1
|
Rumbus Z, Fekete K, Kelava L, Gardos B, Klonfar K, Keringer P, Pinter E, Pakai E, Garami A. Ammonium chloride-induced hypothermia is attenuated by transient receptor potential channel vanilloid-1, but augmented by ankyrin-1 in rodents. Life Sci 2024; 346:122633. [PMID: 38615746 DOI: 10.1016/j.lfs.2024.122633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/29/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
AIMS Systemic administration of ammonium chloride (NH4Cl), an acidifying agent used in human patients and experimental conditions, causes hypothermia in mice, however, the mechanisms of the thermoregulatory response to NH4Cl and whether it develops in other species remained unknown. MAIN METHODS We studied body temperature (Tb) changes in rats and mice induced by intraperitoneal administration of NH4Cl after blockade of transient receptor potential vanilloid-1 (TRPV1) or ankyrin-1 (TRPA1) channels. KEY FINDINGS In rats, NH4Cl decreased Tb by 0.4-0.8°C (p < 0.05). The NH4Cl-induced hypothermia also developed in Trpv1 knockout (Trpv1-/-) and wild-type (Trpv1+/+) mice, however, the Tb drop was exaggerated in Trpv1-/- mice compared to Trpv1+/+ controls with maximal decreases of 4.0 vs. 2.1°C, respectively (p < 0.05). Pharmacological blockade of TRPV1 channels with AMG 517 augmented the hypothermic response to NH4Cl in genetically unmodified mice and rats (p < 0.05 for both). In contrast, when NH4Cl was infused to mice genetically lacking the TRPA1 channel, the hypothermic response was significantly attenuated compared to wild-type controls with maximal mean Tb difference of 1.0°C between the genotypes (p = 0.008). Pretreatment of rats with a TRPA1 antagonist (A967079) also attenuated the NH4Cl-induced Tb drop with a maximal difference of 0.7°C between the pretreatment groups (p = 0.003). SIGNIFICANCE TRPV1 channels limit, whereas TRPA1 channels exaggerate the development of NH4Cl-induced hypothermia in rats and mice, but other mechanisms are also involved. Our results warrant for regular Tb control and careful consideration of NH4Cl treatment in patients with TRPA1 and TRPV1 channel dysfunctions.
Collapse
Affiliation(s)
- Zoltan Rumbus
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, Pecs H-7624, Hungary
| | - Kata Fekete
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, Pecs H-7624, Hungary
| | - Leonardo Kelava
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, Pecs H-7624, Hungary
| | - Bibor Gardos
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, Pecs H-7624, Hungary
| | - Krisztian Klonfar
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, Pecs H-7624, Hungary
| | - Patrik Keringer
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, Pecs H-7624, Hungary
| | - Erika Pinter
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pecs, Pecs H-7624, Hungary
| | - Eszter Pakai
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, Pecs H-7624, Hungary
| | - Andras Garami
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, Pecs H-7624, Hungary.
| |
Collapse
|
2
|
Giha HA. Hidden chronic metabolic acidosis of diabetes type 2 (CMAD): Clues, causes and consequences. Rev Endocr Metab Disord 2023; 24:735-750. [PMID: 37380824 DOI: 10.1007/s11154-023-09816-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/09/2023] [Indexed: 06/30/2023]
Abstract
Interpretation of existing data revealed that chronic metabolic acidosis is a pathognomic feature for type 2 diabetes (T2D), which is described here as "chronic metabolic acidosis of T2D (CMAD)" for the first time. The biochemical clues for the CMAD are summarised in the following; low blood bicarbonate (high anionic gap), low pH of interstitial fluid and urine, and response to acid neutralization, while the causes of extra protons are worked out to be; mitochondrial dysfunction, systemic inflammation, gut microbiota (GM), and diabetic lung. Although, the intracellular pH is largely preserved by the buffer system and ion transporters, a persistent systemic mild acidosis leaves molecular signature in cellular metabolism in diabetics. Reciprocally, there are evidences that CMAD contributes to the initiation and progression of T2D by; reducing insulin production, triggering insulin resistance directly or via altered GM, and inclined oxidative stress. The details about the above clues, causes and consequences of CMAD are obtained by searching literature spanning between 1955 and 2022. Finally, the molecular bases of CMAD are discussed in details by interpretation of an up-to-date data and aid of well constructed diagrams, with a conclusion unravelling that CMAD is a major player in T2D pathophysiology. To this end, the CMAD disclosure offers several therapeutic potentials for prevention, delay or attenuation of T2D and its complications.
Collapse
Affiliation(s)
- Hayder A Giha
- Medical Biochemistry and Molecular Biology, Khartoum, Sudan.
| |
Collapse
|
3
|
Thomas C, Delfour‐Peyrethon R, Lambert K, Granata C, Hobbs T, Hanon C, Bishop DJ. The effect of pre-exercise alkalosis on lactate/pH regulation and mitochondrial respiration following sprint-interval exercise in humans. Front Physiol 2023; 14:1073407. [PMID: 36776968 PMCID: PMC9911540 DOI: 10.3389/fphys.2023.1073407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/11/2023] [Indexed: 01/28/2023] Open
Abstract
Purpose: The purpose of this study was to evaluate the effect of pre-exercise alkalosis, induced via ingestion of sodium bicarbonate, on changes to lactate/pH regulatory proteins and mitochondrial function induced by a sprint-interval exercise session in humans. Methods: On two occasions separated by 1 week, eight active men performed a 3 × 30-s all-out cycling test, interspersed with 20 min of recovery, following either placebo (PLA) or sodium bicarbonate (BIC) ingestion. Results: Blood bicarbonate and pH were elevated at all time points after ingestion in BIC vs PLA (p < 0.05). The protein content of monocarboxylate transporter 1 (MCT1) and basigin (CD147), at 6 h and 24 h post-exercise, and sodium/hydrogen exchanger 1 (NHE1) 24 h post-exercise, were significantly greater in BIC compared to PLA (p < 0.05), whereas monocarboxylate transporter 4 (MCT4), sodium/bicarbonate cotransporter (NBC), and carbonic anhydrase isoform II (CAII) content was unchanged. These increases in protein content in BIC vs. PLA after acute sprint-interval exercise may be associated with altered physiological responses to exercise, such as the higher blood pH and bicarbonate concentration values, and lower exercise-induced oxidative stress observed during recovery (p < 0.05). Additionally, mitochondrial respiration decreased after 24 h of recovery in the BIC condition only, with no changes in oxidative protein content in either condition. Conclusion: These data demonstrate that metabolic alkalosis induces post-exercise increases in several lactate/pH regulatory proteins, and reveal an unexpected role for acidosis in mitigating the loss of mitochondrial respiration caused by exercise in the short term.
Collapse
Affiliation(s)
- Claire Thomas
- LBEPS, Univ Evry, IRBA, University Paris Saclay, Evry, France,French Institute of Sport (INSEP), Research Department, Laboratory Sport, Expertise, and Performance, Paris, France,*Correspondence: Claire Thomas,
| | - Rémi Delfour‐Peyrethon
- French Institute of Sport (INSEP), Research Department, Laboratory Sport, Expertise, and Performance, Paris, France,Institute for Health and Sport (iHeS), Victoria University, Melbourne, VIC, Australia
| | - Karen Lambert
- PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214, Montpellier, France
| | - Cesare Granata
- French Institute of Sport (INSEP), Research Department, Laboratory Sport, Expertise, and Performance, Paris, France,Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia,Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany,German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Thomas Hobbs
- LBEPS, Univ Evry, IRBA, University Paris Saclay, Evry, France
| | - Christine Hanon
- French Institute of Sport (INSEP), Research Department, Laboratory Sport, Expertise, and Performance, Paris, France,French Athletics Federation, Paris, France
| | - David J. Bishop
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, VIC, Australia
| |
Collapse
|
4
|
Genders AJ, Kuang J, Saner NJ, Botella J, Bishop DJ. Ammonium chloride administration prevents training-induced improvements in mitochondrial respiratory function in the soleus muscle of male rats. Am J Physiol Cell Physiol 2023; 324:C67-C75. [PMID: 36542512 DOI: 10.1152/ajpcell.00165.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022]
Abstract
Exercise training can increase both mitochondrial content and mitochondrial respiration. Despite its popularity, high-intensity exercise can be accompanied by mild acidosis (also present in certain pathological states), which may limit exercise-induced adaptations to skeletal muscle mitochondria. The aim of this study was to determine if administration of ammonium chloride (0.05 g/kg) to Wistar rats before each individual exercise session (5 high-intensity exercise sessions/wk for 8 wk) reduced training-induced increases in mitochondrial content (measured by citrate synthase activity and protein content of electron transport system complexes) and respiration (measured in permeabilized muscle fibers). In the soleus muscle, the exercise-training-induced increase in mitochondrial respiration was reduced in rats administered ammonium chloride compared to control animals, but mitochondrial content was not altered. These effects were not present in the white gastrocnemius muscle. In conclusion, ammonium chloride administration before each exercise session over 8 wk reduced improvements in mitochondrial respiration in the soleus muscle but did not alter mitochondrial content. This suggests that mild acidosis may affect training-induced improvements in the respiration of mitochondria in some muscles.
Collapse
Affiliation(s)
- Amanda J Genders
- Institute for Health and Sport, Victoria University, Melbourne, Australia
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Jujiao Kuang
- Institute for Health and Sport, Victoria University, Melbourne, Australia
- Australian Institute for Musculoskeletal Sciences, Melbourne, Australia
| | - Nicholas J Saner
- Institute for Health and Sport, Victoria University, Melbourne, Australia
- Human Integrative Physiology, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Javier Botella
- Institute for Health and Sport, Victoria University, Melbourne, Australia
- Metabolic Research Unit, Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, Australia
| | - David J Bishop
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| |
Collapse
|
5
|
Islam H, Gillen JB. Skeletal muscle mechanisms contributing to improved glycemic control following intense interval exercise and training. SPORTS MEDICINE AND HEALTH SCIENCE 2023; 5:20-28. [PMID: 36994179 PMCID: PMC10040385 DOI: 10.1016/j.smhs.2023.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/07/2023] [Accepted: 01/11/2023] [Indexed: 01/26/2023] Open
Abstract
High-intensity and sprint interval training (HIIT and SIT, respectively) enhance insulin sensitivity and glycemic control in both healthy adults and those with cardiometabolic diseases. The beneficial effects of intense interval training on glycemic control include both improvements seen in the hours to days following a single session of HIIT/SIT and those which accrue with chronic training. Skeletal muscle is the largest site of insulin-stimulated glucose uptake and plays an integral role in the beneficial effects of exercise on glycemic control. Here we summarize the skeletal muscle responses that contribute to improved glycemic control during and following a single session of interval exercise and evaluate the relationship between skeletal muscle remodelling and improved insulin sensitivity following HIIT/SIT training interventions. Recent evidence suggests that targeting skeletal muscle mechanisms via nutritional interventions around exercise, particularly with carbohydrate manipulation, can enhance the acute glycemic benefits of HIIT. There is also some evidence of sex-based differences in the glycemic benefits of intense interval exercise, with blunted responses observed after training in females relative to males. Differences in skeletal muscle metabolism between males and females may contribute to sex differences in insulin sensitivity following HIIT/SIT, but well-controlled studies evaluating purported muscle mechanisms alongside measurement of insulin sensitivity are needed. Given the greater representation of males in muscle physiology literature, there is also a need for more research involving female-only cohorts to enhance our basic understanding of how intense interval training influences muscle insulin sensitivity in females across the lifespan.
Collapse
|
6
|
Tsirigkakis S, Koutedakis Y, Mastorakos G, Stavrinou PS, Mougios V, Bogdanis GC. Physiological, perceptual and affective responses to high-intensity interval training using two work-matched programs with different bout duration in obese males. J Exerc Sci Fit 2022; 20:199-205. [PMID: 35510254 PMCID: PMC9035702 DOI: 10.1016/j.jesf.2022.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 02/07/2023] Open
Abstract
Objectives This study compared physiological, perceptual, and affective responses to high-intensity interval training (HIIT) between two work-matched programs with different bout durations in obese males. Methods Sixteen low-to-moderately active obese men completed an eight-week cycling program of supervised HIIT (3 days/week) using either short bouts [48 × 10 s at 100% of peak power output (PPO) with 15 s of recovery (HIIT10)] or long bouts [8 × 60 s at 100% PPO with 90 s of recovery (HIIT60)]. Workload was progressively adjusted, to maintain high intensity (100% PPO), throughout training. Blood lactate (BLa), heart rate (HR), ratings of perceived exertion (RPE), and feeling scale ratings (pleasure/displeasure) were measured in each HIIT session. Results Average HR decreased in the last 2 weeks of training in both groups by 2.2 ± 1.8% of peak HR (p < 0.001). Training resulted in a reduction in BLa during exercise by 28 ± 19% (p < 0.001) from the 10th min onward only in HIIT10. Similarly, during the last weeks of training, RPE decreased (by 1.0 ± 1.1 units, p < 0.05) and feeling scale ratings were improved only in HIIT10, while RPE remained unchanged and feeling scale ratings deteriorated in HIIT60 (from 3.0 ± 1.1 to 2.1 ± 0.9 units, p < 0.001). No differences in post-exercise enjoyment were found. Conclusion Both HIIT formats induced similar HR adaptations, but improvement of BLa, perceptual and affective responses occurred only when bout duration was shorter. Our findings suggest that, in low-to-moderately active obese men, HIIT may be more effective in improving metabolic, perceptual, and affective responses when shorter, rather than longer, bouts of exercise are used.
Collapse
Affiliation(s)
- Spyridon Tsirigkakis
- School of Physical Education & Sports Science, University of Thessaly, Trikala, Greece
| | - Yiannis Koutedakis
- School of Physical Education & Sports Science, University of Thessaly, Trikala, Greece
| | - George Mastorakos
- Unit of Metabolism and Endocrinology of Physical Activity and Sport, Aretaieion Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- Unit of Endocrinology, Diabetes Mellitus and Metabolism, Aretaieion Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Vassilis Mougios
- Laboratory of Evaluation of Human Biological Performance, School of Physical Education and Sport Science, Aristotle University of Thessaloniki, 57001, Thessaloniki, Greece
| | - Gregory C. Bogdanis
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, 17237, Athens, Greece
| |
Collapse
|
7
|
Bogdanis GC, Stavrinou PS, Tsirigkakis S, Mougios V, Astorino TA, Mastorakos G. Attenuated Metabolic and Cardiorespiratory Responses to Isoenergetic High-Intensity Interval Exercise of Short Versus Long Bouts. Med Sci Sports Exerc 2022; 54:1199-1209. [PMID: 35234217 DOI: 10.1249/mss.0000000000002905] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE To compare the metabolic, cardiorespiratory and perceptual responses to three isoenergetic high-intensity interval exercise (HIIE) protocols of different bout duration and an isoenergetic continuous exercise protocol. METHODS Eleven healthy males (age, 28 ± 6 yr) performed four 20-min cycling trials of equal mean power output 1 wk apart. Participants cycled either continuously (CON) or intermittently with 10 s (HIIE10), 30 s (HIIE30), or 60 s (HIIE60) bouts at intensities corresponding to 49% (CON) or 100% of power at peak oxygen uptake (V̇O2peak). Recovery intervals during the HIIE trials were 15, 45, and 90 s, respectively. RESULTS Average V̇O2 was similar in the HIIE trials (2.29 ± 0.42, 2.20 ± 0.43, and 2.12 ± 0.45 L·min-1, for HIIE10, HIIE30, and HIIE60, respectively), whereas in CON (2.02 ± 0.38 L·min-1), it was lower than HIIE10 (P = 0.002) and HIIE30 (P = 0.043). Average pulmonary ventilation (VE) was higher in HIIE60 compared with HIIE10, HIIE30, and CON (75.8 ± 21.8 L·min-1 vs 64.1 ± 14.5 L·min-1, 64.1 ± 16.2 L·min-1, and 54.0 ± 12.5 L·min-1, respectively, P < 0.001). The peak values and oscillations of V̇O2 and VE in HIIE60 were higher compared with all other trials (P < 0.001). Blood lactate concentration was higher in HIIE60 compared with HIIE10, HIIE30, and CON from the fifth minute onward, reaching 12.5 ± 3.5, 7.2 ± 2.1, 7.9 ± 2.9, and 4.9 ± 1.6 mmol·L-1, respectively, at the end of exercise (P < 0.001). RPE was higher and affective responses were lower in HIIE60 compared with all other trials toward the end of exercise (P < 0.001). CONCLUSIONS These findings highlight the importance of bout duration in HIIE, since shorter bouts resulted in attenuated metabolic and cardiorespiratory responses, lower RPE and feelings of displeasure compared with a longer bout, despite equal total work, duration, and work-to-recovery ratio. These results may have implications for the prescription of HIIE in various populations.
Collapse
Affiliation(s)
- Gregory C Bogdanis
- School of P.E. and Sport Science, National and Kapodistrian University of Athens, Athens, GREECE
| | | | | | - Vassilis Mougios
- Laboratory of Evaluation of Human Biological Performance, School of Physical Education and Sport Science at Thessaloniki, Aristotle University of Thessaloniki, GREECE
| | - Todd A Astorino
- Department of Kinesiology, California State University, San Marcos, San Marcos, CA
| | | |
Collapse
|
8
|
Genders AJ, Marin EC, Bass JJ, Kuang J, Saner NJ, Smith K, Atherton PJ, Bishop DJ. Ammonium chloride administration prior to exercise has muscle-specific effects on mitochondrial and myofibrillar protein synthesis in rats. Physiol Rep 2021; 9:e14797. [PMID: 33769716 PMCID: PMC7995552 DOI: 10.14814/phy2.14797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 02/01/2021] [Accepted: 02/14/2021] [Indexed: 12/04/2022] Open
Abstract
AIM Exercise is able to increase both muscle protein synthesis and mitochondrial biogenesis. However, acidosis, which can occur in pathological states as well as during high-intensity exercise, can decrease mitochondrial function, whilst its impact on muscle protein synthesis is disputed. Thus, the aim of this study was to determine the effect of a mild physiological decrease in pH, by administration of ammonium chloride, on myofibrillar and mitochondrial protein synthesis, as well as associated molecular signaling events. METHODS Male Wistar rats were given either a placebo or ammonium chloride prior to a short interval training session. Rats were killed before exercise, immediately after exercise, or 3 h after exercise. RESULTS Myofibrillar (p = 0.036) fractional protein synthesis rates was increased immediately after exercise in the soleus muscle of the placebo group, but this effect was absent in the ammonium chloride group. However, in the gastrocnemius muscle NH4 Cl increased myofibrillar (p = 0.044) and mitochondrial protein synthesis (0 h after exercise p = 0.01; 3 h after exercise p = 0.003). This was accompanied by some small differences in protein phosphorylation and mRNA expression. CONCLUSION This study found ammonium chloride administration immediately prior to a single session of exercise in rats had differing effects on mitochondrial and myofibrillar protein synthesis rates in soleus (type I) and gastrocnemius (type II) muscle in rats.
Collapse
Affiliation(s)
- Amanda J. Genders
- Institute for Health and Sport (iHeS)Victoria UniversityMelbourneVictoriaAustralia
| | - Evelyn C. Marin
- Institute for Health and Sport (iHeS)Victoria UniversityMelbourneVictoriaAustralia
- Department of Medicine (Austin Health)The University of MelbourneMelbourneVictoriaAustralia
| | - Joseph J. Bass
- MRC/ARUK Centre for Musculoskeletal Ageing ResearchNottingham Biomedical Research Centre (BRC)National Institute for Health Research (NIHR)School of MedicineUniversity of NottinghamNottinghamUK
| | - Jujiao Kuang
- Institute for Health and Sport (iHeS)Victoria UniversityMelbourneVictoriaAustralia
| | - Nicholas J. Saner
- Institute for Health and Sport (iHeS)Victoria UniversityMelbourneVictoriaAustralia
| | - Ken Smith
- MRC/ARUK Centre for Musculoskeletal Ageing ResearchNottingham Biomedical Research Centre (BRC)National Institute for Health Research (NIHR)School of MedicineUniversity of NottinghamNottinghamUK
| | - Philip J. Atherton
- MRC/ARUK Centre for Musculoskeletal Ageing ResearchNottingham Biomedical Research Centre (BRC)National Institute for Health Research (NIHR)School of MedicineUniversity of NottinghamNottinghamUK
| | - David J. Bishop
- Institute for Health and Sport (iHeS)Victoria UniversityMelbourneVictoriaAustralia
| |
Collapse
|
9
|
Liegnell R, Apró W, Danielsson S, Ekblom B, van Hall G, Holmberg HC, Moberg M. Elevated plasma lactate levels via exogenous lactate infusion do not alter resistance exercise-induced signaling or protein synthesis in human skeletal muscle. Am J Physiol Endocrinol Metab 2020; 319:E792-E804. [PMID: 32830552 DOI: 10.1152/ajpendo.00291.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Lactate has been implicated as a potential signaling molecule. In myotubes, lactate incubation increases mechanistic target of rapamycin complex 1 (mTORC1)- and ERK-signaling and induces hypertrophy, indicating that lactate could be a mediator of muscle adaptations to resistance exercise. However, the potential signaling properties of lactate, at rest or with exercise, have not been explored in human tissue. In a crossover design study, 8 men and 8 women performed one-legged resistance exercise while receiving venous infusion of saline or sodium lactate. Blood was sampled repeatedly, and muscle biopsies were collected at rest and at 0, 90, and 180 min and 24 h after exercise. The primary outcomes examined were intracellular signaling, fractional protein synthesis rate (FSR), and blood/muscle levels of lactate and pH. Postexercise blood lactate concentrations were 130% higher in the Lactate trial (3.0 vs. 7.0 mmol/L, P < 0.001), whereas muscle levels were only marginally higher (27 vs. 32 mmol/kg dry wt, P = 0.003) compared with the Saline trial. Postexercise blood pH was higher in the Lactate trial (7.34 vs. 7.44, P < 0.001), with no differences in intramuscular pH. Exercise increased the phosphorylation of mTORS2448 (∼40%), S6K1T389 (∼3-fold), and p44T202/T204 (∼80%) during recovery, without any differences between trials. FSR over the 24-h recovery period did not differ between the Saline (0.067%/h) and Lactate (0.062%/h) trials. This study does not support the hypothesis that blood lactate levels can modulate anabolic signaling in contracted human muscle. Further in vivo research investigating the impact of exercised versus rested muscle and the role of intramuscular lactate is needed to elucidate its potential signaling properties.
Collapse
Affiliation(s)
- Rasmus Liegnell
- Department of Physiology, Nutrition and Biomechaniscs, Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - William Apró
- Department of Physiology, Nutrition and Biomechaniscs, Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Sebastian Danielsson
- Department of Physiology, Nutrition and Biomechaniscs, Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Björn Ekblom
- Department of Physiology, Nutrition and Biomechaniscs, Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Gerrit van Hall
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
- Clinical Metabolomics Core Facility, Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
| | - Hans-Christer Holmberg
- Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, Östersund, Sweden
- Department of Physiology and Pharmacology, Biomedicum C5, Karolinska Institute, Stockholm, Sweden
| | - Marcus Moberg
- Department of Physiology, Nutrition and Biomechaniscs, Swedish School of Sport and Health Sciences, Stockholm, Sweden
| |
Collapse
|
10
|
Nguyen DX, Nakazawa T, Myo G, Inoue C, Kawauchi M, Sakamoto M, Honda Y. A promoter assay system using gene targeting in agaricomycetes Pleurotus ostreatus and Coprinopsis cinerea. J Microbiol Methods 2020; 179:106053. [PMID: 32918936 DOI: 10.1016/j.mimet.2020.106053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 09/04/2020] [Accepted: 09/04/2020] [Indexed: 11/17/2022]
Abstract
A novel promoter assay was developed for Agaricomycetes, using a gene-targeting approach, with or without the CRISPR/Cas9 technique. It enables precise evaluation of promoter activity at the original site of the chromosome without random and multiple integrations in conventional transformation experiments.
Collapse
Affiliation(s)
- Dong Xuan Nguyen
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan; Biotechnology Center of Ho Chi Minh City, Ho Chi Minh City, Viet Nam.
| | - Takehito Nakazawa
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Genki Myo
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Chikako Inoue
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Moriyuki Kawauchi
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Masahiro Sakamoto
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Yoichi Honda
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| |
Collapse
|
11
|
Rothschild JA, Bishop DJ. Effects of Dietary Supplements on Adaptations to Endurance Training. Sports Med 2020; 50:25-53. [PMID: 31531769 DOI: 10.1007/s40279-019-01185-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Endurance training leads to a variety of adaptations at the cellular and systemic levels that serve to minimise disruptions in whole-body homeostasis caused by exercise. These adaptations are differentially affected by training volume, training intensity, and training status, as well as by nutritional choices that can enhance or impair the response to training. A variety of supplements have been studied in the context of acute performance enhancement, but the effects of continued supplementation concurrent to endurance training programs are less well characterised. For example, supplements such as sodium bicarbonate and beta-alanine can improve endurance performance and possibly training adaptations during endurance training by affecting buffering capacity and/or allowing an increased training intensity, while antioxidants such as vitamin C and vitamin E may impair training adaptations by blunting cellular signalling but appear to have little effect on performance outcomes. Additionally, limited data suggest the potential for dietary nitrate (in the form of beetroot juice), creatine, and possibly caffeine, to further enhance endurance training adaptation. Therefore, the objective of this review is to examine the impact of dietary supplements on metabolic and physiological adaptations to endurance training.
Collapse
Affiliation(s)
- Jeffrey A Rothschild
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand. .,TriFit Performance Center, Santa Monica, CA, USA.
| | - David J Bishop
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| |
Collapse
|
12
|
Genders AJ, Martin SD, McGee SL, Bishop DJ. A physiological drop in pH decreases mitochondrial respiration, and HDAC and Akt signaling, in L6 myocytes. Am J Physiol Cell Physiol 2019; 316:C404-C414. [PMID: 30649921 DOI: 10.1152/ajpcell.00214.2018] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Exercise stimulates mitochondrial biogenesis and increases mitochondrial respiratory function and content. However, during high-intensity exercise muscle pH can decrease below pH 6.8 with a concomitant increase in lactate concentration. This drop in muscle pH is associated with reduced exercise-induced mitochondrial biogenesis, while increased lactate may act as a signaling molecule to affect mitochondrial biogenesis. Therefore, in this study we wished to determine the impact of altering pH and lactate concentration in L6 myotubes on genes and proteins known to be involved in mitochondrial biogenesis. We also examined mitochondrial respiration in response to these perturbations. Differentiated L6 myotubes were exposed to normal (pH 7.5)-, low (pH 7.0)-, or high (pH 8.0)-pH media with and without 20 mM sodium l-lactate for 1 and 6 h. Low pH and 20 mM sodium l-lactate resulted in decreased Akt (Ser473) and AMPK (T172) phosphorylation at 1 h compared with controls, while at 6 h the nuclear localization of histone deacetylase 5 (HDAC5) was decreased. When the pH was increased both Akt (Ser473) and AMPK (T172) phosphorylation was increased at 1 h. Overall increased lactate decreased the nuclear content of HDAC5 at 6 h. Exposure to both high- and low-pH media decreased basal mitochondrial respiration, ATP turnover, and maximum mitochondrial respiratory capacity. These data indicate that muscle pH affects several metabolic signaling pathways, including those required for mitochondrial function.
Collapse
Affiliation(s)
- Amanda J Genders
- Institute for Health and Sport, Victoria University , Melbourne, Victoria , Australia
| | - Sheree D Martin
- Metabolic Research Unit, School of Medicine and Centre for Molecular and Medical Research, Deakin University , Geelong, Victoria , Australia
| | - Sean L McGee
- Metabolic Research Unit, School of Medicine and Centre for Molecular and Medical Research, Deakin University , Geelong, Victoria , Australia.,Baker Heart and Diabetes Institute , Melbourne, Victoria , Australia
| | - David J Bishop
- Institute for Health and Sport, Victoria University , Melbourne, Victoria , Australia.,School of Medical and Health Sciences, Edith Cowan University , Joondalup, Western Australia , Australia
| |
Collapse
|
13
|
Fiorenza M, Gunnarsson TP, Hostrup M, Iaia FM, Schena F, Pilegaard H, Bangsbo J. Metabolic stress-dependent regulation of the mitochondrial biogenic molecular response to high-intensity exercise in human skeletal muscle. J Physiol 2018; 596:2823-2840. [PMID: 29727016 DOI: 10.1113/jp275972] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 04/20/2018] [Indexed: 12/25/2022] Open
Abstract
KEY POINTS Low-volume high-intensity exercise training promotes muscle mitochondrial adaptations that resemble those associated with high-volume moderate-intensity exercise training. These training-induced mitochondrial adaptations stem from the cumulative effects of transient transcriptional responses to each acute exercise bout. However, whether metabolic stress is a key mediator of the acute molecular responses to high-intensity exercise is still incompletely understood. Here we show that, by comparing different work-matched low-volume high-intensity exercise protocols, more marked metabolic perturbations were associated with enhanced mitochondrial biogenesis-related muscle mRNA responses. Furthermore, when compared with high-volume moderate-intensity exercise, only the low-volume high-intensity exercise eliciting severe metabolic stress compensated for reduced exercise volume in the induction of mitochondrial biogenic mRNA responses. The present results, besides improving our understanding of the mechanisms mediating exercise-induced mitochondrial biogenesis, may have implications for applied and clinical research that adopts exercise as a means to increase muscle mitochondrial content and function in healthy or diseased individuals. ABSTRACT The aim of the present study was to examine the impact of exercise-induced metabolic stress on regulation of the molecular responses promoting skeletal muscle mitochondrial biogenesis. Twelve endurance-trained men performed three cycling exercise protocols characterized by different metabolic profiles in a randomized, counter-balanced order. Specifically, two work-matched low-volume supramaximal-intensity intermittent regimes, consisting of repeated-sprint (RS) and speed endurance (SE) exercise, were employed and compared with a high-volume continuous moderate-intensity exercise (CM) protocol. Vastus lateralis muscle samples were obtained before, immediately after, and 3 h after exercise. SE produced the most marked metabolic perturbations as evidenced by the greatest changes in muscle lactate and pH, concomitantly with higher post-exercise plasma adrenaline levels in comparison with RS and CM. Exercise-induced phosphorylation of CaMKII and p38 MAPK was greater in SE than in RS and CM. The exercise-induced PGC-1α mRNA response was higher in SE and CM than in RS, with no difference between SE and CM. Muscle NRF-2, TFAM, MFN2, DRP1 and SOD2 mRNA content was elevated to the same extent by SE and CM, while RS had no effect on these mRNAs. The exercise-induced HSP72 mRNA response was larger in SE than in RS and CM. Thus, the present results suggest that, for a given exercise volume, the initial events associated with mitochondrial biogenesis are modulated by metabolic stress. In addition, high-intensity exercise seems to compensate for reduced exercise volume in the induction of mitochondrial biogenic molecular responses only when the intense exercise elicits marked metabolic perturbations.
Collapse
Affiliation(s)
- M Fiorenza
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark.,Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - T P Gunnarsson
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - M Hostrup
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - F M Iaia
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - F Schena
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - H Pilegaard
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - J Bangsbo
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
14
|
Kuang J, Yan X, Genders AJ, Granata C, Bishop DJ. An overview of technical considerations when using quantitative real-time PCR analysis of gene expression in human exercise research. PLoS One 2018; 13:e0196438. [PMID: 29746477 PMCID: PMC5944930 DOI: 10.1371/journal.pone.0196438] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/12/2018] [Indexed: 02/04/2023] Open
Abstract
Gene expression analysis by quantitative PCR in skeletal muscle is routine in exercise studies. The reproducibility and reliability of the data fundamentally depend on how the experiments are performed and interpreted. Despite the popularity of the assay, there is a considerable variation in experimental protocols and data analyses from different laboratories, and there is a lack of consistency of proper quality control steps throughout the assay. In this study, we present a number of experiments on various steps of quantitative PCR workflow, and demonstrate how to perform a quantitative PCR experiment with human skeletal muscle samples in an exercise study. We also tested some common mistakes in performing qPCR. Interestingly, we found that mishandling of muscle for a short time span (10 mins) before RNA extraction did not affect RNA quality, and isolated total RNA was preserved for up to one week at room temperature. Demonstrated by our data, use of unstable reference genes lead to substantial differences in the final results. Alternatively, cDNA content can be used for data normalisation; however, complete removal of RNA from cDNA samples is essential for obtaining accurate cDNA content.
Collapse
Affiliation(s)
- Jujiao Kuang
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Xu Yan
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
- College of Health and Biomedicine, Victoria University, Melbourne, Victoria, Australia
| | - Amanda J. Genders
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Cesare Granata
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - David J. Bishop
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- * E-mail:
| |
Collapse
|
15
|
Islam H, Edgett BA, Gurd BJ. Coordination of mitochondrial biogenesis by PGC-1α in human skeletal muscle: A re-evaluation. Metabolism 2018; 79:42-51. [PMID: 29126696 DOI: 10.1016/j.metabol.2017.11.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/13/2017] [Accepted: 11/01/2017] [Indexed: 02/07/2023]
Abstract
The transcriptional co-activator peroxisome proliferator-activated receptor gamma co-activator-1 alpha (PGC-1α) is proposed to coordinate skeletal muscle mitochondrial biogenesis through the integrated induction of nuclear- and mitochondrial-encoded gene transcription. This paradigm is based largely on experiments demonstrating PGC-1α's ability to co-activate various nuclear transcription factors that increase the expression of mitochondrial genes, as well as PGC-1α's direct interaction with mitochondrial transcription factor A within mitochondria to increase the transcription of mitochondrial DNA. While this paradigm is supported by evidence from cellular and transgenic animal models, as well as acute exercise studies involving animals, the up-regulation of nuclear- and mitochondrial-encoded genes in response to exercise does not appear to occur in a coordinated fashion in human skeletal muscle. This review re-evaluates our current understanding of this phenomenon by highlighting evidence from recent studies examining the exercise-induced expression of nuclear- and mitochondrial-encoded genes targeted by PGC-1α. We also highlight several possible theories that may explain the apparent inability of PGC-1α to coordinately up-regulate the expression of genes required for mitochondrial biogenesis in human skeletal muscle, and provide directions for future work exploring mitochondrial biogenic gene expression following exercise.
Collapse
Affiliation(s)
- Hashim Islam
- School of Kinesiology and Health Studies, Queen's University, Kingston K7L 3N6, Ontario, Canada.
| | - Brittany A Edgett
- School of Kinesiology and Health Studies, Queen's University, Kingston K7L 3N6, Ontario, Canada; Human Health and Nutritional Sciences, University of Guelph, Guelph N1G 2W1, Ontario, Canada.
| | - Brendon J Gurd
- School of Kinesiology and Health Studies, Queen's University, Kingston K7L 3N6, Ontario, Canada.
| |
Collapse
|
16
|
CORREIA-OLIVEIRA CARLOSRAFAELL, LOPES-SILVA JOÃOPAULO, BERTUZZI ROMULO, MCCONELL GLENNK, BISHOP DAVIDJOHN, LIMA-SILVA ADRIANOEDUARDO, KISS MARIAAUGUSTAPEDUTIDAL. Acidosis, but Not Alkalosis, Affects Anaerobic Metabolism and Performance in a 4-km Time Trial. Med Sci Sports Exerc 2017; 49:1899-1910. [DOI: 10.1249/mss.0000000000001295] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
17
|
Saner NJ, Bishop DJ, Bartlett JD. Is exercise a viable therapeutic intervention to mitigate mitochondrial dysfunction and insulin resistance induced by sleep loss? Sleep Med Rev 2017; 37:60-68. [PMID: 29056415 DOI: 10.1016/j.smrv.2017.01.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 12/16/2016] [Accepted: 01/10/2017] [Indexed: 12/18/2022]
Abstract
Sleep loss has emerged as a risk factor comparable to that of physical inactivity for the development of insulin resistance, impaired glucose tolerance and type 2 diabetes mellitus. This is a concern as it was estimated in 2012 that approximately 70 million adults in the United States are sleeping less than 6 h each night, and the average nightly sleep duration of a representative sample of the U.S. adult population is reported to be significantly less than in previous decades. The underlying mechanisms responsible for chronic sleep loss induced insulin resistance include modifications in the regulation of hormone secretion, peripheral clock gene regulation, and the cellular signaling processes associated with regulating mitochondrial respiratory function. Emerging evidence shows these mechanisms share similar biochemical signaling pathways to those underpinning exercise-induced adaptations, which together suggest exercise might be a viable, suitable, and potent treatment alternative to alleviate sleep loss induced insulin resistance and glucose intolerance. In this theoretical review, we provide a summary of the impact of reduced sleep duration and quality on mitochondrial function and insulin resistance, before detailing the possible underlying mechanisms. Finally, we propose how and why regular exercise may be a therapeutic intervention to mitigate sleep loss induced mitochondrial dysfunction and insulin resistance.
Collapse
Affiliation(s)
- Nicholas J Saner
- Institute of Sport, Exercise and Active Living (ISEAL), College of Sport and Exercise Science, Victoria University, Melbourne, Australia
| | - David J Bishop
- Institute of Sport, Exercise and Active Living (ISEAL), College of Sport and Exercise Science, Victoria University, Melbourne, Australia; School of Medicine and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, 6027, Australia
| | - Jonathan D Bartlett
- Institute of Sport, Exercise and Active Living (ISEAL), College of Sport and Exercise Science, Victoria University, Melbourne, Australia.
| |
Collapse
|