1
|
Jung J, Schneider EL, Zhang W, Song H, Zhang M, Chou W, Meher N, VanBrocklin HF, Barcellos-Hoff MH, Ozawa T, Gilbert MR, Santi DV. PLX038A, a long-acting SN-38, penetrates the blood-tumor-brain-barrier, accumulates and releases SN-38 in brain tumors to increase survival of tumor bearing mice. Sci Rep 2024; 14:14175. [PMID: 38898077 PMCID: PMC11187204 DOI: 10.1038/s41598-024-64186-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 06/06/2024] [Indexed: 06/21/2024] Open
Abstract
Central nervous system tumors have resisted effective chemotherapy because most therapeutics do not penetrate the blood-tumor-brain-barrier. Nanomedicines between ~ 10 and 100 nm accumulate in many solid tumors by the enhanced permeability and retention effect, but it is controversial whether the effect can be exploited for treatment of brain tumors. PLX038A is a long-acting prodrug of the topoisomerase 1 inhibitor SN-38. It is composed of a 15 nm 4-arm 40 kDa PEG tethered to four SN-38 moieties by linkers that slowly cleave to release the SN-38. The prodrug was remarkably effective at suppressing growth of intracranial breast cancer and glioblastoma (GBM), significantly increasing the life span of mice harboring them. We addressed the important issue of whether the prodrug releases SN-38 systemically and then penetrates the brain to exert anti-tumor effects, or whether it directly penetrates the blood-tumor-brain-barrier and releases the SN-38 cargo within the tumor. We argue that the amount of SN-38 formed systemically is insufficient to inhibit the tumors, and show by PET imaging that a close surrogate of the 40 kDa PEG carrier in PLX038A accumulates and is retained in the GBM. We conclude that the prodrug penetrates the blood-tumor-brain-barrier, accumulates in the tumor microenvironment and releases its SN-38 cargo from within. Based on our results, we pose the provocative question as to whether the 40 kDa nanomolecule PEG carrier might serve as a "Trojan horse" to carry other drugs past the blood-tumor-brain-barrier and release them into brain tumors.
Collapse
Affiliation(s)
- Jinkyu Jung
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Wei Zhang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hua Song
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Meili Zhang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - William Chou
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Niranjan Meher
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Henry F VanBrocklin
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | | | - Tomoko Ozawa
- Brain Tumor Center, Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Mark R Gilbert
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Daniel V Santi
- ProLynx, Inc, 135 Mississippi Street, San Francisco, CA, USA.
| |
Collapse
|
2
|
de With M, van Doorn L, Kloet E, van Veggel A, Matic M, de Neijs MJ, Oomen-de Hoop E, van Meerten E, van Schaik RHN, Mathijssen RHJ, Bins S. Irinotecan-Induced Toxicity: A Pharmacogenetic Study Beyond UGT1A1. Clin Pharmacokinet 2023; 62:1589-1597. [PMID: 37715926 PMCID: PMC10582127 DOI: 10.1007/s40262-023-01279-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2023] [Indexed: 09/18/2023]
Abstract
BACKGROUND AND OBJECTIVE Side effects of irinotecan treatment can be dose limiting and may impair quality of life. In this study, we investigated the correlation between single nucleotide polymorphisms (SNPs) in genes encoding enzymes involved in the irinotecan metabolism and transport, outside UGT1A1, and irinotecan-related toxicity. We focused on carboxylesterases, which are involved in formation of the active metabolite SN-38 and on drug transporters. METHODS Patients who provided written informed consent at the Erasmus Medical Center Cancer Institute to the Code Geno study (local protocol: MEC02-1002) or the IRI28-study (NTR-6612) were enrolled in the study and were genotyped for 15 SNPs in the genes CES1, CES2, SLCO1B1, ABCB1, ABCC2, and ABCG2. RESULTS From 299 evaluable patients, 86 patients (28.8%) developed severe irinotecan-related toxicity. A significantly higher risk of toxicity was seen in ABCG2 c.421C>A variant allele carriers (P = 0.030, OR 1.88, 95% CI 1.06-3.34). Higher age was associated with all grade diarrhea (P = 0.041, OR 1.03, 95% CI 1.00-1.06). In addition, CES1 c.1165-41C>T and CES1 n.95346T>C variant allele carriers had a lower risk of all-grade thrombocytopenia (P = 0.024, OR 0.42, 95% CI 0.20-0.90 and P = 0.018, OR 0.23, 95% CI 0.08-0.79, respectively). CONCLUSION Our study indicates that ABCG2 and CES1 SNPs might be used as predictive markers for irinotecan-induced toxicity.
Collapse
Affiliation(s)
- Mirjam de With
- Department of Medical Oncology, Erasmus Medical Center Cancer Institute, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
- Department of Clinical Chemistry, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Leni van Doorn
- Department of Medical Oncology, Erasmus Medical Center Cancer Institute, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Esmay Kloet
- Department of Medical Oncology, Erasmus Medical Center Cancer Institute, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Anne van Veggel
- Department of Clinical Chemistry, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Maja Matic
- Department of Clinical Chemistry, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Micha J de Neijs
- Department of Medical Oncology, Erasmus Medical Center Cancer Institute, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Esther Oomen-de Hoop
- Department of Medical Oncology, Erasmus Medical Center Cancer Institute, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Esther van Meerten
- Department of Medical Oncology, Erasmus Medical Center Cancer Institute, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Ron H N van Schaik
- Department of Clinical Chemistry, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Ron H J Mathijssen
- Department of Medical Oncology, Erasmus Medical Center Cancer Institute, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Sander Bins
- Department of Medical Oncology, Erasmus Medical Center Cancer Institute, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.
| |
Collapse
|
3
|
Wei W, Riley NM, Lyu X, Shen X, Guo J, Raun SH, Zhao M, Moya-Garzon MD, Basu H, Sheng-Hwa Tung A, Li VL, Huang W, Wiggenhorn AL, Svensson KJ, Snyder MP, Bertozzi CR, Long JZ. Organism-wide, cell-type-specific secretome mapping of exercise training in mice. Cell Metab 2023; 35:1261-1279.e11. [PMID: 37141889 PMCID: PMC10524249 DOI: 10.1016/j.cmet.2023.04.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/21/2023] [Accepted: 04/05/2023] [Indexed: 05/06/2023]
Abstract
There is a significant interest in identifying blood-borne factors that mediate tissue crosstalk and function as molecular effectors of physical activity. Although past studies have focused on an individual molecule or cell type, the organism-wide secretome response to physical activity has not been evaluated. Here, we use a cell-type-specific proteomic approach to generate a 21-cell-type, 10-tissue map of exercise training-regulated secretomes in mice. Our dataset identifies >200 exercise training-regulated cell-type-secreted protein pairs, the majority of which have not been previously reported. Pdgfra-cre-labeled secretomes were the most responsive to exercise training. Finally, we show anti-obesity, anti-diabetic, and exercise performance-enhancing activities for proteoforms of intracellular carboxylesterases whose secretion from the liver is induced by exercise training.
Collapse
Affiliation(s)
- Wei Wei
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA; Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Nicholas M Riley
- Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA; Department of Chemistry, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Xuchao Lyu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA; Wu Tsai Human Performance Alliance, Stanford University, Stanford, CA 94305, USA
| | - Xiaotao Shen
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94035, USA
| | - Jing Guo
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Steffen H Raun
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Meng Zhao
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA 94305, USA; Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Maria Dolores Moya-Garzon
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Himanish Basu
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Alan Sheng-Hwa Tung
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Veronica L Li
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA; Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Wentao Huang
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Amanda L Wiggenhorn
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA; Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Katrin J Svensson
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA 94305, USA; Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94035, USA; Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA 94305, USA; Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Carolyn R Bertozzi
- Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA; Department of Chemistry, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Jonathan Z Long
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA; Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA 94305, USA; Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Wu Tsai Human Performance Alliance, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
4
|
Li LJ, Li CH, Chang PMH, Lai TC, Yong CY, Feng SW, Hsiao M, Chang WM, Huang CYF. Dehydroepiandrosterone (DHEA) Sensitizes Irinotecan to Suppress Head and Neck Cancer Stem-Like Cells by Downregulation of WNT Signaling. Front Oncol 2022; 12:775541. [PMID: 35912234 PMCID: PMC9328800 DOI: 10.3389/fonc.2022.775541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 06/13/2022] [Indexed: 12/24/2022] Open
Abstract
Purpose Current treatment options for head and neck squamous cell carcinoma (HNSCC) are limited, especially for cases with cancer stem cell-induced chemoresistance and recurrence. The WNT signaling pathway contributes to maintenance of stemness via translocation of β-catenin into the nucleus, and represents a promising druggable target in HNSCC. Dehydroepiandrosterone (DHEA), a steroid hormone, has potential as an anticancer drug. However, the potential anticancer mechanisms of DHEA including inhibition of stemness, and its therapeutic applications in HNSCC remain unclear. Methods Firstly, SRB assay and sphere formation assay were used to examine cellular viability and cancer stem cell-like phenotype, respectively. The expressions of stemness related factors were measured by RT-qPCR and western blotting. The luciferase reporter assay was applied to evaluate transcriptional potential of stemness related pathways. The alternations of WNT signaling pathway were measured by nuclear translocation of β-catenin, RT-qPCR and western blotting. Furthermore, to investigate the effect of drugs in vivo, both HNSCC orthotopic and subcutaneous xenograft mouse models were applied. Results We found that DHEA reduced HNSCC cell viability, suppressed sphere formation, and inhibited the expression of cancer-stemness markers, such as BMI-1 and Nestin. Moreover, DHEA repressed the transcriptional activity of stemness-related pathways. In the WNT pathway, DHEA reduced the nuclear translocation of the active form of β-catenin and reduced the protein expression of the downstream targets, CCND1 and CD44. Furthermore, when combined with the chemotherapeutic drug, irinotecan (IRN), DHEA enhanced the sensitivity of HNSCC cells to IRN as revealed by reduced cell viability, sphere formation, expression of stemness markers, and activation of the WNT pathway. Additionally, this combination reduced in vivo tumor growth in both orthotopic and subcutaneous xenograft mouse models. Conclusion These findings indicate that DHEA has anti-stemness potential in HNSCC and serves as a promising anticancer agent. The combination of DHEA and IRN may provide a potential therapeutic strategy for patients with advanced HNSCC.
Collapse
Affiliation(s)
- Li-Jie Li
- Ph.D. Program in School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chien-Hsiu Li
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Peter Mu-Hsin Chang
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tsung-Ching Lai
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chen-Yin Yong
- Division of Oral and Maxillofacial Surgery, Department of Dentistry Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Sheng-Wei Feng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Prosthodontics, Department of Dentistry, Taipei Medical University Hospital, Taipei, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wei-Min Chang
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
- *Correspondence: Chi-Ying F. Huang, ; Wei-Min Chang,
| | - Chi-Ying F. Huang
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- *Correspondence: Chi-Ying F. Huang, ; Wei-Min Chang,
| |
Collapse
|
5
|
Heterogenous chemosensitivity of a panel of organoid lines derived from small cell neuroendocrine carcinoma of the uterine cervix. Hum Cell 2021; 34:889-900. [PMID: 33677798 DOI: 10.1007/s13577-021-00511-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 02/15/2021] [Indexed: 10/22/2022]
Abstract
Small cell neuroendocrine carcinoma (SCNEC) of the uterine cervix is a rare disease with a poor prognosis. The lack of established disease models has hampered therapy development. We generated a panel of cancer tissue-originated spheroid (CTOS) lines derived from SCNEC of the uterine cervix using a method based upon cell-cell contact throughout the preparation and culturing processes. Using 11 CTOS lines, we assessed the sensitivity of various drugs used in clinical practice. Drug sensitivity assays revealed significant heterogeneous inter-CTOS chemosensitivity. Microarray analyses were then performed to identify sensitivity-related gene signatures. Specific gene sets were identified which likely contribute to the sensitivity to the tested drugs. We identified a line (Cerv54) that was exceptionally sensitive to irinotecan. Cerv54 had increased levels of CES1, which catalyzes the conversion of irinotecan to the active form, SN38, although in Cerv54 cells, SN38 was undetectable, CES1 expression and activity were markedly low compared to the liver, and a CES1 inhibitor had no effect on irinotecan sensitivity. These results suggested a novel irinotecan mode of action in Cerv54. Our CTOS lines may be useful for understanding the variation and mechanism of drug sensitivity, contributing to the understanding and development of chemotherapeutic drugs.
Collapse
|
6
|
Liu YZ, Pan LH, Bai Y, Yang K, Dong PP, Fang ZZ. Per- and polyfluoroalkyl substances exert strong inhibition towards human carboxylesterases. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114463. [PMID: 32283456 DOI: 10.1016/j.envpol.2020.114463] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 03/11/2020] [Accepted: 03/24/2020] [Indexed: 06/11/2023]
Abstract
PFASs are highly persistent in both natural and living environment, and pose a significant risk for wildlife and human beings. The present study was carried out to determine the inhibitory behaviours of fourteen PFASs on metabolic activity of two major isoforms of carboxylesterases (CES). The probe substrates 2-(2-benzoyl-3-methoxyphenyl) benzothiazole (BMBT) for CES1 and fluorescein diacetate (FD) for CES2 were utilized to determine the inhibitory potentials of PFASs on CES in vitro. The results demonstrated that perfluorododecanoic acid (PFDoA), perfluorotetradecanoic acid (PFTA) and perfluorooctadecanoic acid (PFOcDA) strongly inhibited CES1 and CES2. The half inhibition concentration (IC50) value of PFDoA, PFTA and PFOcDA for CES1 inhibition was 10.6 μM, 13.4 μM and 12.6 μM, respectively. The IC50 for the inhibition of PFDoA, PFTA and PFOcDA towards CES2 were calculated to be 9.56 μM, 17.2 μM and 8.73 μM, respectively. PFDoA, PFTA and PFOcDA exhibited noncompetitive inhibition towards both CES1 and CES2. The inhibition kinetics parameters (Ki) were 27.7 μM, 26.9 μM, 11.9 μM, 4.04 μM, 29.1 μM, 27.4 μM for PFDoA-CES1, PFTA-CES1, PFOcDA-CES1, PFDoA-CES2, PFTA-CES2, PFOcDA-CES2, respectively. In vitro-in vivo extrapolation (IVIVE) predicted that when the plasma concentrations of PFDoA, PFTA and PFOcDA were greater than 2.77 μM, 2.69 μM and 1.19 μM, respectively, it might interfere with the metabolic reaction catalyzed by CES1 in vivo; when the plasma concentrations of PFDoA, PFTA and PFOcDA were greater than 0.40 μM, 2.91 μM, 2.74 μM, it might interfere with the metabolic reaction catalyzed by CES2 in vivo. Molecular docking was used to explore the interactions between PFASs and CES. In conclusion, PFASs were found to cause inhibitory effects on CES in vitro, and this finding would provide an important experimental basis for further in vivo testing of PFASs focused on CES inhibition endpoints.
Collapse
Affiliation(s)
- Yong-Zhe Liu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, 300070, China; National Demonstration Center for Experimental Preventive Medicine Education, Tianjin Medical University, Tianjin, 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China
| | - Li-Hua Pan
- Department of Pharmacy, Tianjin Xiqing Hospital, Tianjin, 300000, China
| | - Yu Bai
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Kun Yang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, 300070, China; National Demonstration Center for Experimental Preventive Medicine Education, Tianjin Medical University, Tianjin, 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China
| | - Pei-Pei Dong
- College of Pharmacy, College (Institute) of Integrative Medicine, Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Zhong-Ze Fang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, 300070, China; National Demonstration Center for Experimental Preventive Medicine Education, Tianjin Medical University, Tianjin, 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China.
| |
Collapse
|
7
|
de Man FM, Goey AKL, van Schaik RHN, Mathijssen RHJ, Bins S. Individualization of Irinotecan Treatment: A Review of Pharmacokinetics, Pharmacodynamics, and Pharmacogenetics. Clin Pharmacokinet 2019. [PMID: 29520731 PMCID: PMC6132501 DOI: 10.1007/s40262-018-0644-7] [Citation(s) in RCA: 269] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Since its clinical introduction in 1998, the topoisomerase I inhibitor irinotecan has been widely used in the treatment of solid tumors, including colorectal, pancreatic, and lung cancer. Irinotecan therapy is characterized by several dose-limiting toxicities and large interindividual pharmacokinetic variability. Irinotecan has a highly complex metabolism, including hydrolyzation by carboxylesterases to its active metabolite SN-38, which is 100- to 1000-fold more active compared with irinotecan itself. Several phase I and II enzymes, including cytochrome P450 (CYP) 3A4 and uridine diphosphate glucuronosyltransferase (UGT) 1A, are involved in the formation of inactive metabolites, making its metabolism prone to environmental and genetic influences. Genetic variants in the DNA of these enzymes and transporters could predict a part of the drug-related toxicity and efficacy of treatment, which has been shown in retrospective and prospective trials and meta-analyses. Patient characteristics, lifestyle and comedication also influence irinotecan pharmacokinetics. Other factors, including dietary restriction, are currently being studied. Meanwhile, a more tailored approach to prevent excessive toxicity and optimize efficacy is warranted. This review provides an updated overview on today’s literature on irinotecan pharmacokinetics, pharmacodynamics, and pharmacogenetics.
Collapse
Affiliation(s)
- Femke M de Man
- Department of Medical Oncology, Erasmus MC Cancer Institute, 's-Gravendijkwal 230, 3015, Rotterdam, The Netherlands
| | - Andrew K L Goey
- Department of Hospital Pharmacy, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ron H N van Schaik
- Department of Clinical Chemistry, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ron H J Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, 's-Gravendijkwal 230, 3015, Rotterdam, The Netherlands
| | - Sander Bins
- Department of Medical Oncology, Erasmus MC Cancer Institute, 's-Gravendijkwal 230, 3015, Rotterdam, The Netherlands.
| |
Collapse
|
8
|
Cho E, Islam SMBU, Jiang F, Park JE, Lee B, Kim ND, Hwang TH. Characterization of Oncolytic Vaccinia Virus Harboring the Human IFNB1 and CES2 Transgenes. Cancer Res Treat 2019; 52:309-319. [PMID: 31401821 PMCID: PMC6962490 DOI: 10.4143/crt.2019.161] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 07/31/2019] [Indexed: 12/12/2022] Open
Abstract
Purpose The purpose of this study was to assess characteristics of SJ-815, a novel oncolytic vaccinia virus lacking a functional thymidine kinase-encoding TK gene, and instead, having two human transgenes: the IFNB1 that encodes interferon β1, and the CES2 that encodes carboxylesterase 2, which metabolizes the prodrug, irinotecan, into cytotoxic SN-38. Materials and Methods Viral replication and dissemination of SJ-815 were measured by plaque assay and comet assay, respectively, and compared to the backbone of SJ-815, a modified Western Reserve virus named WI. Tumor cytotoxicity of SJ-815 (or mSJ-815, which has the murine IFNB1 transgene for mouse cancers) was evaluated using human and mouse cancer cells. Antitumor effects of SJ-815, with/without irinotecan, were evaluated using a human pancreatic cancer-bearing mouse model and a syngeneic melanoma-bearing mouse model. The SN-38/irinotecan ratios in mouse melanoma tissue 4 days post irinotecan treatment were compared between groups with and without SJ-815 intravenous injection. Results SJ-815 demonstrated significantly lower viral replication and dissemination, but considerably stronger in vitro tumor cytotoxicity than WI. The combination use of SJ-815 plus irinotecan generated substantial tumor regression in the human pancreatic cancer model, and significantly prolonged survival in the melanoma model (hazard ratio, 0.11; 95% confidence interval, 0.02 to 0.50; p=0.013). The tumor SN-38/irinotecan ratios were over 3-fold higher in the group with SJ-815 than those without (p < 0.001). Conclusion SJ-815 demonstrates distinct characteristics gained from the inserted IFNB1 and CES2 transgenes. The potent antitumor effects of SJ-815, particularly when combined with irinotecan, against multiple solid tumors make SJ-815 an attractive candidate for further preclinical and clinical studies.
Collapse
Affiliation(s)
- Euna Cho
- Department of Pharmacology and Medical Research Center (MRC), Pusan National University School of Medicine, Yangsan, Korea.,Department of Pharmacy and Pusan Cancer Research Center, Pusan National University, Busan, Korea
| | - S M Bakhtiar Ul Islam
- Department of Pharmacology and Medical Research Center (MRC), Pusan National University School of Medicine, Yangsan, Korea.,Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan, Korea
| | - Fen Jiang
- Department of Pharmacology and Medical Research Center (MRC), Pusan National University School of Medicine, Yangsan, Korea.,School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Ju-Eun Park
- Department of Pharmacology and Medical Research Center (MRC), Pusan National University School of Medicine, Yangsan, Korea
| | - Bora Lee
- Department of Pharmacology and Medical Research Center (MRC), Pusan National University School of Medicine, Yangsan, Korea
| | - Nam Deuk Kim
- Department of Pharmacy and Pusan Cancer Research Center, Pusan National University, Busan, Korea
| | - Tae-Ho Hwang
- Department of Pharmacology and Medical Research Center (MRC), Pusan National University School of Medicine, Yangsan, Korea
| |
Collapse
|
9
|
Fu Q, Yang K, Hu RX, Du Z, Hu CM, Zhang X. Evaluation of the inhibition of human carboxylesterases (CESs) by the active ingredients from Schisandra chinensis. Xenobiotica 2019; 49:1260-1268. [PMID: 30486721 DOI: 10.1080/00498254.2018.1548718] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Qiang Fu
- Department of Cardiac Surgery, The General Hospital of Tianjin Medical University, Tianjin, China
| | - Kai Yang
- Department of Toxicology, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Rui-Xia Hu
- National Demonstration Center for Experimental Preventive Medicine Education (Tianjin Medical University), Tianjin, China
| | - Zuo Du
- Department of Toxicology, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Cui-Min Hu
- Tianjin Life Science Research Center, Department of Microbiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xibo Zhang
- Department of Hepatopancreatobiliary Surgery, Tianjin Nankai Hospital, Tianjin, China
| |
Collapse
|
10
|
Qin Y, Kang A, Zhou G, Wang H, Wei W, Cao Y, Chen Y, Wang J, Shi Y, Tang Y, Jiang J. Carboxylesterase and UDP-glucuronosyltransferases mediated metabolism of irinotecan: In vitro
and in vivo
insights from quantitative ultra-performance liquid chromatography-mass spectrometry analysis. Biomed Chromatogr 2018; 32:e4320. [DOI: 10.1002/bmc.4320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/04/2018] [Accepted: 06/09/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Yifeng Qin
- College of Pharmacy and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization; Shaanxi University of Chinese Medicine; Xi'an Shaanxi Province China
- School of Traditional Chinese Pharmacy; China Pharmaceutical University; Nanjing Jiangsu Province China
| | - An Kang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae; Nanjing University of Chinese Medicine; Nanjing Jiangsu Province China
| | - Guisheng Zhou
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae; Nanjing University of Chinese Medicine; Nanjing Jiangsu Province China
| | - Huan Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae; Nanjing University of Chinese Medicine; Nanjing Jiangsu Province China
| | - Wei Wei
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae; Nanjing University of Chinese Medicine; Nanjing Jiangsu Province China
| | - Yujie Cao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae; Nanjing University of Chinese Medicine; Nanjing Jiangsu Province China
| | - Yanyan Chen
- College of Pharmacy and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization; Shaanxi University of Chinese Medicine; Xi'an Shaanxi Province China
| | - Jing Wang
- College of Pharmacy and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization; Shaanxi University of Chinese Medicine; Xi'an Shaanxi Province China
| | - Yajun Shi
- College of Pharmacy and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization; Shaanxi University of Chinese Medicine; Xi'an Shaanxi Province China
| | - Yuping Tang
- College of Pharmacy and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization; Shaanxi University of Chinese Medicine; Xi'an Shaanxi Province China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae; Nanjing University of Chinese Medicine; Nanjing Jiangsu Province China
| | - Jianqin Jiang
- School of Traditional Chinese Pharmacy; China Pharmaceutical University; Nanjing Jiangsu Province China
| |
Collapse
|
11
|
Shaojun C, Li H, Haixin H, Guisheng L. Expression of Topoisomerase 1 and carboxylesterase 2 correlates with irinotecan treatment response in metastatic colorectal cancer. Cancer Biol Ther 2018; 19:153-159. [PMID: 29261002 PMCID: PMC5790385 DOI: 10.1080/15384047.2017.1414754] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 11/06/2017] [Accepted: 12/05/2017] [Indexed: 12/11/2022] Open
Abstract
Topoisomerase 1 (TOPO-1) and carboxylesterase 2 (CES-2) are found to play crucial roles in the pathogenesis of various cancers. The prognostic role of TOPO-1 and CES-2 in patients with metastatic colorectal cancer (mCRC) who underwent irinotecan chemotherapy was largely unknown. In the current study, we assessed the expression of TOPO-1 and CES-2 in mCRC and analyzed its potential relevance to irinotecan based therapy. A total of 98 patients with mCRC were included in this study. The expression of TOPO-1 and CES-2 in mCRC tissues was evaluated by immunohistochemistry. For TOPO-1, 46 patients showed high expression and 52 patients showed low expression. For CES-2, 53 patients showed high expression and 45 patients showed low expression. The correlation between TOPO-1 or CES-2 expression and clinicopathological characteristics of mCRC patients was analyzed. Neither TOPO-1 nor CES-2 had significant correlation with age, gender, tumor site, tumor grade and metastatic sites in mCRC patients. However, high expression of CES-2 but not TOP-1 was positively correlated with better curative effect. Kaplan-Meier and log-rank test were applied to assess the correlation between progression-free survival (PFS)/overall survival (OS) and TOPO-1 or CES-2 expression in mCRC patients. High expression of TOPO-1 and CES-2 are correlated with longer PFS and OS. In summary, our findings suggest that TOPO-1 and CES-2 may play important roles irinotecan sensitivity in mCRC patients. Evaluation of expression of TOPO-1 and CES-2 may provide preliminary clinical evidence for the management of irinotecan-based therapy in mCRC patients.
Collapse
Affiliation(s)
- Chen Shaojun
- Department of Medical Oncology, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, China
| | - Hua Li
- Department of Medical Oncology, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, China
| | - Huang Haixin
- Department of Medical Oncology, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, China
| | - Li Guisheng
- Department of Medical Oncology, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, China
| |
Collapse
|
12
|
Ueda K, Masuda A, Fukuda M, Tanaka S, Hosokawa M, Iwakawa S. Monophosphorylation by deoxycytidine kinase affects apparent cellular uptake of decitabine in HCT116 colon cancer cells. Drug Metab Pharmacokinet 2017; 32:301-310. [PMID: 29174536 DOI: 10.1016/j.dmpk.2017.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 08/28/2017] [Accepted: 10/02/2017] [Indexed: 02/07/2023]
Abstract
Decitabine (DAC), a nucleoside-related DNA methylation inhibitor, is taken up into cancer cells via equilibrative nucleoside transporter 1 (ENT1), and is then monophosphorylated by deoxycytidine kinase (dCK). In the present study, we examined the contribution of dCK to the uptake of DAC in HCT116 colon cancer cells. Irinotecan and etoposide inhibited the uptake of [3H]-uridine and [3H]-DAC at 10 s and 5 min, while cytarabine and gemcitabine only inhibited that of [3H]-DAC at 5 min. Irinotecan and etoposide inhibited [3H]-DAC uptake in negative control small interfering RNA (siRNA)- or dCK siRNA-transfected cells at 10 s, whereas cytarabine and gemcitabine did not. Cytarabine and gemcitabine inhibited DAC monophosphate generation by the cytosolic proteins of HCT116 cells and recombinant human dCK protein, assessed using polyethylenimine cellulose thin-layered chromatography. Simulations using simple kinetic models showed that apparent DAC uptake in dCK and ENT1 siRNA-treated cells was attributed to its conversion to monophosphates or a decrease in the cellular flux, respectively, and that the apparent uptake of DAC in dCK-knockdown and ENT1-knockdown cells was similar at longer times, but differed at a very short time. These results suggest that the apparent uptake of DAC is affected by ENT1 and dCK in HCT116 cells.
Collapse
Affiliation(s)
- Kumiko Ueda
- Department of Pharmaceutics, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe 658-8558, Japan.
| | - Ayasa Masuda
- Department of Pharmaceutics, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe 658-8558, Japan.
| | - Misaki Fukuda
- Department of Pharmaceutics, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe 658-8558, Japan.
| | - Shota Tanaka
- Department of Pharmaceutics, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe 658-8558, Japan.
| | - Mika Hosokawa
- Department of Pharmaceutics, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe 658-8558, Japan.
| | - Seigo Iwakawa
- Department of Pharmaceutics, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe 658-8558, Japan.
| |
Collapse
|
13
|
Abstract
DDAB (6,8-dichloro-9,9-dimethyl-7-oxo-7,9-dihydroacridin-2-yl benzoate) is a newly developed near-infrared fluorescent probe for human carboxylesterase 2 (hCE2), exhibiting high specificity and good reactivity for real-time monitoring the enzymatic activities of hCE2 in complex biological systems. In order to explore the applicability of DDAB in commonly used animal species, the interspecies difference in DDAB hydrolysis was carefully investigated by using liver microsomes from human and five experimental animals including mouse, rat, dog, minipig and monkey. Metabolite profiling demonstrated that DDAB hydrolysis could be catalyzed by all tested liver microsomes from different animals but displayed significant difference in the reaction rate. Chemical inhibition assays demonstrated that carboxylesterases (CEs) were the major enzymes involved in DDAB hydrolysis in all tested liver microsomes, indicating that DDAB was a selective substrate of CEs in a variety of mammals. However, the differential effects of loperamide (LPA, a specific inhibitor against hCE2) on DDAB hydrolysis among various species were observed. The apparent kinetic parameters and the maximum intrinsic clearances (CLmax) for DDAB hydrolysis in liver microsomes from different animals were determined, and the order of CLmax values for the formation of DDAO was CyLM>MLM≈PLM>RLM>HLM≈DLM. These findings were helpful for the rational use of DDAB as an imaging tool for CE2 in different mammals, as well as for translational researches on the function of mammalian CEs and CE2-associated drug-drug interactions.
Collapse
|
14
|
Fiorica C, Mauro N, Pitarresi G, Scialabba C, Palumbo FS, Giammona G. Double-Network-Structured Graphene Oxide-Containing Nanogels as Photothermal Agents for the Treatment of Colorectal Cancer. Biomacromolecules 2017; 18:1010-1018. [PMID: 28192653 DOI: 10.1021/acs.biomac.6b01897] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Here, we reported the production of hyaluronic acid/polyaspartamide-based double-network nanogels for the potential treatment of colorectal carcinoma. Graphene oxide, thanks to the huge aromatic surface area, allows to easily load high amount of irinotecan (33.0% w/w) and confers to the system hyperthermic properties when irradiated with a near-infrared (NIR) laser beam. We demonstrate that the release of antitumor drug is influenced both by the pH of the external medium and the NIR irradiation process. In vitro biological studies, conducted on human colon cancer cells (HCT 116), revealed that nanogels are uptaken by the cancer cells and, in the presence of the antitumor drug, can produce a synergistic hyperthermic/cytotoxic effect. Finally, 3D experiments demonstrate that it is possible to conduct thermal ablation of solid tumors after the intratumoral administration of nanogels.
Collapse
Affiliation(s)
- Calogero Fiorica
- Laboratory of Biocompatible Polymers, Department of "Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche" (STEBICEF), University of Palermo , Via Archirafi, 32 90123 Palermo, Italy
| | - Nicolò Mauro
- Laboratory of Biocompatible Polymers, Department of "Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche" (STEBICEF), University of Palermo , Via Archirafi, 32 90123 Palermo, Italy
| | - Giovanna Pitarresi
- Laboratory of Biocompatible Polymers, Department of "Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche" (STEBICEF), University of Palermo , Via Archirafi, 32 90123 Palermo, Italy
| | - Cinzia Scialabba
- Laboratory of Biocompatible Polymers, Department of "Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche" (STEBICEF), University of Palermo , Via Archirafi, 32 90123 Palermo, Italy
| | - Fabio S Palumbo
- Laboratory of Biocompatible Polymers, Department of "Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche" (STEBICEF), University of Palermo , Via Archirafi, 32 90123 Palermo, Italy
| | - Gaetano Giammona
- Laboratory of Biocompatible Polymers, Department of "Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche" (STEBICEF), University of Palermo , Via Archirafi, 32 90123 Palermo, Italy.,Mediterranean Center for Human Advanced Biotechnologies (Med-Chab), Viale delle Scienze Ed.18, 90128 Palermo, Italy
| |
Collapse
|