeding, The Indian Agricultural Research InstituteNew Delhi, India
| | - Humira Sonah
- Département de Phytologie–Faculté des Sciences de l’Agriculture et de l’Alimentation, Université Laval, QuébecQC, Canada
| | - Richard R. Bélanger
- Département de Phytologie–Faculté des Sciences de l’Agriculture et de l’Alimentation, Université Laval, QuébecQC, Canada
- *Correspondence: Richard R. Bélanger,
| |
Collapse
|
22
|
|
23
|
Rodrigues MI, Takeda AAS, Bravo JP, Maia IG. The Eucalyptus Tonoplast Intrinsic Protein (TIP) Gene Subfamily: Genomic Organization, Structural Features, and Expression Profiles. FRONTIERS IN PLANT SCIENCE 2016; 7:1810. [PMID: 27965702 PMCID: PMC5127802 DOI: 10.3389/fpls.2016.01810] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 11/16/2016] [Indexed: 06/06/2023]
Abstract
Plant aquaporins are water channels implicated in various physiological processes, including growth, development and adaptation to stress. In this study, the Tonoplast Intrinsic Protein (TIP) gene subfamily of Eucalyptus, an economically important woody species, was investigated and characterized. A genome-wide survey of the Eucalyptus grandis genome revealed the presence of eleven putative TIP genes (referred as EgTIP), which were individually assigned by phylogeny to each of the classical TIP1-5 groups. Homology modeling confirmed the presence of the two highly conserved NPA (Asn-Pro-Ala) motifs in the identified EgTIPs. Residue variations in the corresponding selectivity filters, that might reflect differences in EgTIP substrate specificity, were observed. All EgTIP genes, except EgTIP5.1, were transcribed and the majority of them showed organ/tissue-enriched expression. Inspection of the EgTIP promoters revealed the presence of common cis-regulatory elements implicated in abiotic stress and hormone responses pointing to an involvement of the identified genes in abiotic stress responses. In line with these observations, additional gene expression profiling demonstrated increased expression under polyethylene glycol-imposed osmotic stress. Overall, the results obtained suggest that these novel EgTIPs might be functionally implicated in eucalyptus adaptation to stress.
Collapse
Affiliation(s)
- Marcela I. Rodrigues
- Department of Genetics, Institute of Biosciences of Botucatu, São Paulo State UniversityBotucatu, Brazil
| | - Agnes A. S. Takeda
- Department of Physics and Biophysics, Institute of Biosciences of Botucatu, São Paulo State UniversityBotucatu, Brazil
- Institute of Biotechnology, São Paulo State UniversityBotucatu, Brazil
| | - Juliana P. Bravo
- Department of Genetics, Institute of Biosciences of Botucatu, São Paulo State UniversityBotucatu, Brazil
| | - Ivan G. Maia
- Department of Genetics, Institute of Biosciences of Botucatu, São Paulo State UniversityBotucatu, Brazil
| |
Collapse
|
24
|
Zou Z, Yang L, Gong J, Mo Y, Wang J, Cao J, An F, Xie G. Genome-Wide Identification of Jatropha curcas Aquaporin Genes and the Comparative Analysis Provides Insights into the Gene Family Expansion and Evolution in Hevea brasiliensis. FRONTIERS IN PLANT SCIENCE 2016; 7:395. [PMID: 27066041 PMCID: PMC4814485 DOI: 10.3389/fpls.2016.00395] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/14/2016] [Indexed: 05/18/2023]
Abstract
Aquaporins (AQPs) are channel-forming integral membrane proteins that transport water and other small solutes across biological membranes. Despite the vital role of AQPs, to date, little is known in physic nut (Jatropha curcas L., Euphorbiaceae), an important non-edible oilseed crop with great potential for the production of biodiesel. In this study, 32 AQP genes were identified from the physic nut genome and the family number is relatively small in comparison to 51 in another Euphorbiaceae plant, rubber tree (Hevea brasiliensis Muell. Arg.). Based on the phylogenetic analysis, the JcAQPs were assigned to five subfamilies, i.e., nine plasma membrane intrinsic proteins (PIPs), nine tonoplast intrinsic proteins (TIPs), eight NOD26-like intrinsic proteins (NIPs), two X intrinsic proteins (XIPs), and four small basic intrinsic proteins (SIPs). Like rubber tree and other plant species, functional prediction based on the aromatic/arginine selectivity filter, Froger's positions, and specificity-determining positions showed a remarkable difference in substrate specificity among subfamilies of JcAQPs. Genome-wide comparative analysis revealed the specific expansion of PIP and TIP subfamilies in rubber tree and the specific gene loss of the XIP subfamily in physic nut. Furthermore, by analyzing deep transcriptome sequencing data, the expression evolution especially the expression divergence of duplicated HbAQP genes was also investigated and discussed. Results obtained from this study not only provide valuable information for future functional analysis and utilization of Jc/HbAQP genes, but also provide a useful reference to survey the gene family expansion and evolution in Euphorbiaceae plants and other plant species.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Guishui Xie
- Danzhou Investigation and Experiment Station of Tropical Crops, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural SciencesDanzhou, China
| |
Collapse
|
25
|
Ampah-Korsah H, Anderberg HI, Engfors A, Kirscht A, Norden K, Kjellstrom S, Kjellbom P, Johanson U. The Aquaporin Splice Variant NbXIP1;1α Is Permeable to Boric Acid and Is Phosphorylated in the N-terminal Domain. FRONTIERS IN PLANT SCIENCE 2016; 7:862. [PMID: 27379142 PMCID: PMC4909777 DOI: 10.3389/fpls.2016.00862] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 06/01/2016] [Indexed: 05/22/2023]
Abstract
Aquaporins (AQPs) are membrane channel proteins that transport water and uncharged solutes across different membranes in organisms in all kingdoms of life. In plants, the AQPs can be divided into seven different subfamilies and five of these are present in higher plants. The most recently characterized of these subfamilies is the XIP subfamily, which is found in most dicots but not in monocots. In this article, we present data on two different splice variants (α and β) of NbXIP1;1 from Nicotiana benthamiana. We describe the heterologous expression of NbXIP1;1α and β in the yeast Pichia pastoris, the subcellular localization of the protein in this system and the purification of the NbXIP1;1α protein. Furthermore, we investigated the functionality and the substrate specificity of the protein by stopped-flow spectrometry in P. pastoris spheroplasts and with the protein reconstituted in proteoliposomes. The phosphorylation status of the protein and localization of the phosphorylated amino acids were verified by mass spectrometry. Our results show that NbXIP1;1α is located in the plasma membrane when expressed in P. pastoris, that it is not permeable to water but to boric acid and that the protein is phosphorylated at several amino acids in the N-terminal cytoplasmic domain of the protein. A growth assay showed that the yeast cells expressing the N-terminally His-tagged NbXIP1;1α were more sensitive to boric acid as compared to the cells expressing the C-terminally His-tagged isoform. This might suggest that the N-terminal His-tag functionally mimics the phosphorylation of the N-terminal domain and that the N-terminal domain is involved in gating of the channel.
Collapse
|