1
|
Cerqueira de Araujo A, Noel B, Bretaudeau A, Labadie K, Boudet M, Tadrent N, Istace B, Kritli S, Cruaud C, Olaso R, Deleuze JF, Voordouw MJ, Hervet C, Plantard O, Zamoto-Niikura A, Chertemps T, Maïbèche M, Hilliou F, Le Goff G, Chmelař J, Mazák V, Jmel MA, Kotsyfakis M, Medina JM, Hackenberg M, Šimo L, Koutroumpa FA, Wincker P, Kopáček P, Perner J, Aury JM, Rispe C. Genome sequences of four Ixodes species expands understanding of tick evolution. BMC Biol 2025; 23:17. [PMID: 39838418 PMCID: PMC11752866 DOI: 10.1186/s12915-025-02121-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 01/07/2025] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND Ticks, hematophagous Acari, pose a significant threat by transmitting various pathogens to their vertebrate hosts during feeding. Despite advances in tick genomics, high-quality genomes were lacking until recently, particularly in the genus Ixodes, which includes the main vectors of Lyme disease. RESULTS Here, we present the genome sequences of four tick species, derived from a single female individual, with a particular focus on the European species Ixodes ricinus, achieving a chromosome-level assembly. Additionally, draft assemblies were generated for the three other Ixodes species, I. persulcatus, I. pacificus, and I. hexagonus. The quality of the four genomes and extensive annotation of several important gene families have allowed us to study the evolution of gene repertoires at the level of the genus Ixodes and of the tick group. We have determined gene families that have undergone major amplifications during the evolution of ticks, while an expression atlas obtained for I. ricinus reveals striking patterns of specialization both between and within gene families. Notably, several gene family amplifications are associated with a proliferation of single-exon genes-most strikingly for fatty acid elongases and sulfotransferases. CONCLUSIONS The integration of our data with existing genomes establishes a solid framework for the study of gene evolution, improving our understanding of tick biology. In addition, our work lays the foundations for applied research and innovative control targeting these organisms.
Collapse
Affiliation(s)
| | - Benjamin Noel
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
| | | | - Karine Labadie
- Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
| | - Matéo Boudet
- University of Rennes, INRIA, CNRS, IRISA, Rennes, France
- IGEPP, INRAE, Institut Agro, BIPAA, University of Rennes, Rennes, France
| | - Nachida Tadrent
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
| | - Benjamin Istace
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
| | - Salima Kritli
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
| | - Corinne Cruaud
- Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
| | - Robert Olaso
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Maarten J Voordouw
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | | | | | - Aya Zamoto-Niikura
- Research Center for Biosafety, Laboratory Animal and Pathogen Bank, National Institute of Infectious Diseases, Tokyo, Japan
| | - Thomas Chertemps
- Institut d'Ecologie Et Des Sciences de L'Environnement de Paris, Sorbonne Université, INRAE, CNRS, IRD, UPEC, Paris, France
| | - Martine Maïbèche
- Institut d'Ecologie Et Des Sciences de L'Environnement de Paris, Sorbonne Université, INRAE, CNRS, IRD, UPEC, Paris, France
| | - Frédérique Hilliou
- Université Côte d'Azur, INRAE, CNRS, ISA, 06903, Sophia Antipolis, France
| | - Gaëlle Le Goff
- Université Côte d'Azur, INRAE, CNRS, ISA, 06903, Sophia Antipolis, France
| | - Jindřich Chmelař
- Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 31, 37005, České Budějovice, Czech Republic
| | - Vilém Mazák
- Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 31, 37005, České Budějovice, Czech Republic
| | - Mohamed Amine Jmel
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 1160/31, 37005, České Budějovice, Czech Republic
| | - Michalis Kotsyfakis
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 1160/31, 37005, České Budějovice, Czech Republic
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, N. Plastira 100, 70013, Heraklion, Crete, Greece
| | - José María Medina
- Dpto. de Genética, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva S/N, 18071, Granada, Spain
- Lab. de Bioinformática, Centro de Investigación Biomédica, PTS, Instituto de Biotecnología, Avda. del Conocimiento S/N, 18100, Granada, Spain
| | - Michael Hackenberg
- Dpto. de Genética, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva S/N, 18071, Granada, Spain
- Lab. de Bioinformática, Centro de Investigación Biomédica, PTS, Instituto de Biotecnología, Avda. del Conocimiento S/N, 18100, Granada, Spain
| | - Ladislav Šimo
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 22 Rue Pierre Et Marie Curie, Maisons-Alfort, France
| | - Fotini A Koutroumpa
- INRAE, Université de Tours, UMR1282 Infectiologie Et Santé Publique, 37380, Nouzilly, France
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
| | - Petr Kopáček
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 1160/31, 37005, České Budějovice, Czech Republic
| | - Jan Perner
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 1160/31, 37005, České Budějovice, Czech Republic
| | - Jean-Marc Aury
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
| | | |
Collapse
|
2
|
Campli G, Volovych O, Kim K, Veldsman WP, Drage HB, Sheizaf I, Lynch S, Chipman AD, Daley AC, Robinson-Rechavi M, Waterhouse RM. The moulting arthropod: a complete genetic toolkit review. Biol Rev Camb Philos Soc 2024; 99:2338-2375. [PMID: 39039636 DOI: 10.1111/brv.13123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/24/2024]
Abstract
Exoskeletons are a defining character of all arthropods that provide physical support for their segmented bodies and appendages as well as protection from the environment and predation. This ubiquitous yet evolutionarily variable feature has been instrumental in facilitating the adoption of a variety of lifestyles and the exploitation of ecological niches across all environments. Throughout the radiation that produced the more than one million described modern species, adaptability afforded by segmentation and exoskeletons has led to a diversity that is unrivalled amongst animals. However, because of the limited extensibility of exoskeleton chitin and cuticle components, they must be periodically shed and replaced with new larger ones, notably to accommodate the growing individuals encased within. Therefore, arthropods grow discontinuously by undergoing periodic moulting events, which follow a series of steps from the preparatory pre-moult phase to ecdysis itself and post-moult maturation of new exoskeletons. Each event represents a particularly vulnerable period in an arthropod's life cycle, so processes must be tightly regulated and meticulously executed to ensure successful transitions for normal growth and development. Decades of research in representative arthropods provide a foundation of understanding of the mechanisms involved. Building on this, studies continue to develop and test hypotheses on the presence and function of molecular components, including neuropeptides, hormones, and receptors, as well as the so-called early, late, and fate genes, across arthropod diversity. Here, we review the literature to develop a comprehensive overview of the status of accumulated knowledge of the genetic toolkit governing arthropod moulting. From biosynthesis and regulation of ecdysteroid and sesquiterpenoid hormones, to factors involved in hormonal stimulation responses and exoskeleton remodelling, we identify commonalities and differences, as well as highlighting major knowledge gaps, across arthropod groups. We examine the available evidence supporting current models of how components operate together to prepare for, execute, and recover from ecdysis, comparing reports from Chelicerata, Myriapoda, Crustacea, and Hexapoda. Evidence is generally highly taxonomically imbalanced, with most reports based on insect study systems. Biases are also evident in research on different moulting phases and processes, with the early triggers and late effectors generally being the least well explored. Our synthesis contrasts knowledge based on reported observations with reasonably plausible assumptions given current taxonomic sampling, and exposes weak assumptions or major gaps that need addressing. Encouragingly, advances in genomics are driving a diversification of tractable study systems by facilitating the cataloguing of putative genetic toolkits in previously under-explored taxa. Analysis of genome and transcriptome data supported by experimental investigations have validated the presence of an "ultra-conserved" core of arthropod genes involved in moulting processes. The molecular machinery has likely evolved with elaborations on this conserved pathway backbone, but more taxonomic exploration is needed to characterise lineage-specific changes and novelties. Furthermore, linking these to transformative innovations in moulting processes across Arthropoda remains hampered by knowledge gaps and hypotheses based on untested assumptions. Promisingly however, emerging from the synthesis is a framework that highlights research avenues from the underlying genetics to the dynamic molecular biology through to the complex physiology of moulting.
Collapse
Affiliation(s)
- Giulia Campli
- Department of Ecology and Evolution, Quartier UNIL-Sorge, Bâtiment Biophore, University of Lausanne, Lausanne, 1015, Switzerland
- SIB Swiss Institute of Bioinformatics, Quartier Sorge, Bâtiment Amphipôle, Lausanne, 1015, Switzerland
| | - Olga Volovych
- The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus - Givat Ram, Jerusalem, 9190401, Israel
| | - Kenneth Kim
- Department of Ecology and Evolution, Quartier UNIL-Sorge, Bâtiment Biophore, University of Lausanne, Lausanne, 1015, Switzerland
- SIB Swiss Institute of Bioinformatics, Quartier Sorge, Bâtiment Amphipôle, Lausanne, 1015, Switzerland
| | - Werner P Veldsman
- Department of Ecology and Evolution, Quartier UNIL-Sorge, Bâtiment Biophore, University of Lausanne, Lausanne, 1015, Switzerland
- SIB Swiss Institute of Bioinformatics, Quartier Sorge, Bâtiment Amphipôle, Lausanne, 1015, Switzerland
| | - Harriet B Drage
- Institute of Earth Sciences, Quartier UNIL-Mouline, Bâtiment Géopolis, University of Lausanne, Lausanne, 1015, Switzerland
| | - Idan Sheizaf
- The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus - Givat Ram, Jerusalem, 9190401, Israel
| | - Sinéad Lynch
- Institute of Earth Sciences, Quartier UNIL-Mouline, Bâtiment Géopolis, University of Lausanne, Lausanne, 1015, Switzerland
| | - Ariel D Chipman
- The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus - Givat Ram, Jerusalem, 9190401, Israel
| | - Allison C Daley
- Institute of Earth Sciences, Quartier UNIL-Mouline, Bâtiment Géopolis, University of Lausanne, Lausanne, 1015, Switzerland
| | - Marc Robinson-Rechavi
- Department of Ecology and Evolution, Quartier UNIL-Sorge, Bâtiment Biophore, University of Lausanne, Lausanne, 1015, Switzerland
- SIB Swiss Institute of Bioinformatics, Quartier Sorge, Bâtiment Amphipôle, Lausanne, 1015, Switzerland
| | - Robert M Waterhouse
- Department of Ecology and Evolution, Quartier UNIL-Sorge, Bâtiment Biophore, University of Lausanne, Lausanne, 1015, Switzerland
- SIB Swiss Institute of Bioinformatics, Quartier Sorge, Bâtiment Amphipôle, Lausanne, 1015, Switzerland
| |
Collapse
|
3
|
Li N, Gu X, Xin M, Wang X. Revealing the Immune Response of Sitona callosus Gyllenhal to Entomopathogenic Fungi Beauveria bassiana Infection Through Integrative Analyses of Transcriptomics and Metabolomics. INSECTS 2024; 15:940. [PMID: 39769543 PMCID: PMC11677578 DOI: 10.3390/insects15120940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025]
Abstract
In this study, we selected Sitona callosus, one of the primary insect pests of alfalfa, as the experimental insect and infected it with Beauveria bassiana. Transcriptomic and metabolomic analyses were conducted to explore alterations in gene expression and metabolic processes in S. callosus at 48, 96, and 144 h post infection with B. bassiana. The transcriptomic analysis unveiled that B. bassiana infection boosted immune responses in tubercula, affecting carbohydrate metabolism, cytochrome P450 activity, lysosome function, apoptosis regulation, phagosome formation, glutathione metabolism, amino acid metabolism, and pathogen response pathways. Subsequent metabolomics analysis confirmed that glycerophospholipids, carboxylic acids and derivatives, organooxygen compounds, keto acids and derivatives, and azane immune metabolites were significantly upregulated in response to B. bassiana infection. Additionally, we utilized the Pearson correlation coefficient method to examine the relationships between differentially expressed immune-related genes and metabolites, revealing notably strong correlations between these two sets of variables. By leveraging the WGCNA method to analyze immune metabolite data for immune-related genes, we identified hub genes crucial at various stages of immune activation. These central genes predominantly included C-type lectin receptors for pattern recognition, cytochrome P450 enzymes linked to detoxification processes, and cathepsin proteases. By combining transcriptome and metabolome analyses, it was determined that autophagy and arachidonic acid metabolism play significant roles in the response of S. callosus to infection by B. bassiana. This research will facilitate the understanding of the immune response to B. bassiana infection in adult S. callosus, laying a theoretical groundwork for future biological control strategies targeting S. callosus.
Collapse
Affiliation(s)
- Nan Li
- School of Forestry and Prataculture, Ningxia University, Yinchuan 750021, China;
| | - Xin Gu
- School of Agriculture, Ningxia University, Yinchuan 750021, China;
| | - Ming Xin
- School of Agriculture, Ningxia University, Yinchuan 750021, China;
| | - Xinpu Wang
- School of Agriculture, Ningxia University, Yinchuan 750021, China;
| |
Collapse
|
4
|
Lu S, de Sousa-Paula LC, Ribeiro JMC, Tirloni L. Exploring the longitudinal expression dynamics of midguts in adult female Amblyomma americanum ticks. BMC Genomics 2024; 25:996. [PMID: 39448894 PMCID: PMC11515579 DOI: 10.1186/s12864-024-10905-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Female ticks remain attached to their host for multiple days to complete a blood meal. This prolonged feeding period is accompanied by a significant increase in the tick's size and body weight, paralleled by noteworthy changes to the tick midgut. While the midgut is recognized for its established role in blood storage and processing, its importance extends to playing a crucial role in the acquisition, survival, and proliferation of pathogens. Despite this, our overall understanding of tick midgut biology is limited. RESULTS Our transcriptome analysis identified 15,599 putative DNA coding sequences (CDS), which were classified into 26 functional groups. Dimensional and differential expression analyses revealed four primary transcriptional profiles corresponding to unfed, slow-feeding, transitory (from slow- to rapid-feeding), and rapid-feeding stages. Additionally, comparing the current dataset with previously deposited transcriptome from other tick species allowed the identification of commonly expressed transcripts across different feeding stages. CONCLUSION Our findings provide a detailed temporal resolution of numerous metabolic pathways in the midgut of A. americanum adult females throughout the feeding process, highlighting the dynamic transcriptional regulation of the tick's midgut as feeding progresses. Furthermore, we identified conserved transcripts across three different tick species that exhibit similar expression patterns. This knowledge not only enhances our understanding of the physiological processes within the tick midgut but also opens up potential avenues for developing control methods that target multiple tick species.
Collapse
Affiliation(s)
- Stephen Lu
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Lucas C de Sousa-Paula
- Tick-Pathogen Transmission Unit, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA
| | - Jose M C Ribeiro
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Lucas Tirloni
- Tick-Pathogen Transmission Unit, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA.
| |
Collapse
|
5
|
Lu S, de Sousa Paula LC, Ribeiro JM, Tirloni L. Exploring midgut expression dynamics: longitudinal transcriptomic analysis of adult female Amblyomma americanum midgut and comparative insights with other hard tick species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.20.614175. [PMID: 39372786 PMCID: PMC11451607 DOI: 10.1101/2024.09.20.614175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Background Female ticks remain attached to their host for multiple days to complete a blood meal. This prolonged feeding period is accompanied by a significant increase in the tick's size and body weight, paralleled by noteworthy changes to the tick midgut. While the midgut is recognized for its established role in blood storage and processing, its importance extends to playing a crucial role in the acquisition, survival, and proliferation of pathogens. Despite this, our overall understanding of tick midgut biology is limited. Results We conducted a comprehensive longitudinal transcriptome analysis of the midgut in adult female A. americanum ticks across various feeding stages, including unfed, slow-feeding, and rapid-feeding phases. Our analysis revealed 15,599 putative DNA coding sequences (CDS) classified within 26 functional groups. Dimensional and differential expression analysis highlighted the dynamic transcriptional changes in the tick midgut as feeding progresses, particularly during the initial period of feeding and the transition from the slow-feeding to the rapid-feeding phase. Additionally, we performed an orthology analysis comparing our dataset with midgut transcriptomes from other hard ticks, such as Ixodes scapularis and Rhipicephalus microplus. This comparison allowed us to identify transcripts commonly expressed during different feeding phases across these three species. Conclusion Our findings provide a detailed temporal resolution of numerous metabolic pathways in A. americanum, emphasizing the dynamic transcriptional changes occurring in the tick midgut throughout the feeding process. Furthermore, we identified conserved transcripts across three different tick species that exhibit similar expression patterns. This knowledge has significant implications for future research aimed at deciphering the physiological pathways relevant within the tick midgut. It also offers potential avenues for developing control methods that target multiple tick species.
Collapse
Affiliation(s)
- Stephen Lu
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Lucas C. de Sousa Paula
- Tick-Pathogen Transmission Unit, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA
| | - Jose M.C. Ribeiro
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Lucas Tirloni
- Tick-Pathogen Transmission Unit, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA
| |
Collapse
|
6
|
Zhang M, Jiang S, Zhang W, Xiong Y, Jin S, Wang J, Qiao H, Fu H. Functional Study of the Role of the Methyl Farnesoate Epoxidase Gene in the Ovarian Development of Macrobrachium nipponense. Int J Mol Sci 2024; 25:7318. [PMID: 39000423 PMCID: PMC11242038 DOI: 10.3390/ijms25137318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/24/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
Methyl farnesoate epoxidase (MFE) is a gene encoding an enzyme related to the last step of juvenile hormone biosynthesis. Mn-MFE cDNA has a total length of 1695 bp and an open reading frame (ORF) length of 1482 bp, encoding 493 amino acids. Sequence analysis showed that its amino acid sequence has a PPGP hinge, an FGCG structural domain, and other structural domains specific to the P450 family of enzymes. Mn-MFE was most highly expressed in the hepatopancreas, followed by the ovary and gill, weakly expressed in heart and muscle tissue, and barely expressed in the eyestalk and cranial ganglion. Mn-MFE expression remained stable during the larval period, during which it mainly played a critical role in gonadal differentiation. Expression in the ovary was positively correlated and expression in the hepatopancreas was negatively correlated with ovarian development. In situ hybridization (ISH) showed that the signal was expressed in the oocyte, nucleus, cell membrane and follicular cells, and the intensity of expression was strongest at stage O-IV. The knockdown of Mn-MFE resulted in a significantly lower gonadosomatic index and percentage of ovaries past stage O-III compared to the control group. However, no differences were found in the cumulative frequency of molting between the experimental and control groups. Moreover, the analysis of ovarian tissue sections at the end of the experiment showed differences between groups in development speed but not in subcellular structure. These results demonstrate that Mn-MFE promotes the ovarian development of Macrobrachium nipponense adults but has no effect on molting.
Collapse
Affiliation(s)
- Mengying Zhang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (M.Z.); (S.J.); (J.W.)
| | - Sufei Jiang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (M.Z.); (S.J.); (J.W.)
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (W.Z.); (Y.X.); (S.J.)
| | - Wenyi Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (W.Z.); (Y.X.); (S.J.)
| | - Yiwei Xiong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (W.Z.); (Y.X.); (S.J.)
| | - Shubo Jin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (W.Z.); (Y.X.); (S.J.)
| | - Jisheng Wang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (M.Z.); (S.J.); (J.W.)
| | - Hui Qiao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (M.Z.); (S.J.); (J.W.)
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (W.Z.); (Y.X.); (S.J.)
| | - Hongtuo Fu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (M.Z.); (S.J.); (J.W.)
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (W.Z.); (Y.X.); (S.J.)
| |
Collapse
|
7
|
Shepherd JG. Mating, Sperm Transfer and Oviposition in Soft Ticks (Acari: Argasidae), a Review. Pathogens 2023; 12:pathogens12040582. [PMID: 37111468 PMCID: PMC10142124 DOI: 10.3390/pathogens12040582] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 04/29/2023] Open
Abstract
This review addresses the physiology and behavioral events involved in the reproduction of soft ticks (family Argasidae), with special attention to the events of their adult life: mating, sperm transfer and egg-laying. Many of these aspects are held in common with hard ticks, but the repeated short duration of feeding bouts in soft ticks, in contrast to the extended single engorgements of hard ticks, has consequences peculiar to soft tick reproduction. Reviewed are the dramatic external mechanism of sperm transfer, the unusual maturation and unique morphology and motility of the spermatozoa, the mechanism of oogenesis and its hormonal control, the mystery of fertilization, the involvement of pheromones in mating, the control of reproductive arrests and the vertical transmission of symbiotes in reproduction. Jumping-off points for further investigation are discussed throughout.
Collapse
Affiliation(s)
- Julian G Shepherd
- Department of Biological Sciences, Binghamton University, Binghamton, NY 13902-6000, USA
| |
Collapse
|
8
|
Su C, Ding C, Zhao Y, He B, Nie R, Hao J. Diapause-Linked Gene Expression Pattern and Related Candidate Duplicated Genes of the Mountain Butterfly Parnassius glacialis (Lepidoptera: Papilionidae) Revealed by Comprehensive Transcriptome Profiling. Int J Mol Sci 2023; 24:5577. [PMID: 36982649 PMCID: PMC10058462 DOI: 10.3390/ijms24065577] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
The mountain butterfly Parnassius glacialis is a representative species of the genus Parnassius, which probably originated in the high-altitude Qinhai-Tibet Plateau in the Miocene and later dispersed eastward into relatively low-altitude regions of central to eastern China. However, little is known about the molecular mechanisms underlying the long-term evolutionary adaptation to heterogeneous environmental conditions of this butterfly species. In this study, we obtained the high-throughput RNA-Seq data from twenty-four adult individuals in eight localities, covering nearly all known distributional areas in China, and firstly identified the diapause-linked gene expression pattern that is likely to correlate with local adaptation in adult P. glacialis populations. Secondly, we found a series of pathways responsible for hormone biosynthesis, energy metabolism and immune defense that also exhibited unique enrichment patterns in each group that are probably related to habitat-specific adaptability. Furthermore, we also identified a suite of duplicated genes (including two transposable elements) that are mostly co-expressed to promote the plastic responses to different environmental conditions. Together, these findings can help us to better understand this species' successful colonization to distinct geographic areas from the western to eastern areas of China, and also provide us with some insights into the evolution of diapause in mountain Parnassius butterfly species.
Collapse
Affiliation(s)
| | | | | | | | | | - Jiasheng Hao
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| |
Collapse
|
9
|
So WL, Kai Z, Qu Z, Bendena WG, Hui JHL. Rethinking Sesquiterpenoids: A Widespread Hormone in Animals. Int J Mol Sci 2022; 23:ijms23115998. [PMID: 35682678 PMCID: PMC9181382 DOI: 10.3390/ijms23115998] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 12/04/2022] Open
Abstract
The sesquiterpenoid hormone juvenile hormone (JH) controls development, reproduction, and metamorphosis in insects, and has long been thought to be confined to the Insecta. While it remains true that juvenile hormone is specifically synthesized in insects, other types or forms of sesquiterpenoids have also been discovered in distantly related animals, such as the jellyfish. Here, we combine the latest literature and annotate the sesquiterpenoid biosynthetic pathway genes in different animal genomes. We hypothesize that the sesquiterpenoid hormonal system is an ancestral system established in an animal ancestor and remains widespread in many animals. Different animal lineages have adapted different enzymatic routes from a common pathway, with cnidarians producing farnesoic acid (FA); non-insect protostomes and non-vertebrate deuterostomes such as cephalochordate and echinoderm synthesizing FA and methyl farnesoate (MF); and insects producing FA, MF, and JH. Our hypothesis revolutionizes the current view on the sesquiterpenoids in the metazoans, and forms a foundation for a re-investigation of the roles of this important and yet neglected type of hormone in different animals.
Collapse
Affiliation(s)
- Wai Lok So
- School of Life Sciences, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China; (W.L.S.); (Z.Q.)
- Simon F.S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhenpeng Kai
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China;
| | - Zhe Qu
- School of Life Sciences, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China; (W.L.S.); (Z.Q.)
- Simon F.S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - William G. Bendena
- Department of Biology, Queen’s University, Kingston, ON K7L 3N6, Canada
- Correspondence: (W.G.B.); (J.H.L.H.)
| | - Jerome H. L. Hui
- School of Life Sciences, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China; (W.L.S.); (Z.Q.)
- Simon F.S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Correspondence: (W.G.B.); (J.H.L.H.)
| |
Collapse
|
10
|
Bian HX, Chen DB, Li YP, Tan EG, Su X, Huang JC, Su JF, Liu YQ. Transcriptomic analysis of Bombyx mori corpora allata with comparison to prothoracic glands in the final instar larvae. Gene 2021; 813:146095. [PMID: 34902509 DOI: 10.1016/j.gene.2021.146095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 10/28/2021] [Accepted: 11/16/2021] [Indexed: 11/28/2022]
Abstract
The corpus allatum (CA) is an endocrine organ of insects that synthesizes juvenile hormone (JH). Yet little is known regarding the global gene expression profile for the CA, although JH signaling pathway has been well-studied in insects. Here, we report the availability of the transcriptome resource of the isolated CA from the final (fifth) instar larvae of the silkworm, Bombyx mori when the JH titer is low. We also compare it with prothoracic gland (PG) that produces the precursor of 20-hydroxyecdysone (20E), to find some common features in the JH and 20E related genes between the two organs. A total of 17,262 genes were generated using a combination of genome-guided assembly and annotation, in which 10,878 unigenes were enriched in 58 Gene Ontology terms, representing almost all expressed genes in the CA of the 5th instar larvae of B. mori. Transcriptome analysis confirmed that gene for Torso, the receptor of prothoracicotropic hormone (PTTH), is present in the PG but not in the CA. Transcriptome comparison and quantitative real time-PCR indicated that 11 genes related to JH biosynthesis and regulation and six genes for 20E are expressed in both the CA and PG, suggesting that the two organs may cross talk with each other through these genes. The temporal expression profiles of the two genes for the multifunctional neurohormonal factor sericotropin precursor and the uncharacterized protein LOC114249572, the most abundant in the CA and PG transcriptomes respectively, suggested that they might play important roles in the JH and 20E biosynthesis. The present work provides new insights into the CA and PG.
Collapse
Affiliation(s)
- Hai-Xu Bian
- College of Plant Protection, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China; College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| | - Dong-Bin Chen
- College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| | - Yu-Ping Li
- College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| | - En-Guang Tan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| | - Xin Su
- College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| | - Jing-Chao Huang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| | - Jun-Fang Su
- Center for Experimental Teaching, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yan-Qun Liu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China.
| |
Collapse
|
11
|
Li G, Zhang J, Liu XY, Niu J, Wang JJ. De novo RNA-Seq and Annotation of Sesquiterpenoid and Ecdysteroid Biosynthesis Genes and MicroRNAs in a Spider Mite Eotetranychus kankitus. JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:2543-2552. [PMID: 34668540 DOI: 10.1093/jee/toab166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Indexed: 06/13/2023]
Abstract
Eotetranychus kankitus is an important mite pest in citrus, but molecular data on the developmental processes of E. kankitus are lacking. The different development stages mix of E. kankitus was used to sequence for transcriptome and small RNAs to identify genes and predict miRNAs associated with sesquiterpenoid and ecdysteroid biosynthesis and signaling pathways. More than 36 million clean reads were assembled and 67,927 unigenes were generated. Of the unigenes, 19,300 were successfully annotated through annotation databases NR, SwissProt, COG, GO, KEGG, PFAM, and KOG. The transcripts were involved in sesquiterpenoid biosynthesis (11 genes) and ecdysteroid biosynthesis and signaling pathway (13 genes). Another, small RNA library was obtained and 31 conserved miRNAs were identified. Five most abundant miRNAs were Ek-miR-5735, Ek-miR-1, Ek-miR-263a, Ek-miR-184, and Ek-miR-8. The target genes related to sesquiterpenoid and ecdysteroid showed that 10 of the conserved miRNAs could potentially target the sesquiterpenoid and ecdysteroid pathway according to four-prediction software, sRNAT, miRanda, RNAhybrid, and Risearch2. Thus, the results of this study will provide bioinformatics information for further molecular studies of E. kankitus which may facilitate improved pest control strategies.
Collapse
Affiliation(s)
- Gang Li
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Jun Zhang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Xun-Yan Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Jinzhi Niu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| |
Collapse
|
12
|
Genomic Identification and Functional Analysis of JHAMTs in the Pond Wolf Spider, Pardosa pseudoannulata. Int J Mol Sci 2021; 22:ijms222111721. [PMID: 34769151 PMCID: PMC8584100 DOI: 10.3390/ijms222111721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 11/23/2022] Open
Abstract
Juvenile hormone (JH) plays a critical role in many physiological activities of Arthropoda. Juvenile hormone acid methyltransferase (JHAMT) is involved in the last steps of JH biosynthesis as an important rate-limiting enzyme. In recent studies, an increasing number of JHAMTs were identified in arthropods, but no JHAMT was reported in spiders. Herein, eight JHAMTs were identified in the pond wolf spider, Pardosa pseudoannulata, all containing the well conserved S-adenosyl-L-methionine binding motif. JHAMT-1 and the other seven JHAMTs were located at chromosome 13 and chromosome 1, respectively. Multiple alignment and phylogenetic analysis showed that JHAMT-1 was grouped together with insect JHAMTs independently and shared high similarities with insect JHAMTs compared to the other seven JHAMTs. In addition, JHAMT-1, JHAMT-2, and JHAMT-3 were highly expressed in the abdomen of spiderlings and could respond to the stimulation of exogenous farnesoic acid. Meanwhile, knockdown of these three JHAMTs caused the overweight and accelerated molting of spiderlings. These results demonstrated the cooperation of multi-JHAMTs in spider development and provided a new evolutionary perspective of the expansion of JHAMT in Arachnida.
Collapse
|
13
|
Fang SM. Genome-wide identification and analysis of the thiolase family in insects. PeerJ 2020; 8:e10393. [PMID: 33240678 PMCID: PMC7682436 DOI: 10.7717/peerj.10393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/29/2020] [Indexed: 12/30/2022] Open
Abstract
Thiolases are important enzymes involved in lipid metabolism in both prokaryotes and eukaryotes, and are essential for a range of metabolic pathways, while, little is known for this important family in insects. To shed light on the evolutionary models and functional diversities of the thiolase family, 137 thiolase genes were identified in 20 representative insect genomes. They were mainly classified into five classes, namely cytosolic thiolase (CT-thiolase), T1-thiolase, T2-thiolase, trifunctional enzyme thiolase (TFE-thiolase), and sterol carrier protein 2 thiolase (SCP2-thiolase). The intron number and exon/intron structures of the thiolase genes reserve large diversification. Subcellular localization prediction indicated that all the thiolase proteins were mitochondrial, cytosolic, or peroxisomal enzymes. Four highly conserved sequence fingerprints were found in the insect thiolase proteins, including CxS-, NEAF-, GHP-, and CxGGGxG-motifs. Homology modeling indicated that insect thiolases share similar 3D structures with mammals, fishes, and microorganisms. In Bombyx mori, microarray data and reverse transcription-polymerase chain reaction (RT-PCR) analysis suggested that some thiolases might be involved in steroid metabolism, juvenile hormone (JH), and sex pheromone biosynthesis pathways. In general, sequence and structural characteristics were relatively conserved among insects, bacteria and vertebrates, while different classes of thiolases might have differentiation in specific functions and physiological processes. These results will provide an important foundation for future functional validation of insect thiolases.
Collapse
Affiliation(s)
- Shou-Min Fang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, Sichuan, China.,College of Life Science, China West Normal University, Nanchong, Sichuan, China
| |
Collapse
|
14
|
Qu Z, Bendena WG, Tobe SS, Hui JHL. Juvenile hormone and sesquiterpenoids in arthropods: Biosynthesis, signaling, and role of MicroRNA. J Steroid Biochem Mol Biol 2018; 184:69-76. [PMID: 29355708 DOI: 10.1016/j.jsbmb.2018.01.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 01/03/2018] [Accepted: 01/16/2018] [Indexed: 12/21/2022]
Abstract
Arthropod molting and reproduction are precisely controlled by the levels of sesquiterpenoids, a class of C15 hormones derived from three isoprene units. The two major functional arthropod sesquiterpenoids are juvenile hormone (JH) and methyl farnesoate (MF). In hemimetabolous insects (such as the aphids, bugs, and cockroaches) and holometabolous insects (such as beetles, bees, butterflies, and flies), dramatic decrease in the titers of JH and/or MF promote metamorphosis from larvae to adults either directly or through an intermediate pupal stage, respectively. JH is absent in crustaceans (lobster, shrimp, crab) and other arthropods (chelicerates such as ticks, mites, spiders, scorpions and myriapods such as millipede and centipedes). In some crustaceans, molting and reproduction is dependent on changing levels of MF. The regulation of sesquiterpenoid production is thus crucial in the life cycle of arthropods. Dynamic and complex mechanisms have evolved to regulate sesquiterpenoid production. Noncoding RNAs such as the microRNAs are primary regulators. This article provides an overview of microRNAs that are known to regulate sesquiterpenoid production in arthropods.
Collapse
Affiliation(s)
- Zhe Qu
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong
| | | | - Stephen S Tobe
- Department of Cell and Systems Biology, University of Toronto, Canada.
| | - Jerome H L Hui
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
15
|
Oleaga A, Obolo-Mvoulouga P, Manzano-Román R, Pérez-Sánchez R. De novo assembly and analysis of midgut transcriptome of the argasid tick Ornithodoros erraticus and identification of genes differentially expressed after blood feeding. Ticks Tick Borne Dis 2018; 9:1537-1554. [PMID: 30093291 DOI: 10.1016/j.ttbdis.2018.06.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 06/11/2018] [Accepted: 06/26/2018] [Indexed: 10/28/2022]
Abstract
Ticks are hematophagous vectors of great medical and veterinary importance because they transmit numerous pathogenic microorganisms to humans and animals. The argasid Ornithodoros erraticus is the main vector of tick-borne human relapsing fever and African swine fever in the Mediterranean Basin. Tick enterocytes express bioactive molecules that perform key functions in blood digestion, feeding, toxic waste processing and pathogen transmission. To explore new strategies for tick control, in this work we have obtained and compared the midgut transcriptomes of O. erraticus female ticks before and after a blood meal and identified the genes whose expression is differentially regulated after feeding. The transcript sequences were annotated, functionally and structurally characterised and their expression levels compared between both physiological conditions (unfed females and fed females at 2 days post-engorgement). Up to 29,025 transcripts were assembled, and 9290 of them corresponded to differentially expressed genes (DEGs) after feeding. Of these, 4656 genes were upregulated and nearly the same number of genes was downregulated in fed females compared to unfed females. BLASTN and BLASTX analyses of the 29,025 transcripts allowed the annotation of 9072 transcripts/proteins. Among them, the most numerous were those with catalytic and binding activities and those involved in diverse metabolic pathways and cellular processes. The analyses of functional groups of upregulated DEGs potentially related to the digestion of proteins, carbohydrates and lipids, and the genes involved in the defence response and response to oxidative stress, confirm that these processes are narrowly regulated in ticks, highlighting their complexity and importance in tick biology. The expression patterns of six genes throughout the blood digestion period revealed significant differences between these patterns, strongly suggesting that the transcriptome composition is highly dynamic and subjected to important variation along the trophogonic cycle. This may guide future studies aimed at improving the understanding of the molecular physiology of tick digestion and digestion-related processes. The current work provides a more robust and comprehensive understanding of the argasid tick digestive system.
Collapse
Affiliation(s)
- Ana Oleaga
- Parasitology Laboratory, Institute of Natural Resources and Agrobiology (IRNASA, CSIC), Cordel de Merinas, 40-52, 37008 Salamanca, Spain.
| | - Prosper Obolo-Mvoulouga
- Parasitology Laboratory, Institute of Natural Resources and Agrobiology (IRNASA, CSIC), Cordel de Merinas, 40-52, 37008 Salamanca, Spain.
| | - Raúl Manzano-Román
- Parasitology Laboratory, Institute of Natural Resources and Agrobiology (IRNASA, CSIC), Cordel de Merinas, 40-52, 37008 Salamanca, Spain.
| | - Ricardo Pérez-Sánchez
- Parasitology Laboratory, Institute of Natural Resources and Agrobiology (IRNASA, CSIC), Cordel de Merinas, 40-52, 37008 Salamanca, Spain.
| |
Collapse
|
16
|
Sawadro M, Bednarek A, Babczyńska A. The current state of knowledge on the neuroactive compounds that affect the development, mating and reproduction of spiders (Araneae) compared to insects. INVERTEBRATE NEUROSCIENCE 2017; 17:4. [DOI: 10.1007/s10158-017-0197-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 04/03/2017] [Indexed: 12/19/2022]
|
17
|
Dynamic transcriptomes identify biogenic amines and insect-like hormonal regulation for mediating reproduction in Schistosoma japonicum. Nat Commun 2017; 8:14693. [PMID: 28287085 PMCID: PMC5355954 DOI: 10.1038/ncomms14693] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 01/23/2017] [Indexed: 12/28/2022] Open
Abstract
Eggs produced by the mature female parasite are responsible for the pathogenesis and transmission of schistosomiasis. Female schistosomes rely on a unique male-induced strategy to accomplish reproductive development, a process that is incompletely understood. Here we map detailed transcriptomic profiles of male and female Schistosoma japonicum across eight time points throughout the sexual developmental process from pairing to maturation. The dynamic gene expression pattern data reveal clear sex-related characteristics, indicative of an unambiguous functional division between males and females during their interplay. Cluster analysis, in situ hybridization and RNAi assays indicate that males likely use biogenic amine neurotransmitters through the nervous system to control and maintain pairing with females. In addition, the analyses indicate that reproductive development of females involves an insect-like hormonal regulation. These data sets and analyses serve as a foundation for deeper study of sexual development in this pathogen and identification of novel anti-schistosomal interventions.
Collapse
|
18
|
de la Fuente J, Waterhouse RM, Sonenshine DE, Roe RM, Ribeiro JM, Sattelle DB, Hill CA. Tick Genome Assembled: New Opportunities for Research on Tick-Host-Pathogen Interactions. Front Cell Infect Microbiol 2016; 6:103. [PMID: 27695689 PMCID: PMC5024572 DOI: 10.3389/fcimb.2016.00103] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 09/01/2016] [Indexed: 12/30/2022] Open
Abstract
As tick-borne diseases are on the rise, an international effort resulted in the sequence and assembly of the first genome of a tick vector. This result promotes research on comparative, functional and evolutionary genomics and the study of tick-host-pathogen interactions to improve human, animal and ecosystem health on a global scale.
Collapse
Affiliation(s)
- José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCMCiudad Real, Spain; Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State UniversityStillwater, OK, USA
| | - Robert M Waterhouse
- Department of Genetic Medicine and Development, University of Geneva Medical SchoolGeneva, Switzerland; Swiss Institute of BioinformaticsGeneva, Switzerland; Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of TechnologyCambridge, MA, USA; Broad Institute of MIT and HarvardCambridge, MA, USA
| | | | - R Michael Roe
- Department of Entomology, North Carolina State University Raleigh, NC, USA
| | - Jose M Ribeiro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases Rockville, MD, USA
| | | | - Catherine A Hill
- Department of Entomology, Purdue University West Lafayette, IN, USA
| |
Collapse
|
19
|
Gulia-Nuss M, Nuss AB, Meyer JM, Sonenshine DE, Roe RM, Waterhouse RM, Sattelle DB, de la Fuente J, Ribeiro JM, Megy K, Thimmapuram J, Miller JR, Walenz BP, Koren S, Hostetler JB, Thiagarajan M, Joardar VS, Hannick LI, Bidwell S, Hammond MP, Young S, Zeng Q, Abrudan JL, Almeida FC, Ayllón N, Bhide K, Bissinger BW, Bonzon-Kulichenko E, Buckingham SD, Caffrey DR, Caimano MJ, Croset V, Driscoll T, Gilbert D, Gillespie JJ, Giraldo-Calderón GI, Grabowski JM, Jiang D, Khalil SMS, Kim D, Kocan KM, Koči J, Kuhn RJ, Kurtti TJ, Lees K, Lang EG, Kennedy RC, Kwon H, Perera R, Qi Y, Radolf JD, Sakamoto JM, Sánchez-Gracia A, Severo MS, Silverman N, Šimo L, Tojo M, Tornador C, Van Zee JP, Vázquez J, Vieira FG, Villar M, Wespiser AR, Yang Y, Zhu J, Arensburger P, Pietrantonio PV, Barker SC, Shao R, Zdobnov EM, Hauser F, Grimmelikhuijzen CJP, Park Y, Rozas J, Benton R, Pedra JHF, Nelson DR, Unger MF, Tubio JMC, Tu Z, Robertson HM, Shumway M, Sutton G, Wortman JR, Lawson D, Wikel SK, Nene VM, Fraser CM, Collins FH, Birren B, Nelson KE, Caler E, Hill CA. Genomic insights into the Ixodes scapularis tick vector of Lyme disease. Nat Commun 2016; 7:10507. [PMID: 26856261 PMCID: PMC4748124 DOI: 10.1038/ncomms10507] [Citation(s) in RCA: 350] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 12/12/2015] [Indexed: 01/06/2023] Open
Abstract
Ticks transmit more pathogens to humans and animals than any other arthropod. We describe the 2.1 Gbp nuclear genome of the tick, Ixodes scapularis (Say), which vectors pathogens that cause Lyme disease, human granulocytic anaplasmosis, babesiosis and other diseases. The large genome reflects accumulation of repetitive DNA, new lineages of retro-transposons, and gene architecture patterns resembling ancient metazoans rather than pancrustaceans. Annotation of scaffolds representing ∼57% of the genome, reveals 20,486 protein-coding genes and expansions of gene families associated with tick-host interactions. We report insights from genome analyses into parasitic processes unique to ticks, including host 'questing', prolonged feeding, cuticle synthesis, blood meal concentration, novel methods of haemoglobin digestion, haem detoxification, vitellogenesis and prolonged off-host survival. We identify proteins associated with the agent of human granulocytic anaplasmosis, an emerging disease, and the encephalitis-causing Langat virus, and a population structure correlated to life-history traits and transmission of the Lyme disease agent.
Collapse
Affiliation(s)
- Monika Gulia-Nuss
- Department of Entomology, Purdue University, West Lafayette, Indiana 47907, USA
| | - Andrew B. Nuss
- Department of Entomology, Purdue University, West Lafayette, Indiana 47907, USA
| | - Jason M. Meyer
- Department of Entomology, Purdue University, West Lafayette, Indiana 47907, USA
| | - Daniel E. Sonenshine
- Department of Biological Sciences, Old Dominion University, Norfolk, Virginina 23529, USA
| | - R. Michael Roe
- Department of Entomology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Robert M. Waterhouse
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva 1211, Switzerland
- Swiss Institute of Bioinformatics, Geneva 1211, Switzerland
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - David B. Sattelle
- Centre for Respiratory Biology, UCL Respiratory Department, Division of Medicine, University College London, Rayne Building, 5 University Street, London WC1E 6JF, UK
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos, IREC-CSIC-UCLM-JCCM, Ronda de Toledo sn, Ciudad Real 13005, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, 250 McElroy Hall, Stillwater, Oklahama 74078, USA
| | - Jose M. Ribeiro
- Laboratory of Malaria and Vector Research, NIAID, Rockville, Maryland 20852, USA
| | - Karine Megy
- VectorBase/EMBL-EBI, Wellcome Trust Genome Campus, Cambridge CB10 1SD, UK
| | - Jyothi Thimmapuram
- Bioinformatics Core, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | - Sergey Koren
- J. Craig Venter Institute, Rockville, Maryland 20850, USA
| | | | | | | | | | - Shelby Bidwell
- J. Craig Venter Institute, Rockville, Maryland 20850, USA
| | - Martin P. Hammond
- VectorBase/EMBL-EBI, Wellcome Trust Genome Campus, Cambridge CB10 1SD, UK
| | - Sarah Young
- Genome Sequencing and Analysis Program, Broad Institute, Cambridge, Massachusetts 02142, USA
| | - Qiandong Zeng
- Genome Sequencing and Analysis Program, Broad Institute, Cambridge, Massachusetts 02142, USA
| | - Jenica L. Abrudan
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Francisca C. Almeida
- Departament de Genètica & Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona E-08028, Spain
| | - Nieves Ayllón
- SaBio, Instituto de Investigación en Recursos Cinegéticos, IREC-CSIC-UCLM-JCCM, Ronda de Toledo sn, Ciudad Real 13005, Spain
| | - Ketaki Bhide
- Bioinformatics Core, Purdue University, West Lafayette, Indiana 47907, USA
| | - Brooke W. Bissinger
- Department of Entomology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Elena Bonzon-Kulichenko
- Vascular Physiopathology, Centro Nacional de Investigaciones Cardiovasculares, Madrid 28029, Spain
| | - Steven D. Buckingham
- Centre for Respiratory Biology, UCL Respiratory Department, Division of Medicine, University College London, Rayne Building, 5 University Street, London WC1E 6JF, UK
| | - Daniel R. Caffrey
- Department of Medicine, Division of Infectious Diseases, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Melissa J. Caimano
- Department of Medicine, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | - Vincent Croset
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne CH-1015, Switzerland
| | - Timothy Driscoll
- Genetics, Bioinformatics, and Computational Biology Program, Virginia Bioinformatics Institute at Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Don Gilbert
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | - Joseph J. Gillespie
- Genetics, Bioinformatics, and Computational Biology Program, Virginia Bioinformatics Institute at Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Gloria I. Giraldo-Calderón
- Department of Entomology, Purdue University, West Lafayette, Indiana 47907, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Jeffrey M. Grabowski
- Department of Entomology, Purdue University, West Lafayette, Indiana 47907, USA
- Department Biological Sciences, Markey Center for Structural Biology, Purdue University, West Lafayette, Indiana 47907, USA
| | - David Jiang
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Sayed M. S. Khalil
- Department of Microbial Molecular Biology, Agricultural Genetic Engineering Research Institute, Giza 12619, Egypt
| | - Donghun Kim
- Department of Entomology, Texas A&M University, College Station, Texas 77843, USA
| | - Katherine M. Kocan
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, 250 McElroy Hall, Stillwater, Oklahama 74078, USA
| | - Juraj Koči
- Department of Entomology, Kansas State University, Manhattan, Kansas 66506, USA
| | - Richard J. Kuhn
- Department Biological Sciences, Markey Center for Structural Biology, Purdue University, West Lafayette, Indiana 47907, USA
| | - Timothy J. Kurtti
- Department of Entomology, University of Minnesota, St Paul, Minnesota 55108, USA
| | - Kristin Lees
- Department of Neurosystems, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Emma G. Lang
- Department of Entomology, Purdue University, West Lafayette, Indiana 47907, USA
| | - Ryan C. Kennedy
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California 94143, USA
| | - Hyeogsun Kwon
- Department of Entomology, Texas A&M University, College Station, Texas 77843, USA
| | - Rushika Perera
- Department Biological Sciences, Markey Center for Structural Biology, Purdue University, West Lafayette, Indiana 47907, USA
| | - Yumin Qi
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Justin D. Radolf
- Department of Medicine, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | - Joyce M. Sakamoto
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Alejandro Sánchez-Gracia
- Departament de Genètica & Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona E-08028, Spain
| | - Maiara S. Severo
- Department of Entomology, Center for Disease Vector Research, University of California, Riverside, California 92506, USA
| | - Neal Silverman
- Department of Medicine, Division of Infectious Diseases, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Ladislav Šimo
- Department of Entomology, Kansas State University, Manhattan, Kansas 66506, USA
| | - Marta Tojo
- Department of Pathology, Cambridge Genomic Services, University of Cambridge, Cambridge CB2 1QP, UK
- Department of Physiology, School of Medicine-CIMUS-Instituto de Investigaciones Sanitarias, University of Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Cristian Tornador
- Department of Experimental and Health Sciences, Universidad Pompeu Fabra, Barcelona 08003, Spain
| | - Janice P. Van Zee
- Department of Entomology, Purdue University, West Lafayette, Indiana 47907, USA
| | - Jesús Vázquez
- Vascular Physiopathology, Centro Nacional de Investigaciones Cardiovasculares, Madrid 28029, Spain
| | - Filipe G. Vieira
- Departament de Genètica & Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona E-08028, Spain
| | - Margarita Villar
- SaBio, Instituto de Investigación en Recursos Cinegéticos, IREC-CSIC-UCLM-JCCM, Ronda de Toledo sn, Ciudad Real 13005, Spain
| | - Adam R. Wespiser
- Department of Medicine, Division of Infectious Diseases, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Yunlong Yang
- Department of Entomology, Texas A&M University, College Station, Texas 77843, USA
| | - Jiwei Zhu
- Department of Entomology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Peter Arensburger
- Department of Biological Sciences, California State Polytechnic University, Pomona, California 91768, USA
| | | | - Stephen C. Barker
- Parasitology Section, School of Chemistry & Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Renfu Shao
- GeneCology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore, Queensland 4556, Australia
| | - Evgeny M. Zdobnov
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva 1211, Switzerland
- Swiss Institute of Bioinformatics, Geneva 1211, Switzerland
| | - Frank Hauser
- Department of Biology, Center for Functional and Comparative Insect Genomics, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Cornelis J. P. Grimmelikhuijzen
- Department of Biology, Center for Functional and Comparative Insect Genomics, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Yoonseong Park
- Department of Entomology, Kansas State University, Manhattan, Kansas 66506, USA
| | - Julio Rozas
- Departament de Genètica & Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona E-08028, Spain
| | - Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne CH-1015, Switzerland
| | - Joao H. F. Pedra
- Department of Entomology, Center for Disease Vector Research, University of California, Riverside, California 92506, USA
| | - David R. Nelson
- Department of Microbiology, Immunology & Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | - Maria F. Unger
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Jose M. C. Tubio
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
- Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo 36310, Spain
| | - Zhijian Tu
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Hugh M. Robertson
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Martin Shumway
- J. Craig Venter Institute, Rockville, Maryland 20850, USA
| | - Granger Sutton
- J. Craig Venter Institute, Rockville, Maryland 20850, USA
| | | | - Daniel Lawson
- VectorBase/EMBL-EBI, Wellcome Trust Genome Campus, Cambridge CB10 1SD, UK
| | - Stephen K. Wikel
- Department of Medical Sciences, Frank H. Netter MD School of Medicine at Quinnipiac University, Hamden, Connecticut 06518, USA
| | | | - Claire M. Fraser
- Institute for Genome Sciences, University of Maryland, School of Medicine, Baltimore, Maryland 21201, USA
| | - Frank H. Collins
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Bruce Birren
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | | | - Elisabet Caler
- J. Craig Venter Institute, Rockville, Maryland 20850, USA
| | - Catherine A. Hill
- Department of Entomology, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
20
|
Li M, Huang Y, Dong X, Wei Q, Li J, Sun H, Li C, Qi C, Yang J. Simvastatin downregulated C35 expression and inhibited the proliferation of colon cancer cells Lovo and HT29 in vitro . Biosci Trends 2016; 10:227-30. [DOI: 10.5582/bst.2016.01025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Min Li
- Shandong Academy of Medicine Sciences, Shandong Provincial Institute of Parasitic Diseases
- School of Medicine and Life Sciences, Ji’nan University, Shandong Academy of Medicine Sciences
| | - Yong Huang
- Shandong Academy of Medicine Sciences, Shandong Provincial Institute of Parasitic Diseases
| | - Xuan Dong
- Shandong Academy of Medicine Sciences, Shandong Provincial Institute of Parasitic Diseases
| | - Qingkuan Wei
- Shandong Academy of Medicine Sciences, Shandong Provincial Institute of Parasitic Diseases
| | - Jin Li
- Shandong Academy of Medicine Sciences, Shandong Provincial Institute of Parasitic Diseases
| | - Hui Sun
- Shandong Academy of Medicine Sciences, Shandong Provincial Institute of Parasitic Diseases
| | - Chenchen Li
- Shandong Academy of Medicine Sciences, Shandong Provincial Institute of Parasitic Diseases
- School of Medicine and Life Sciences, Ji’nan University, Shandong Academy of Medicine Sciences
| | | | - Jingyu Yang
- Shandong Academy of Medicine Sciences, Shandong Provincial Institute of Parasitic Diseases
| |
Collapse
|