1
|
Martinez-Romero E, Peix A, Hungria M, Mousavi SA, Martinez-Romero J, Young P. Guidelines for the description of rhizobial symbiovars. Int J Syst Evol Microbiol 2024; 74:006373. [PMID: 38743471 PMCID: PMC11165908 DOI: 10.1099/ijsem.0.006373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/25/2024] [Indexed: 05/16/2024] Open
Abstract
Rhizobia are bacteria that form nitrogen-fixing nodules in legume plants. The sets of genes responsible for both nodulation and nitrogen fixation are carried in plasmids or genomic islands that are often mobile. Different strains within a species sometimes have different host specificities, while very similar symbiosis genes may be found in strains of different species. These specificity variants are known as symbiovars, and many of them have been given names, but there are no established guidelines for defining or naming them. Here, we discuss the requirements for guidelines to describe symbiovars, propose a set of guidelines, provide a list of all symbiovars for which descriptions have been published so far, and offer a mechanism to maintain a list in the future.
Collapse
Affiliation(s)
| | - Alvaro Peix
- Instituto de Recursos Naturales y Agrobiología, IRNASA-CSIC, Salamanca, Spain
- Interacción Planta-Microorganismo, Universidad de Salamanca, Unidad Asociada al CSIC por el IRNASA, Salamanca, Spain
| | | | | | | | - Peter Young
- Department of Biology, University of York, York YO10 5DD, UK
| |
Collapse
|
2
|
Simbine MG, Jaiswal SK, Dakora FD. Diverse symbiovars nodulating cowpea (Vigna unguiculata L. Walp.) in highly adaptable agro-ecological zones in Mozambique. Syst Appl Microbiol 2021; 44:126220. [PMID: 34126328 DOI: 10.1016/j.syapm.2021.126220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/19/2021] [Accepted: 05/19/2021] [Indexed: 02/03/2023]
Abstract
The presence of effective microsymbionts in the soil and their compatibility with the host plant are the key determinants to the N2 fixation process. In Sub-Saharan Africa, nitrogen fixation in locally adapted cowpea and the distribution of their symbiovars are not well understood. The Aim of the study was to assess the distribution and symbiotic phylogenetic position of cowpea microsymbionts. Root nodules were sampled from various cowpea genotypes planted in Agro-Ecological Zone 7 and 8 (AEZ 7 and AEZ 8). Root-nodule bacteria were isolated and their molecular characterization was conducted. Physicochemical properties of soil were recorded. Enterobacterial Repetitive Intergenic Consensus (ERIC) distribution patterns in rhizobial genomes resulted in genetically diverse rhizobial population in Northern Mozambique. Principal component analysis showed that location-specific soil environment determined the presence of particular microsymbionts. Based on 16S rRNA and symbiotic gene analysis many diverse symbiovars were found in Mozambican soils. With few discrepancies, the results further confirmed the coevolution of the nifH, nodD, nodC and nodY/K genes, which was indicative of natural events such as vertical/horizontal gene transfer. The results suggested that ecological and phylogenetic studies of the microsymbionts are necessary to better reflect symbiovar identification and the ecological adaptation of the cowpea-nodulating rhizobial community.
Collapse
Affiliation(s)
| | - Sanjay K Jaiswal
- Department of Chemistry, Tshwane University of Technology, South Africa.
| | - Felix D Dakora
- Department of Chemistry, Tshwane University of Technology, South Africa.
| |
Collapse
|
3
|
Oleńska E, Małek W, Wójcik M, Swiecicka I, Thijs S, Vangronsveld J. Beneficial features of plant growth-promoting rhizobacteria for improving plant growth and health in challenging conditions: A methodical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 743:140682. [PMID: 32758827 DOI: 10.1016/j.scitotenv.2020.140682] [Citation(s) in RCA: 202] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/31/2020] [Accepted: 06/30/2020] [Indexed: 05/08/2023]
Abstract
New eco-friendly approaches are required to improve plant biomass production. Beneficial plant growth-promoting (PGP) bacteria may be exploited as excellent and efficient biotechnological tools to improve plant growth in various - including stressful - environments. We present an overview of bacterial mechanisms which contribute to plant health, growth, and development. Plant growth promoting rhizobacteria (PGPR) can interact with plants directly by increasing the availability of essential nutrients (e.g. nitrogen, phosphorus, iron), production and regulation of compounds involved in plant growth (e.g. phytohormones), and stress hormonal status (e.g. ethylene levels by ACC-deaminase). They can also indirectly affect plants by protecting them against diseases via competition with pathogens for highly limited nutrients, biocontrol of pathogens through production of aseptic-activity compounds, synthesis of fungal cell wall lysing enzymes, and induction of systemic responses in host plants. The potential of PGPR to facilitate plant growth is of fundamental importance, especially in case of abiotic stress, where bacteria can support plant fitness, stress tolerance, and/or even assist in remediation of pollutants. Providing additional evidence and better understanding of bacterial traits underlying plant growth-promotion can inspire and stir up the development of innovative solutions exploiting PGPR in times of highly variable environmental and climatological conditions.
Collapse
Affiliation(s)
- Ewa Oleńska
- Department of Microbiology and Biotechnology, Faculty of Biology, University of Białystok, Ciołkowskiego 1J, 15-245 Białystok, Poland.
| | - Wanda Małek
- Department of Genetics and Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland.
| | - Małgorzata Wójcik
- Department of Plant Physiology and Biophysics, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland.
| | - Izabela Swiecicka
- Department of Microbiology and Biotechnology, Faculty of Biology, University of Białystok, Ciołkowskiego 1J, 15-245 Białystok, Poland.
| | - Sofie Thijs
- Faculty of Sciences, Centre for Environmental Sciences, Hasselt University, Agoralaan D, B-3590, Belgium.
| | - Jaco Vangronsveld
- Faculty of Sciences, Centre for Environmental Sciences, Hasselt University, Agoralaan D, B-3590, Belgium.
| |
Collapse
|
4
|
Paulitsch F, Delamuta JRM, Ribeiro RA, da Silva Batista JS, Hungria M. Phylogeny of symbiotic genes reveals symbiovars within legume-nodulating Paraburkholderia species. Syst Appl Microbiol 2020; 43:126151. [PMID: 33171385 DOI: 10.1016/j.syapm.2020.126151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 10/23/2022]
Abstract
Bacteria belonging to the genus Paraburkholderia are capable of establishing symbiotic relationships with plants belonging to the Fabaceae (=Leguminosae) family and fixing the atmospheric nitrogen in specialized structures in the roots called nodules, in a process known as biological nitrogen fixation (BNF). In the nodulation and BNF processes several bacterial symbiotic genes are involved, but the relations between symbiotic, core genes and host specificity are still poorly studied and understood in Paraburkholderia. In this study, eight strains of nodulating nitrogen-fixing Paraburkholderia isolated in Brazil, together with described species and other reference strains were used to infer the relatedness between core (16S rDNA, recA) and symbiotic (nod, nif, fix) genes. The diversity of genes involved in the nodulation (nodAC) and nitrogen fixation (nifH) abilities was investigated. Only two groups, one containing three Paraburkholderia species symbionts of Mimosa, and another one with P. ribeironis strains presented similar phylogenetic patterns in the analysis of core and symbiotic genes. In three other groups events of horizontal gene transfer of symbiotic genes were detected. Paraburkholderia strains with available genomes were used in the complementary analysis of nifHDK and fixABC and confirmed well-defined phylogenetic positions of symbiotic genes. In all analyses of nod, nif and fix genes the strains were distributed into five clades with high bootstrap support, allowing the proposal of five symbiovars in nodulating nitrogen-fixing Paraburkholderia, designated as mimosae, africana, tropicalis, atlantica and piptadeniae. Phylogenetic inferences within each symbiovar are discussed.
Collapse
Affiliation(s)
- Fabiane Paulitsch
- Embrapa Soja, C.P. 231, 86001-970 Londrina, Paraná, Brazil; Departamento de Microbiologia, Universidade Estadual de Londrina, C.P. 10011, 86057-970 Londrina, Paraná, Brazil; Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, SBN, Quadra 2, Bloco L, Lote 06, Edifício Capes, 70.040-020 Brasília, Distrito Federal, Brazil.
| | - Jakeline Renata Marçon Delamuta
- Embrapa Soja, C.P. 231, 86001-970 Londrina, Paraná, Brazil; Conselho Nacional de Desenvolvimento Científico e Tecnológico, SHIS QI 1 Conjunto B, Blocos A, B, C e D, Lago Sul, 71605-001 Brasília, Distrito Federal, Brazil.
| | - Renan Augusto Ribeiro
- Conselho Nacional de Desenvolvimento Científico e Tecnológico, SHIS QI 1 Conjunto B, Blocos A, B, C e D, Lago Sul, 71605-001 Brasília, Distrito Federal, Brazil.
| | - Jesiane Stefania da Silva Batista
- Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Avenida General Carlos Cavalcanti, 4748 - Uvaranas, C.P. 6001, Ponta Grossa, PR 84030‑900, Brazil.
| | - Mariangela Hungria
- Embrapa Soja, C.P. 231, 86001-970 Londrina, Paraná, Brazil; Departamento de Microbiologia, Universidade Estadual de Londrina, C.P. 10011, 86057-970 Londrina, Paraná, Brazil; Conselho Nacional de Desenvolvimento Científico e Tecnológico, SHIS QI 1 Conjunto B, Blocos A, B, C e D, Lago Sul, 71605-001 Brasília, Distrito Federal, Brazil.
| |
Collapse
|
5
|
Alami S, Lamin H, Bouhnik O, El Faik S, Filali-Maltouf A, Abdelmoumen H, Bedmar EJ, Missbah El Idrissi M. Astragalus algarbiensis is nodulated by the genistearum symbiovar of Bradyrhizobium spp. in Morocco. Syst Appl Microbiol 2019; 42:440-447. [DOI: 10.1016/j.syapm.2019.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/07/2019] [Accepted: 03/15/2019] [Indexed: 10/27/2022]
|
6
|
Kawaka F, Makonde H, Dida M, Opala P, Ombori O, Maingi J, Muoma J. Genetic diversity of symbiotic bacteria nodulating common bean (Phaseolus vulgaris) in western Kenya. PLoS One 2018; 13:e0207403. [PMID: 30440041 PMCID: PMC6237360 DOI: 10.1371/journal.pone.0207403] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/30/2018] [Indexed: 11/29/2022] Open
Abstract
Biological nitrogen fixation (BNF) in legumes plays a critical role in improving soil fertility. Despite this vital role, there is limited information on the genetic diversity and BNF of bacteria nodulating common bean (Phaseolus vulgaris L.). This study evaluated the genetic diversity and symbiotic nitrogen fixation of bacteria nodulating common bean in soils of Western Kenya. The genetic diversity was determined using 16S rRNA gene partial sequences while BNF was estimated in a greenhouse experiment. The sequences of the native isolates were closely affiliated with members from the genera Pantoea, Klebsiella, Rhizobium, Enterobacter and Bacillus. These results show that apart from rhizobia, there are non-rhizobial strains in the nodules of common bean. The symbiotic efficiency (SE) of native isolates varied and exhibited comparable or superior BNF compared to the local commercial inoculants (CIAT 899 and Strain 446). Isolates (MMUST 003 [KP027691], MMUST 004 [KP027687], MMUST 005 [KP027688], KSM 001 [KP027682], KSM 002 [KP027680], KSM 003 [KP027683] and KSM 005 [KP027685]) recorded equal or significantly higher SE (p < 0.05) compared to N supplemented treatments. The results demonstrate the presence of genetic diversity of native bacteria nodulating bean that are effective in N fixation. These elite bacterial strains should be exploited as candidates for the development of Phaseolus vulgaris inoculants.
Collapse
Affiliation(s)
- Fanuel Kawaka
- Department of Applied Plant Sciences, Maseno University, Maseno, Kenya
- Department of Pure and Applied Sciences, Technical University of Mombasa, Mombasa, Kenya
| | - Huxley Makonde
- Department of Pure and Applied Sciences, Technical University of Mombasa, Mombasa, Kenya
| | - Mathews Dida
- Department of Applied Plant Sciences, Maseno University, Maseno, Kenya
| | - Peter Opala
- Department of Soil Science, Maseno University, Maseno, Kenya
| | - Omwoyo Ombori
- Department of Plant Sciences, Kenyatta University, Nairobi, Kenya
| | - John Maingi
- Department of Microbiology, Kenyatta University, Nairobi, Kenya
| | - John Muoma
- Department of Biological Sciences, Masinde Muliro University of Science and Technology, Kakamega, Kenya
| |
Collapse
|
7
|
Kang W, Xu L, Jiang Z, Shi S. Genetic diversity and symbiotic efficiency difference of endophytic rhizobia of Medicago sativa. Can J Microbiol 2018; 65:68-83. [PMID: 30273494 DOI: 10.1139/cjm-2018-0158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Research on rhizobium diversity has paved the way for diversification of rhizobial germplasm resources. Seventy-three endophytic bacterial isolates were collected from seven tissues of five alfalfa cultivars in three geographic locations in Gansu, China. Restriction fragment length polymorphism (RFLP) fingerprinting of 16S rRNA and analysis of concatenated sequence of three housekeeping genes (atpD, glnII, and recA) and two symbiotic genes (nodC and nifH) were used for strain identification. Results showed that the endophytic strains were genetically diverse at different taxonomic levels, and Ensifer meliloti (31) and Agrobacterium radiobacter (12) are common Medicago sativa endophytic bacteria in Gansu, China. The nifH genes (97%-98% sequence identity) of E. meliloti strains were more diverse than the nodC genes (99%-100% sequence identity), even though the strains evolved from a common ancestor. The degree of dispersion of symbiotic phenotypes of E. meliloti strains on M. sativa 'Gannong No. 3', 'Gannong No. 9', and 'Qingshui' was much less than that on M. sativa 'Longzhong' and 'WL168HQ'. This suggested that the symbiotic efficiency of E. meliloti strains on the former three alfalfa cultivars was similar but on the latter two was discrepant. Their symbiotic efficiency differed primarily according to alfalfa cultivars and, to a lesser extent, to the tested strains, indicating the difference in the sensitivity of different alfalfa cultivars to rhizobial strains.
Collapse
Affiliation(s)
- Wenjuan Kang
- a College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, P.R. China
| | - Lin Xu
- b College of Agriculture and Biotechnology, Hexi University, Zhangye 734000, P.R. China
| | - Zhehao Jiang
- a College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, P.R. China
| | - Shangli Shi
- a College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, P.R. China.,c Key Laboratory of Grassland Ecosystem of Ministry of Education, Lanzhou 730070, P.R. China
| |
Collapse
|
8
|
Andrews M, De Meyer S, James EK, Stępkowski T, Hodge S, Simon MF, Young JPW. Horizontal Transfer of Symbiosis Genes within and Between Rhizobial Genera: Occurrence and Importance. Genes (Basel) 2018; 9:E321. [PMID: 29954096 PMCID: PMC6071183 DOI: 10.3390/genes9070321] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 06/21/2018] [Accepted: 06/21/2018] [Indexed: 01/17/2023] Open
Abstract
Rhizobial symbiosis genes are often carried on symbiotic islands or plasmids that can be transferred (horizontal transfer) between different bacterial species. Symbiosis genes involved in horizontal transfer have different phylogenies with respect to the core genome of their ‘host’. Here, the literature on legume⁻rhizobium symbioses in field soils was reviewed, and cases of phylogenetic incongruence between rhizobium core and symbiosis genes were collated. The occurrence and importance of horizontal transfer of rhizobial symbiosis genes within and between bacterial genera were assessed. Horizontal transfer of symbiosis genes between rhizobial strains is of common occurrence, is widespread geographically, is not restricted to specific rhizobial genera, and occurs within and between rhizobial genera. The transfer of symbiosis genes to bacteria adapted to local soil conditions can allow these bacteria to become rhizobial symbionts of previously incompatible legumes growing in these soils. This, in turn, will have consequences for the growth, life history, and biogeography of the legume species involved, which provides a critical ecological link connecting the horizontal transfer of symbiosis genes between rhizobial bacteria in the soil to the above-ground floral biodiversity and vegetation community structure.
Collapse
Affiliation(s)
- Mitchell Andrews
- Faculty of Agriculture and Life Sciences, Lincoln University, P.O. Box 84, Lincoln 7647, New Zealand.
| | - Sofie De Meyer
- Centre for Rhizobium Studies, Murdoch University, Murdoch 6150, Australia.
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium.
| | - Euan K James
- James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK.
| | - Tomasz Stępkowski
- Autonomous Department of Microbial Biology, Faculty of Agriculture and Biology, Warsaw University of Life Sciences (SGGW), 02-776 Warsaw, Poland.
| | - Simon Hodge
- Faculty of Agriculture and Life Sciences, Lincoln University, P.O. Box 84, Lincoln 7647, New Zealand.
| | - Marcelo F Simon
- Embrapa Genetic Resources and Biotechnology, Brasilia DF 70770-917, Brazil.
| | - J Peter W Young
- Department of Biology, University of York, York YO10 5DD, UK.
| |
Collapse
|
9
|
Wdowiak-Wróbel S, Marek-Kozaczuk M, Kalita M, Karaś M, Wójcik M, Małek W. Diversity and plant growth promoting properties of rhizobia isolated from root nodules of Ononis arvensis. Antonie van Leeuwenhoek 2017; 110:1087-1103. [PMID: 28500544 PMCID: PMC5511607 DOI: 10.1007/s10482-017-0883-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 04/28/2017] [Indexed: 12/05/2022]
Abstract
This is the first report describing isolates from root nodules of Ononis arvensis (field restharrow). The aim of this investigation was to describe the diversity, phylogeny, and plant growth promoting features of microsymbionts of O. arvensis, i.e., a legume plant growing in different places of the southern part of Poland. Twenty-nine bacterial isolates were characterized in terms of their phenotypic properties, genome fingerprinting, and comparative analysis of their 16S rRNA, nodC and acdS gene sequences. Based on the nodC and 16S rRNA gene phylogenies, the O. arvensis symbionts were grouped close to bacteria of the genera Rhizobium and Mesorhizobium, which formed monophyletic clusters. The acdS gene sequences of all the isolates tested exhibited the highest similarities to the corresponding gene sequences of genus Mesorhizobium strains. The presence of the acdS genes in the genomes of rhizobia specific for O. arvensis implies that these bacteria may promote the growth and development of their host plant in stress conditions. The isolated bacteria showed a high genomic diversity and, in the BOX-PCR reaction, all of them (except three) exhibited DNA fingerprints specific only for them. Our studies showed that restharrow isolates formed effective symbiotic interactions with their native host (O. arvensis) and Ononis spinosa but not with Trifolium repens and Medicago sativa belonging to the same tribe Trifolieae as Ononis species and not with Lotus corniculatus, representing the tribe Loteae.
Collapse
Affiliation(s)
- Sylwia Wdowiak-Wróbel
- Department of Genetics and Microbiology, Maria Curie -Skłodowska University, Akademicka 19 St., 20-033, Lublin, Poland.
| | - Monika Marek-Kozaczuk
- Department of Genetics and Microbiology, Maria Curie -Skłodowska University, Akademicka 19 St., 20-033, Lublin, Poland
| | - Michał Kalita
- Department of Genetics and Microbiology, Maria Curie -Skłodowska University, Akademicka 19 St., 20-033, Lublin, Poland
| | - Magdalena Karaś
- Department of Genetics and Microbiology, Maria Curie -Skłodowska University, Akademicka 19 St., 20-033, Lublin, Poland
| | - Magdalena Wójcik
- Department of Genetics and Microbiology, Maria Curie -Skłodowska University, Akademicka 19 St., 20-033, Lublin, Poland
| | - Wanda Małek
- Department of Genetics and Microbiology, Maria Curie -Skłodowska University, Akademicka 19 St., 20-033, Lublin, Poland
| |
Collapse
|
10
|
Armanhi JSL, de Souza RSC, Damasceno NDB, de Araújo LM, Imperial J, Arruda P. A Community-Based Culture Collection for Targeting Novel Plant Growth-Promoting Bacteria from the Sugarcane Microbiome. FRONTIERS IN PLANT SCIENCE 2017; 8:2191. [PMID: 29354144 PMCID: PMC5759035 DOI: 10.3389/fpls.2017.02191] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/12/2017] [Indexed: 05/08/2023]
Abstract
The soil-plant ecosystem harbors an immense microbial diversity that challenges investigative approaches to study traits underlying plant-microbe association. Studies solely based on culture-dependent techniques have overlooked most microbial diversity. Here we describe the concomitant use of culture-dependent and -independent techniques to target plant-beneficial microbial groups from the sugarcane microbiome. The community-based culture collection (CBC) approach was used to access microbes from roots and stalks. The CBC recovered 399 unique bacteria representing 15.9% of the rhizosphere core microbiome and 61.6-65.3% of the endophytic core microbiomes of stalks. By cross-referencing the CBC (culture-dependent) with the sugarcane microbiome profile (culture-independent), we designed a synthetic community comprised of naturally occurring highly abundant bacterial groups from roots and stalks, most of which has been poorly explored so far. We then used maize as a model to probe the abundance-based synthetic inoculant. We show that when inoculated in maize plants, members of the synthetic community efficiently colonize plant organs, displace the natural microbiota and dominate at 53.9% of the rhizosphere microbial abundance. As a result, inoculated plants increased biomass by 3.4-fold as compared to uninoculated plants. The results demonstrate that abundance-based synthetic inoculants can be successfully applied to recover beneficial plant microbes from plant microbiota.
Collapse
Affiliation(s)
- Jaderson Silveira Leite Armanhi
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Rafael Soares Correa de Souza
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Natália de Brito Damasceno
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Laura M. de Araújo
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Juan Imperial
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
- Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Paulo Arruda
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
- *Correspondence: Paulo Arruda
| |
Collapse
|
11
|
Wdowiak-Wróbel S, Małek W. Properties of Astragalus sp. microsymbionts and their putative role in plant growth promotion. Arch Microbiol 2016; 198:793-801. [PMID: 27209414 PMCID: PMC4995237 DOI: 10.1007/s00203-016-1243-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 05/06/2016] [Accepted: 05/11/2016] [Indexed: 11/04/2022]
Abstract
The plant growth-promoting rhizobacteria have developed many different (indirect and direct) mechanisms that have a positive effect on plant growth and development. Strains isolated from Astragaluscicer and Astragalusglycyphyllos root nodules were investigated for their plant growth-promoting properties such as production of indole-3-acetic acid (IAA) and siderophores, phosphate solubilization, ACC deaminase activity, and tolerance to heavy metals. IAA production and P-solubilization were frequent features in the analysed strains, while siderophores were not produced by any of them. In this work, we investigated the presence of the acdS genes and ACC deaminase activities in Astragalauscicer and A. glycyphyllos microsymbionts, classified within the genus Mesorhizobium. The results demonstrated that the acdS gene is widespread in the genome of Astragalus sp. microsymbionts; however, none of the tested strains showed ACC deaminase activity. The acdS gene sequence similarity of the analysed strains to each other was in the range from 84 to 99 %. On the phylogram of acdS gene sequences of milkvetch, the symbionts clustered tightly with the genus Mesorhizobium bacteria.
Collapse
Affiliation(s)
- Sylwia Wdowiak-Wróbel
- Department of Genetics and Microbiology, Maria Curie Skłodowska University, Akademicka 19 St., 20-033, Lublin, Poland.
| | - Wanda Małek
- Department of Genetics and Microbiology, Maria Curie Skłodowska University, Akademicka 19 St., 20-033, Lublin, Poland
| |
Collapse
|