1
|
Wu Z, Liu M, Wang H, Li M, Liu X, Zang Z, Jiang L. ZmCaM2-1, a Calmodulin Gene, Negatively Regulates Drought Tolerance in Transgenic Arabidopsis Through the ABA-Independent Pathway. Int J Mol Sci 2025; 26:2156. [PMID: 40076781 PMCID: PMC11900298 DOI: 10.3390/ijms26052156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
Calmodulin (CaM) family members play crucial roles in the response to various abiotic stresses. However, the functions of CaMs in the response to drought stress in maize are unclear. In this study, a CaM gene, ZmCaM2-1, was isolated from the maize (Zea mays L.) inbred line B73. The coding sequence (CDS) of ZmCaM2-1 was 450 bp with a protein of 149 aa which contains four EF-hand motifs. The ZmCaM2-1 protein was located in the cell nucleus and membrane, and is able to bind to Ca2+. ZmCaM2-1 was strongly induced by drought, NaCl, and low-temperature treatments, except for abscisic acid (ABA) treatment. Overexpression of ZmCaM2-1 in Arabidopsis was found to decrease the drought tolerance with lower antioxidant enzyme activity and greater reactive oxygen species (ROS) production. Moreover, there was no significant difference in the phenotype and ABA-related gene expression levels between ZmCaM2-1-overexpressing Arabidopsis and the wild type (WT) under ABA treatment. These results indicate that ZmCaM2-1 negatively regulates the tolerance of Arabidopsis to drought stress through the ABA-independent pathway.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhenyuan Zang
- College of Agriculture, Jilin Agricultural University, Changchun 130118, China; (Z.W.); (M.L.); (H.W.); (M.L.); (X.L.)
| | - Liangyu Jiang
- College of Agriculture, Jilin Agricultural University, Changchun 130118, China; (Z.W.); (M.L.); (H.W.); (M.L.); (X.L.)
| |
Collapse
|
2
|
Zhang D, Du L, Lin J, Wang L, Zheng P, Deng B, Zhang W, Su W, Liu Y, Lu Y, Qin Y, Wang X. Genome-wide identification and expression analysis of calmodulin and calmodulin-like genes in passion fruit (Passiflora edulis) and their involvement in flower and fruit development. BMC PLANT BIOLOGY 2024; 24:626. [PMID: 38961401 PMCID: PMC11220982 DOI: 10.1186/s12870-024-05295-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 06/13/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND The calmodulin (CaM) and calmodulin-like (CML) proteins play regulatory roles in plant growth and development, responses to biotic and abiotic stresses, and other biological processes. As a popular fruit and ornamental crop, it is important to explore the regulatory mechanism of flower and fruit development of passion fruit. RESULTS In this study, 32 PeCaM/PeCML genes were identified from passion fruit genome and were divided into 9 groups based on phylogenetic analysis. The structural analysis, including conserved motifs, gene structure and homologous modeling, illustrates that the PeCaM/PeCML in the same subgroup have relative conserved structural features. Collinearity analysis suggested that the expansion of the CaM/CML gene family likely took place mainly by segmental duplication, and the whole genome replication events were closely related with the rapid expansion of the gene group. PeCaM/PeCMLs were potentially required for different floral tissues development. Significantly, PeCML26 had extremely high expression levels during ovule and fruit development compared with other PeCML genes, suggesting that PeCML26 had potential functions involved in the development of passion fruit flowers and fruits. The co-presence of various cis-elements associated with growth and development, hormone responsiveness, and stress responsiveness in the promoter regions of these PeCaM/PeCMLs might contribute to their diverse regulatory roles. Furthermore, PeCaM/PeCMLs were also induced by various abiotic stresses. This work provides a comprehensive understanding of the CaM/CML gene family and valuable clues for future studies on the function and evolution of CaM/CML genes in passion fruit. CONCLUSION A total of 32 PeCaM/PeCML genes were divided into 9 groups. The PeCaM/PeCML genes showed differential expression patterns in floral tissues at different development stages. It is worth noting that PeCML26, which is highly homologous to AtCaM2, not only interacts with multiple BBR-BPC TFs, but also has high expression levels during ovule and fruit development, suggesting that PeCML26 had potential functions involved in the development of passion fruit flowers and fruits. This research lays the foundation for future investigations and validation of the potential function of PeCaM/PeCML genes in the growth and development of passion fruit.
Collapse
Affiliation(s)
- Dan Zhang
- Horticulture Research Institute, Guangxi Academy of Agricultural Sciences, Nanning Investigation Station of South Subtropical Fruit Trees, Ministry of Agriculture, Nanning, 530007, China
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lumiao Du
- Horticulture Research Institute, Guangxi Academy of Agricultural Sciences, Nanning Investigation Station of South Subtropical Fruit Trees, Ministry of Agriculture, Nanning, 530007, China
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jinting Lin
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lulu Wang
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ping Zheng
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Biao Deng
- Horticulture Research Institute, Guangxi Academy of Agricultural Sciences, Nanning Investigation Station of South Subtropical Fruit Trees, Ministry of Agriculture, Nanning, 530007, China
| | - Wenbin Zhang
- Fine Variety Breeding Farm in Xinluo District, Longyan, 364000, China
| | - Weiqiang Su
- Horticulture Research Institute, Guangxi Academy of Agricultural Sciences, Nanning Investigation Station of South Subtropical Fruit Trees, Ministry of Agriculture, Nanning, 530007, China
| | - Yanhui Liu
- College of Life Sciences, Longyan University, Longyan, 364000, China
| | - Yuming Lu
- Horticulture Research Institute, Guangxi Academy of Agricultural Sciences, Nanning Investigation Station of South Subtropical Fruit Trees, Ministry of Agriculture, Nanning, 530007, China
| | - Yuan Qin
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Xiaomei Wang
- Horticulture Research Institute, Guangxi Academy of Agricultural Sciences, Nanning Investigation Station of South Subtropical Fruit Trees, Ministry of Agriculture, Nanning, 530007, China.
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
3
|
Liu S, Zheng Y, Zhao L, Gulam M, Ullah A, Xie G. CALMODULIN-LIKE16 and PIN-LIKES7a cooperatively regulate rice seedling primary root elongation under chilling. PLANT PHYSIOLOGY 2024; 195:1660-1680. [PMID: 38445796 DOI: 10.1093/plphys/kiae130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 11/29/2023] [Accepted: 12/21/2023] [Indexed: 03/07/2024]
Abstract
Low-temperature sensitivity at the germination stage is a challenge for direct seeding of rice in Asian countries. How Ca2+ and auxin (IAA) signaling regulate primary root growth under chilling remains unexplored. Here, we showed that OsCML16 interacted specifically with OsPILS7a to improve primary root elongation of early rice seedlings under chilling. OsCML16, a subgroup 6c member of the OsCML family, interacted with multiple cytosolic loop regions of OsPILS7a in a Ca2+-dependent manner. OsPILS7a localized to the endoplasmic reticulum membranes and functioned as an auxin efflux carrier in a yeast growth assay. Transgenics showed that presence of OsCML16 enhanced primary root elongation under chilling, whereas the ospils7a knockout mutant lines showed the opposite phenotype. Moreover, under chilling conditions, OsCML16 and OsPILS7a-mediated Ca2+ and IAA signaling and regulated the transcription of IAA signaling-associated genes (OsIAA11, OsIAA23, and OsARF16) and cell division marker genes (OsRAN1, OsRAN2, and OsLTG1) in primary roots. These results show that OsCML16 and OsPILS7a cooperatively regulate primary root elongation of early rice seedlings under chilling. These findings enhance our understanding of the crosstalk between Ca2+ and IAA signaling and reveal insights into the mechanisms underlying cold-stress response during rice germination.
Collapse
Affiliation(s)
- Shuang Liu
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuying Zheng
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Liyan Zhao
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Mihray Gulam
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Aman Ullah
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Guosheng Xie
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
4
|
Jia H, Lin J, Lin Z, Wang Y, Xu L, Ding W, Ming R. Haplotype-resolved genome of Mimosa bimucronata revealed insights into leaf movement and nitrogen fixation. BMC Genomics 2024; 25:334. [PMID: 38570736 PMCID: PMC10993578 DOI: 10.1186/s12864-024-10264-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/27/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Mimosa bimucronata originates from tropical America and exhibits distinctive leaf movement characterized by a relative slow speed. Additionally, this species possesses the ability to fix nitrogen. Despite these intriguing traits, comprehensive studies have been hindered by the lack of genomic resources for M. bimucronata. RESULTS To unravel the intricacies of leaf movement and nitrogen fixation, we successfully assembled a high-quality, haplotype-resolved, reference genome at the chromosome level, spanning 648 Mb and anchored in 13 pseudochromosomes. A total of 32,146 protein-coding genes were annotated. In particular, haplotype A was annotated with 31,035 protein-coding genes, and haplotype B with 31,440 protein-coding genes. Structural variations (SVs) and allele specific expression (ASE) analyses uncovered the potential role of structural variants in leaf movement and nitrogen fixation in M. bimucronata. Two whole-genome duplication (WGD) events were detected, that occurred ~ 2.9 and ~ 73.5 million years ago. Transcriptome and co-expression network analyses revealed the involvement of aquaporins (AQPs) and Ca2+-related ion channel genes in leaf movement. Moreover, we also identified nodulation-related genes and analyzed the structure and evolution of the key gene NIN in the process of symbiotic nitrogen fixation (SNF). CONCLUSION The detailed comparative genomic and transcriptomic analyses provided insights into the mechanisms governing leaf movement and nitrogen fixation in M. bimucronata. This research yielded genomic resources and provided an important reference for functional genomic studies of M. bimucronata and other legume species.
Collapse
Affiliation(s)
- Haifeng Jia
- College of Agriculture, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jishan Lin
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 570100, China
| | - Zhicong Lin
- College of Environment and Biological Engineering, Putian University, Putian, 351100, China
| | - Yibin Wang
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Liangwei Xu
- College of Agriculture, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wenjie Ding
- College of Agriculture, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ray Ming
- College of Agriculture, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
5
|
Mostafa K, Yerlikaya BA, Abdulla MF, Aydin A, Yerlikaya S, Kavas M. Genome-wide analysis of PvMADS in common bean and functional characterization of PvMADS31 in Arabidopsis thaliana as a player in abiotic stress responses. THE PLANT GENOME 2024; 17:e20432. [PMID: 38327143 DOI: 10.1002/tpg2.20432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/15/2023] [Accepted: 01/02/2024] [Indexed: 02/09/2024]
Abstract
Changing climatic conditions with rising temperatures and altered precipitation patterns pose significant challenges to agricultural productivity, particularly for common bean crops. Transcription factors (TFs) are crucial regulators that can mitigate the impact of biotic and abiotic stresses on crop production. The MADS-box TFs family has been implicated in various plant physiological processes, including stress-responsive mechanisms. However, their role in common bean and their response to stressful conditions remain poorly understood. Here, we identified 35 MADS-box gene family members in common bean, with conserved MADS-box domains and other functional domains. Gene duplication events were observed, suggesting the significance of duplication in the evolutionary development of gene families. The analysis of promoter regions revealed diverse elements, including stress-responsive elements, indicating their potential involvement in stress responses. Notably, PvMADS31, a member of the PvMADS-box gene family, demonstrated rapid upregulation under various abiotic stress conditions, including NaCl, polyethylene glycol, drought, and abscisic acid (ABA) treatments. Transgenic plants overexpressing PvMADS31 displayed enhanced lateral root development, root elongation, and seed germination under stress conditions. Furthermore, PvMADS31 overexpression in Arabidopsis resulted in improved drought tolerance, likely attributed to the enhanced scavenging of ROS and increased proline accumulation. These findings suggest that PvMADS31 might play a crucial role in modulating seed germination, root development, and stress responses, potentially through its involvement in auxin and ABA signaling pathways. Overall, this study provides valuable insights into the potential roles of PvMADS-box genes in abiotic stress responses in common bean, offering prospects for crop improvement strategies to enhance resilience under changing environmental conditions.
Collapse
Affiliation(s)
- Karam Mostafa
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayis University, Samsun, Turkey
- The Central Laboratory for Date Palm Research and Development, Agricultural Research Center (ARC), Giza, Egypt
| | - Bayram Ali Yerlikaya
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayis University, Samsun, Turkey
| | - Mohamed Farah Abdulla
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayis University, Samsun, Turkey
| | - Abdullah Aydin
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayis University, Samsun, Turkey
| | - Seher Yerlikaya
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayis University, Samsun, Turkey
| | - Musa Kavas
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayis University, Samsun, Turkey
| |
Collapse
|
6
|
Lu X, Liu P, Tu L, Guo X, Wang A, Zhu Y, Jiang Y, Zhang C, Xu Y, Chen Z, Wu X. Joint-GWAS, Linkage Mapping, and Transcriptome Analysis to Reveal the Genetic Basis of Plant Architecture-Related Traits in Maize. Int J Mol Sci 2024; 25:2694. [PMID: 38473942 DOI: 10.3390/ijms25052694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/04/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Plant architecture is one of the key factors affecting maize yield formation and can be divided into secondary traits, such as plant height (PH), ear height (EH), and leaf number (LN). It is a viable approach for exploiting genetic resources to improve plant density. In this study, one natural panel of 226 inbred lines and 150 family lines derived from the offspring of T32 crossed with Qi319 were genotyped by using the MaizeSNP50 chip and the genotyping by sequence (GBS) method and phenotyped under three different environments. Based on the results, a genome-wide association study (GWAS) and linkage mapping were analyzed by using the MLM and ICIM models, respectively. The results showed that 120 QTNs (quantitative trait nucleotides) and 32 QTL (quantitative trait loci) related to plant architecture were identified, including four QTL and 40 QTNs of PH, eight QTL and 41 QTNs of EH, and 20 QTL and 39 QTNs of LN. One dominant QTL, qLN7-2, was identified in the Zhangye environment. Six QTNs were commonly identified to be related to PH, EH, and LN in different environments. The candidate gene analysis revealed that Zm00001d021574 was involved in regulating plant architecture traits through the autophagy pathway, and Zm00001d044730 was predicted to interact with the male sterility-related gene ms26. These results provide abundant genetic resources for improving maize plant architecture traits by using approaches to biological breeding.
Collapse
Affiliation(s)
- Xuefeng Lu
- Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Crop Genetic Resources and Germplasm Innovation in Karst Region, Guiyang 550006, China
| | - Pengfei Liu
- Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Liang Tu
- Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Xiangyang Guo
- Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Angui Wang
- Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Yunfang Zhu
- Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Yulin Jiang
- Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Crop Genetic Resources and Germplasm Innovation in Karst Region, Guiyang 550006, China
| | - Chunlan Zhang
- Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Yan Xu
- Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Zehui Chen
- Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Xun Wu
- Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Crop Genetic Resources and Germplasm Innovation in Karst Region, Guiyang 550006, China
| |
Collapse
|
7
|
Leung HS, Chan LY, Law CH, Li MW, Lam HM. Twenty years of mining salt tolerance genes in soybean. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:45. [PMID: 37313223 PMCID: PMC10248715 DOI: 10.1007/s11032-023-01383-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/12/2023] [Indexed: 06/15/2023]
Abstract
Current combined challenges of rising food demand, climate change and farmland degradation exert enormous pressure on agricultural production. Worldwide soil salinization, in particular, necessitates the development of salt-tolerant crops. Soybean, being a globally important produce, has its genetic resources increasingly examined to facilitate crop improvement based on functional genomics. In response to the multifaceted physiological challenge that salt stress imposes, soybean has evolved an array of defences against salinity. These include maintaining cell homeostasis by ion transportation, osmoregulation, and restoring oxidative balance. Other adaptations include cell wall alterations, transcriptomic reprogramming, and efficient signal transduction for detecting and responding to salt stress. Here, we reviewed functionally verified genes that underly different salt tolerance mechanisms employed by soybean in the past two decades, and discussed the strategy in selecting salt tolerance genes for crop improvement. Future studies could adopt an integrated multi-omic approach in characterizing soybean salt tolerance adaptations and put our existing knowledge into practice via omic-assisted breeding and gene editing. This review serves as a guide and inspiration for crop developers in enhancing soybean tolerance against abiotic stresses, thereby fulfilling the role of science in solving real-life problems. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01383-3.
Collapse
Affiliation(s)
- Hoi-Sze Leung
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR People’s Republic of China
| | - Long-Yiu Chan
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR People’s Republic of China
| | - Cheuk-Hin Law
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR People’s Republic of China
| | - Man-Wah Li
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR People’s Republic of China
| | - Hon-Ming Lam
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR People’s Republic of China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518000 People’s Republic of China
| |
Collapse
|
8
|
Yang M, Chen J, Liu T, Xiang L, Zhou BF. Genome-Wide Identification and Expression Analysis of Calmodulin-Like Gene Family in Paspalums vaginatium Revealed Their Role in Response to Salt and Cold Stress. Curr Issues Mol Biol 2023; 45:1693-1711. [PMID: 36826054 PMCID: PMC9954852 DOI: 10.3390/cimb45020109] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/05/2023] [Accepted: 02/09/2023] [Indexed: 02/18/2023] Open
Abstract
The calmodulin-like (CML) family is an important calcium (Ca2+) sensor in plants and plays a pivotal role in the response to abiotic and biotic stresses. As one of the most salt-tolerant grass species, Paspalums vaginatum is resistant to multiple abiotic stresses, such as salt, cold, and drought. However, investigations of PvCML proteins in P. vaginatum have been limited. Based on the recently published P. vaginatum genome, we identified forty-nine PvCMLs and performed a comprehensive bioinformatics analysis of PvCMLs. The main results showed that the PvCMLs were unevenly distributed on all chromosomes and that the expansion of PvCMLs was shaped by tandem and segmental duplications. In addition, cis-acting element analysis, expression profiles, and qRT-PCR analysis revealed that PvCMLs were involved in the response to salt and cold stress. Most interestingly, we found evidence of a tandem gene cluster that independently evolved in P. vaginatum and may participate in cold resistance. In summary, our work provides important insight into how grass species are resistant to abiotic stresses such as salt and cold and could be the basis of further gene function research on CMLs in P. vaginatum.
Collapse
Affiliation(s)
- Meizhen Yang
- Guangdong Engineering Research Center for Grassland Science, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jingjin Chen
- Guangdong Engineering Research Center for Grassland Science, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Tingting Liu
- Guangdong Engineering Research Center for Grassland Science, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Leilei Xiang
- Guangdong Engineering Research Center for Grassland Science, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Biao-Feng Zhou
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Correspondence: ; Tel.: +86-17665141041
| |
Collapse
|
9
|
Sun X, Zheng HX, Li S, Gao Y, Dang Y, Chen Z, Wu F, Wang X, Xie Q, Sui N. MicroRNAs balance growth and salt stress responses in sweet sorghum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:677-697. [PMID: 36534087 DOI: 10.1111/tpj.16065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 11/10/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Salt stress is one of the major causes of reduced crop production, limiting agricultural development globally. Plants have evolved with complex systems to maintain the balance between growth and stress responses, where signaling pathways such as hormone signaling play key roles. Recent studies revealed that hormones are modulated by microRNAs (miRNAs). Previously, two sweet sorghum (Sorghum bicolor) inbred lines with different salt tolerance were identified: the salt-tolerant M-81E and the salt-sensitive Roma. The levels of endogenous hormones in M-81E and Roma varied differently under salt stress, showing a different balance between growth and stress responses. miRNA and degradome sequencing showed that the expression of many upstream transcription factors regulating signal transduction and hormone-responsive genes was directly induced by differentially expressed miRNAs, whose levels were very different between the two sweet sorghum lines. Furthermore, the effects of representative miRNAs on salt tolerance in sorghum were verified through a transformation system mediated by Agrobacterium rhizogenes. Also, miR-6225-5p reduced the level of Ca2+ in the miR-6225-5p-overexpressing line by inhibiting the expression of the Ca2+ uptake gene SbGLR3.1 in the root epidermis and affected salt tolerance in sorghum. This study provides evidence for miRNA-mediated growth and stress responses in sweet sorghum.
Collapse
Affiliation(s)
- Xi Sun
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, China University of Chinese Academy of Sciences, Beijing, 100081, China
| | - Hong-Xiang Zheng
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Simin Li
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Yinping Gao
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Yingying Dang
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Zengting Chen
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Fenghui Wu
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Xuemei Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, China University of Chinese Academy of Sciences, Beijing, 100081, China
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| |
Collapse
|
10
|
Zhao H, Gao Y, Du Y, Du J, Han Y. Genome-wide analysis of the CML gene family and its response to melatonin in common bean (Phaseolus vulgaris L.). Sci Rep 2023; 13:1196. [PMID: 36681714 PMCID: PMC9867747 DOI: 10.1038/s41598-023-28445-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
Calmodulin-like proteins (CML) are important calcium signal transduction proteins in plants. CML genes have been analyzed in several plants. However, little information on CML in Phaseolus vulgare is available. In this study, we identified 111 PvCMLs distributed on eleven chromosomes. Phylogenetic analysis classified them into seven subfamilies. Cis-acting element prediction showed that PvCML contained elements related to growth and development, response to abiotic stress and hormones. Moreover, the majority of PvCMLs showed different expression patterns in most of the nine tissues and developmental stages which indicated the role of PvCML in the growth and development of common bean. Additionally, the common bean was treated with melatonin by seed soaking, and root transcriptome at the 5th day and qRT-PCR of different tissue at several stages were performed to reveal the response of PvCML to the hormone. Interestingly, 9 PvCML genes of subfamily VI were detected responsive to exogenous melatonin, and the expression dynamics of nine melatonin response PvCML genes after seed soaking with melatonin were revealed. Finally, the protein interaction network analysis of nine melatonin responsive PvCMLs was constructed. The systematic analysis of the PvCML gene family provides theoretical support for the further elucidation of their functions, and melatonin response molecular mechanism of the CML family in P. vulgaris.
Collapse
Affiliation(s)
- Hongyan Zhao
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, People's Republic of China
- National Coarse Cereals Engineering Research Center, Daqing, 163319, Heilongjiang, People's Republic of China
| | - Yamei Gao
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in the Cold Region, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Yanli Du
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, People's Republic of China
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, People's Republic of China
| | - Jidao Du
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, People's Republic of China
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, People's Republic of China
| | - Yiqiang Han
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, People's Republic of China.
- National Coarse Cereals Engineering Research Center, Daqing, 163319, Heilongjiang, People's Republic of China.
| |
Collapse
|
11
|
Liu Y, Yin F, Liao L, Shuai L. Genome-wide identification and expression analysis of calmodulin-like proteins in cucumber. PeerJ 2023; 11:e14637. [PMID: 36655051 PMCID: PMC9841910 DOI: 10.7717/peerj.14637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/05/2022] [Indexed: 01/15/2023] Open
Abstract
Background The calmodulin-like (CML) protein is a crucial Ca2+-binding protein that can sense and conduct the Ca2+ signal in response to extracellular stimuli. The CML protein families have been identified and characterized in many species. Nevertheless, scarce information on cucumber CML is retrievable. Methods In this study, bioinformatic analyses, including gene structure, conserved domain, phylogenetic relationship, chromosome distribution, and gene synteny, were comprehensively performed to identify and characterize CsCML gene members. Spatiotemporal expression analysis in different organs and environment conditions were assayed with real-time quantitative polymerase chain reaction (qRT-PCR). Results Forty-four CsCMLs family members were well characterized, and the results showed that the 44 CsCML proteins contained one to four EF-hand domains without other functional domains. Most of the CsCML proteins were intron-less and unevenly distributed on seven chromosomes; two tandemly duplicated gene pairs and three segmentally duplicated gene pairs were identified in the cucumber genome. Cis-acting element analysis showed that the hormone, stress, and plant growth and development-related elements were in the promotor regions. In addition, spatiotemporal expression analysis revealed distinctive expression patterns for CsCML genes in different tissues and environmental conditions, and a putative protein interaction network also confirmed their potential role in responding to various stimuli. These results provide a foundation for understanding CsCMLs and provide a theoretical basis for further study of the physiological functions of CsCMLs.
Collapse
Affiliation(s)
- Yunfen Liu
- College of Food and Biological Engineering/Institute of Food Science and Engineering Techology, Hezhou University, Hezhou, Guangxi, China,Guangxi Key Laboratory of Health Care Food Science and Technology, Hezhou University, Hezhou, Guangxi, China
| | - Feilong Yin
- College of Food and Biological Engineering/Institute of Food Science and Engineering Techology, Hezhou University, Hezhou, Guangxi, China
| | - Lingyan Liao
- College of Food and Biological Engineering/Institute of Food Science and Engineering Techology, Hezhou University, Hezhou, Guangxi, China
| | - Liang Shuai
- College of Food and Biological Engineering/Institute of Food Science and Engineering Techology, Hezhou University, Hezhou, Guangxi, China,Guangxi Key Laboratory of Health Care Food Science and Technology, Hezhou University, Hezhou, Guangxi, China
| |
Collapse
|
12
|
Cao Y, Song H, Zhang L. New Insight into Plant Saline-Alkali Tolerance Mechanisms and Application to Breeding. Int J Mol Sci 2022; 23:ijms232416048. [PMID: 36555693 PMCID: PMC9781758 DOI: 10.3390/ijms232416048] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/02/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Saline-alkali stress is a widespread adversity that severely affects plant growth and productivity. Saline-alkaline soils are characterized by high salt content and high pH values, which simultaneously cause combined damage from osmotic stress, ionic toxicity, high pH and HCO3-/CO32- stress. In recent years, many determinants of salt tolerance have been identified and their regulatory mechanisms are fairly well understood. However, the mechanism by which plants respond to comprehensive saline-alkali stress remains largely unknown. This review summarizes recent advances in the physiological, biochemical and molecular mechanisms of plants tolerance to salinity or salt- alkali stress. Focused on the progress made in elucidating the regulation mechanisms adopted by plants in response to saline-alkali stress and present some new views on the understanding of plants in the face of comprehensive stress. Plants generally promote saline-alkali tolerance by maintaining pH and Na+ homeostasis, while the plants responding to HCO3-/CO32- stress are not exactly the same as high pH stress. We proposed that pH-tolerant or sensitive plants have evolved distinct mechanisms to adapt to saline-alkaline stress. Finally, we highlight the areas that require further research to reveal the new components of saline-alkali tolerance in plants and present the current and potential application of key determinants in breed improvement and molecular breeding.
Collapse
|
13
|
Characterization of the Calmodulin/Calmodulin-like Protein (CAM/CML) Family in Ginkgo biloba, and the Influence of an Ectopically Expressed GbCML Gene (Gb_30819) on Seedling and Fruit Development of Transgenic Arabidopsis. PLANTS 2022; 11:plants11111506. [PMID: 35684283 PMCID: PMC9183014 DOI: 10.3390/plants11111506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 12/05/2022]
Abstract
Calmodulins (CAMs) and calmodulin-like proteins (CMLs) can participate in the regulation of various physiological processes via sensing and decoding Ca2+ signals. To reveal the characteristics of the CAM/CML family in Ginkgo biloba, a comprehensive analysis was performed at the genome-wide level. A total of 26 CAMs/CMLs, consisting of 5 GbCAMs and 21 GbCMLs, was identified on 11 out of 12 chromosomes in G. biloba. They displayed a certain degree of multiplicity in their sequences, albeit with conserved EF hands. Collinearity analysis suggested that tandem rather than segmental or whole-genome duplications were likely to play roles in the evolution of the Ginkgo CAM/CML family. Furthermore, GbCAMs/GbCMLs were grouped into higher, lower, and moderate expression in magnitude. The cis-acting regulatory elements involved in phytohormone-responsiveness within GbCAM/GbCML promotors may explain their varied expression profiles. The ectopic expression of a GbCML gene (Gb_30819) in transgenic Arabidopsis led to phenotypes with significantly shortened root length and seedling height, and decreased yields of both pods and seeds. Moreover, an electrophoresis mobility shift assay demonstrated the Ca2+-binding activity of Gb_30819 in vitro. Altogether, these results contribute to insights into the characteristics of the evolution and expression of GbCAMs/GbCMLs, as well as evidence for Ca2+-CAM/CML pathways functioning within the ancient gymnosperm G. biloba.
Collapse
|
14
|
Ding H, Qian Y, Fang Y, Ji Y, Sheng J, Ge C. Characteristics of SlCML39, a Tomato Calmodulin-like Gene, and Its Negative Role in High Temperature Tolerance of Arabidopsis thaliana during Germination and Seedling Growth. Int J Mol Sci 2021; 22:ijms222111479. [PMID: 34768907 PMCID: PMC8584099 DOI: 10.3390/ijms222111479] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/19/2022] Open
Abstract
Calmodulin-like (CML) proteins are primary calcium sensors and function in plant growth and response to stress stimuli. However, so far, the function of plant CML proteins, including tomato, is still unclear. Previously, it was found that a tomato (Solanum lycopersicum) CML, here named SlCML39, was significantly induced by high temperature (HT) at transcription level, but its biological function is scarce. In this study, the characteristics of SlCML39 and its role in HT tolerance were studied. SlCML39 encodes a protein of 201 amino acids containing four EF hand motifs. Many cis-acting elements related to plant stress and hormone response appear in the promoter regions of SlCML39. SlCML39 is mainly expressed in the root, stem, and leaf and can be regulated by HT, cold, drought, and salt stresses as well as ABA and H2O2. Furthermore, heterologous overexpression of SlCML39 reduces HT tolerance in Arabidopsis thaliana at the germination and seedling growth stages. To better understand the molecular mechanism of SlCML39, the downstream gene network regulated by SlCML39 under HT was analyzed by RNA-Seq. Interestingly, we found that many genes involved in stress responses as well as ABA signal pathway are down-regulated in the transgenic seedlings under HT stress, such as KIN1, RD29B, RD26, and MAP3K18. Collectively, these data indicate that SlCML39 acts as an important negative regulator in response to HT stress, which might be mediated by the ABA signal pathway.
Collapse
Affiliation(s)
- Haidong Ding
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (Y.Q.); (Y.F.); (Y.J.); (J.S.)
- Correspondence: (H.D.); (C.G.); Tel./Fax: +86-514-8797-9204
| | - Ying Qian
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (Y.Q.); (Y.F.); (Y.J.); (J.S.)
| | - Yifang Fang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (Y.Q.); (Y.F.); (Y.J.); (J.S.)
| | - Yurong Ji
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (Y.Q.); (Y.F.); (Y.J.); (J.S.)
| | - Jiarong Sheng
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (Y.Q.); (Y.F.); (Y.J.); (J.S.)
| | - Cailin Ge
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (Y.Q.); (Y.F.); (Y.J.); (J.S.)
- Correspondence: (H.D.); (C.G.); Tel./Fax: +86-514-8797-9204
| |
Collapse
|
15
|
Raina M, Kumar A, Yadav N, Kumari S, Yusuf MA, Mustafiz A, Kumar D. StCaM2, a calcium binding protein, alleviates negative effects of salinity and drought stress in tobacco. PLANT MOLECULAR BIOLOGY 2021; 106:85-108. [PMID: 33629224 DOI: 10.1007/s11103-021-01131-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 02/09/2021] [Indexed: 05/20/2023]
Abstract
KEY MESSAGE Overexpression of StCaM2 in tobacco promotes plant growth and confers increased salinity and drought tolerance by enhancing the photosynthetic efficiency, ROS scavenging, and recovery from membrane injury. Calmodulins (CaMs) are important Ca2+ sensors that interact with effector proteins and drive a network of signal transduction pathways involved in regulating the growth and developmental pattern of plants under stress. Herein, using in silico analysis, we identified 17 CaM isoforms (StCaM) in potato. Expression profiling revealed different temporal and spatial expression patterns of these genes, which were modulated under abiotic stress. Among the identified StCaM genes, StCaM2 was found to have the largest number of abiotic stress responsive promoter elements. In addition, StCaM2 was upregulated in response to some of the selected abiotic stress in potato tissues. Overexpression of StCaM2 in transgenic tobacco plants enhanced their tolerance to salinity and drought stress. Accumulation of reactive oxygen species was remarkably decreased in transgenic lines compared to that in wild type plants. Chlorophyll a fluorescence analysis suggested better performance of photosystem II in transgenic plants under stress compared to that in wild type plants. The increase in salinity stress tolerance in StCaM2-overexpressing plants was also associated with a favorable K+/Na+ ratio. The enhanced tolerance to abiotic stresses correlated with the increase in the activities of anti-oxidative enzymes in transgenic tobacco plants. Overall, our results suggest that StCaM2 can be a novel candidate for conferring salt and drought tolerance in plants.
Collapse
Affiliation(s)
- Meenakshi Raina
- Department of Botany, Central University of Jammu, Rahya-Suchani (Bagla), Dist- Samba, Jammu and Kashmir, 181143, India
| | - Ashish Kumar
- Plant Molecular Biology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, Akbar Bhawan, Chanakyapuri, New Delhi, 110021, India
| | - Nikita Yadav
- Plant Molecular Biology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, Akbar Bhawan, Chanakyapuri, New Delhi, 110021, India
| | - Sumita Kumari
- Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu and Kashmir, India
| | - Mohd Aslam Yusuf
- Department of Bioengineering, Integral University, Dasauli, Kursi Road, Lucknow, 226026, India
| | - Ananda Mustafiz
- Plant Molecular Biology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, Akbar Bhawan, Chanakyapuri, New Delhi, 110021, India.
| | - Deepak Kumar
- Department of Botany, Central University of Jammu, Rahya-Suchani (Bagla), Dist- Samba, Jammu and Kashmir, 181143, India.
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
16
|
Zhang Y, Huang J, Hou Q, Liu Y, Wang J, Deng S. Isolation and Functional Characterization of a Salt-Responsive Calmodulin-Like Gene MpCML40 from Semi-Mangrove Millettia pinnata. Int J Mol Sci 2021; 22:3475. [PMID: 33801703 PMCID: PMC8036263 DOI: 10.3390/ijms22073475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/14/2022] Open
Abstract
Salt stress is a major increasing threat to global agriculture. Pongamia (Millettia pinnata), a semi-mangrove, is a good model to study the molecular mechanism of plant adaptation to the saline environment. Calcium signaling pathways play critical roles in the model plants such as Arabidopsis in responding to salt stress, but little is known about their function in Pongamia. Here, we have isolated and characterized a salt-responsive MpCML40, a calmodulin-like (CML) gene from Pongamia. MpCML40 protein has 140 amino acids and is homologous with Arabidopsis AtCML40. MpCML40 contains four EF-hand motifs and a bipartite NLS (Nuclear Localization Signal) and localizes both at the plasma membrane and in the nucleus. MpCML40 was highly induced after salt treatment, especially in Pongamia roots. Heterologous expression of MpCML40 in yeast cells improved their salt tolerance. The 35S::MpCML40 transgenic Arabidopsis highly enhanced seed germination rate and root length under salt and osmotic stresses. The transgenic plants had a higher level of proline and a lower level of MDA (malondialdehyde) under normal and stress conditions, which suggested that heterologous expression of MpCML40 contributed to proline accumulation to improve salt tolerance and protect plants from the ROS (reactive oxygen species) destructive effects. Furthermore, we did not observe any measurable discrepancies in the development and growth between the transgenic plants and wild-type plants under normal growth conditions. Our results suggest that MpCML40 is an important positive regulator in response to salt stress and of potential application in producing salt-tolerant crops.
Collapse
Affiliation(s)
- Yi Zhang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;
| | - Jianzi Huang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China;
| | - Qiongzhao Hou
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; (Q.H.); (Y.L.)
| | - Yujuan Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; (Q.H.); (Y.L.)
| | - Jun Wang
- CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Costal Zones, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;
| | - Shulin Deng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;
- Xiaoliang Research Station for Tropical Coastal Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510275, China
| |
Collapse
|
17
|
Chen J, Li X, Ye X, Guo P, Hu Z, Qi G, Cui F, Liu S. An S-ribonuclease binding protein EBS1 and brassinolide signaling are specifically required for Arabidopsis tolerance to bicarbonate. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1449-1459. [PMID: 33165537 DOI: 10.1093/jxb/eraa524] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/03/2020] [Indexed: 06/11/2023]
Abstract
Bicarbonate (NaHCO3) present in soils is usually considered to be a mixed stress for plants, with salts and high pH. NaHCO3-specific signaling in plants has rarely been reported. In this study, transcriptome analyses were conducted in order to identify NaHCO3-specific signaling in Arabidopsis. Weighted correlation network analysis was performed to isolate NaHCO3-specific modules in comparison with acetate treatment. The genes in the NaHCO3-root-specific module, which exhibited opposite expression to that in sodium acetate treatments, were further examined with their corresponding knock-out mutants. The gene Exclusively Bicarbonate Sensitive 1 (EBS1) encoding an S-ribonuclease binding protein, was identified to be specifically involved in plant tolerance to NaHCO3, but not to the other two alkaline salts, acetate and phosphate. We also identified the genes that are commonly regulated by bicarbonate, acetate and phosphate. Multiple brassinosteroid-associated gene ontology terms were enriched in these genes. Genetic assays showed that brassinosteroid signaling positively regulated plant tolerance to NaHCO3 stress, but negatively regulated tolerance to acetate and phosphate. Overall, our data identified bicarbonate-specific genes, and confirmed that alkaline stress is mainly dependent on the specificities of the weak acid ions, rather than high pH.
Collapse
Affiliation(s)
- Jipeng Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, China
| | - Xiaoxiao Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, China
| | - Xiaoxue Ye
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore
| | - Peng Guo
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, China
| | - Zhubing Hu
- State Key Laboratory of Cotton Biology, Department of Biology, Institute of Plant Stress Biology, Henan University, Kaifeng, China
| | - Guoning Qi
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, China
| | - Fuqiang Cui
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, China
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, China
| |
Collapse
|
18
|
Sun Q, Yu S, Guo Z. Calmodulin-Like (CML) Gene Family in Medicago truncatula: Genome-Wide Identification, Characterization and Expression Analysis. Int J Mol Sci 2020; 21:E7142. [PMID: 32992668 PMCID: PMC7582678 DOI: 10.3390/ijms21197142] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 01/02/2023] Open
Abstract
Calcium is an important second messenger in mediating adaptation responses of plants to abiotic and biotic stresses. Calmodulin-like (CML) protein is an important calcium-signaling protein that can sense and decode Ca2+ signal in plants. Medicago truncatula is a model legume plant; however, investigations of MtCML proteins are limited. Using genome analysis and BLAST database searches, fifty MtCML proteins that possess EF-hand motifs were identified. Phylogenetic analysis showed that CML homologs between M. truncatula, Arabidopsis thaliana and Oryza sativa shared close relationships. Gene structure analysis revealed that these MtCML genes contained one to four conserved EF-hand motifs. All MtCMLs are localized to eight chromosomes and underwent gene duplication. In addition, MtCML genes were differentially expressed in different tissues of M. truncatula. Cis-acting elements in promoter region and expression analysis revealed the potential response of MtCML protein to abiotic stress and hormones. The results provide a basis of further functional research on the MtCML gene family and facilitate their potential use for applications in the genetic improvement on M. truncatula in drought, cold and salt stress environments.
Collapse
Affiliation(s)
| | | | - Zhenfei Guo
- College of Grassland Science, Nanjing Agricultural University, Nanjing 210095, China; (Q.S.); (S.Y.)
| |
Collapse
|
19
|
Liu YT, Shi QH, Cao HJ, Ma QB, Nian H, Zhang XX. Heterologous Expression of a Glycine soja C2H2 Zinc Finger Gene Improves Aluminum Tolerance in Arabidopsis. Int J Mol Sci 2020; 21:E2754. [PMID: 32326652 PMCID: PMC7215988 DOI: 10.3390/ijms21082754] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/01/2020] [Accepted: 04/07/2020] [Indexed: 11/16/2022] Open
Abstract
Aluminum (Al) toxicity limits plant growth and has a major impact on the agricultural productivity in acidic soils. The zinc-finger protein (ZFP) family plays multiple roles in plant development and abiotic stresses. Although previous reports have confirmed the function of these genes, their transcriptional mechanisms in wild soybean (Glycine soja) are unclear. In this study, GsGIS3 was isolated from Al-tolerant wild soybean gene expression profiles to be functionally characterized in Arabidopsis. Laser confocal microscopic observations demonstrated that GsGIS3 is a nuclear protein, containing one C2H2 zinc-finger structure. Our results show that the expression of GsGIS3 was of a much higher level in the stem than in the leaf and root and was upregulated under AlCl3, NaCl or GA3 treatment. Compared to the control, overexpression of GsGIS3 in Arabidopsis improved Al tolerance in transgenic lines with more root growth, higher proline and lower Malondialdehyde (MDA) accumulation under concentrations of AlCl3. Analysis of hematoxylin staining indicated that GsGIS3 enhanced the resistance of transgenic plants to Al toxicity by reducing Al accumulation in Arabidopsis roots. Moreover, GsGIS3 expression in Arabidopsis enhanced the expression of Al-tolerance-related genes. Taken together, our findings indicate that GsGIS3, as a C2H2 ZFP, may enhance tolerance to Al toxicity through positive regulation of Al-tolerance-related genes.
Collapse
Affiliation(s)
- Yuan-Tai Liu
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China; (Y.-T.L.); (Q.-H.S.); (H.-J.C.); (Q.-B.M.)
- The Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou 510642, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- The Guangdong Subcenter of National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Qi-Han Shi
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China; (Y.-T.L.); (Q.-H.S.); (H.-J.C.); (Q.-B.M.)
- The Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou 510642, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- The Guangdong Subcenter of National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - He-Jie Cao
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China; (Y.-T.L.); (Q.-H.S.); (H.-J.C.); (Q.-B.M.)
- The Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou 510642, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- The Guangdong Subcenter of National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Qi-Bin Ma
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China; (Y.-T.L.); (Q.-H.S.); (H.-J.C.); (Q.-B.M.)
- The Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou 510642, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- The Guangdong Subcenter of National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Hai Nian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China; (Y.-T.L.); (Q.-H.S.); (H.-J.C.); (Q.-B.M.)
- The Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou 510642, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- The Guangdong Subcenter of National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Xiu-Xiang Zhang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China; (Y.-T.L.); (Q.-H.S.); (H.-J.C.); (Q.-B.M.)
- The Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou 510642, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- The Guangdong Subcenter of National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
20
|
Kanapin AA, Sokolkova AB, Samsonova AA, Shchegolkov AV, Boldyrev SV, Aupova AF, Khaitovich PE, Nuzhdin SV, Samsonova MG. Genetic Variants Associated with Productivity and Contents of Protein and Oil in Soybeans. Biophysics (Nagoya-shi) 2020. [DOI: 10.1134/s0006350920020074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
21
|
Genome-wide characterization of the AP2/ERF gene family in radish (Raphanus sativus L.): Unveiling evolution and patterns in response to abiotic stresses. Gene 2019; 718:144048. [DOI: 10.1016/j.gene.2019.144048] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 08/10/2019] [Accepted: 08/12/2019] [Indexed: 12/16/2022]
|
22
|
Ma Q, Xia Z, Cai Z, Li L, Cheng Y, Liu J, Nian H. GmWRKY16 Enhances Drought and Salt Tolerance Through an ABA-Mediated Pathway in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2019; 9:1979. [PMID: 30740122 PMCID: PMC6357947 DOI: 10.3389/fpls.2018.01979] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 12/20/2018] [Indexed: 05/19/2023]
Abstract
The WRKY transcription factors (TFs) are one of the largest families of TFs in plants and play multiple roles in plant development and stress response. In the present study, GmWRKY16 encoding a WRKY transcription factor in soybean was functionally characterized in Arabidopsis. GmWRKY16 is a nuclear protein that contains a highly conserved WRKY domain and a C2H2 zinc-finger structure, and has the characteristics of transcriptional activation ability, presenting a constitutive expression pattern with relative expression levels of over fourfold in the old leaves, flowers, seeds and roots of soybean. The results of quantitative real time polymerase chain reaction (qRT-PCR) showed that GmWRKY16 could be induced by salt, alkali, ABA, drought and PEG-6000. As compared with the control, overexpression of GmWRKY16 in Arabidopsis increased the seed germination rate and root growth of seedlings in transgenic lines under higher concentrations of mannitol, NaCl and ABA. In the meantime, GmWRKY16 transgenic lines showed over 75% survival rate after rehydration and enhanced Arabidopsis tolerance to salt and drought with higher proline and lower MDA accumulation, less water loss of the detached leaves, and accumulated more endogenous ABA than the control under stress conditions. Further studies showed that AtWRKY8, KIN1, and RD29A were induced in GmWRKY16 transgenic plants under NaCl treatment. The expressions of the ABA biosynthesis gene (NCED3), signaling genes (ABI1, ABI2, ABI4, and ABI5), responsive genes (RD29A, COR15A, COR15B, and RD22) and stress-related marker genes (KIN1, LEA14, LEA76, and CER3) were regulated in transgenic lines under drought stress. In summary, these results suggest that GmWRKY16 as a WRKY TF may promote tolerance to drought and salt stresses through an ABA-mediated pathway.
Collapse
Affiliation(s)
- Qibin Ma
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Zhenglin Xia
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Zhandong Cai
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Lu Li
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Yanbo Cheng
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Jia Liu
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Hai Nian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
23
|
La Verde V, Dominici P, Astegno A. Towards Understanding Plant Calcium Signaling through Calmodulin-Like Proteins: A Biochemical and Structural Perspective. Int J Mol Sci 2018; 19:E1331. [PMID: 29710867 PMCID: PMC5983762 DOI: 10.3390/ijms19051331] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 04/26/2018] [Accepted: 04/26/2018] [Indexed: 11/17/2022] Open
Abstract
Ca2+ ions play a key role in a wide variety of environmental responses and developmental processes in plants, and several protein families with Ca2+-binding domains have evolved to meet these needs, including calmodulin (CaM) and calmodulin-like proteins (CMLs). These proteins have no catalytic activity, but rather act as sensor relays that regulate downstream targets. While CaM is well-studied, CMLs remain poorly characterized at both the structural and functional levels, even if they are the largest class of Ca2+ sensors in plants. The major structural theme in CMLs consists of EF-hands, and variations in these domains are predicted to significantly contribute to the functional versatility of CMLs. Herein, we focus on recent advances in understanding the features of CMLs from biochemical and structural points of view. The analysis of the metal binding and structural properties of CMLs can provide valuable insight into how such a vast array of CML proteins can coexist, with no apparent functional redundancy, and how these proteins contribute to cellular signaling while maintaining properties that are distinct from CaM and other Ca2+ sensors. An overview of the principal techniques used to study the biochemical properties of these interesting Ca2+ sensors is also presented.
Collapse
Affiliation(s)
- Valentina La Verde
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy.
| | - Paola Dominici
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy.
| | - Alessandra Astegno
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy.
| |
Collapse
|
24
|
Shi Y, Yue X, An L. Integrated regulation triggered by a cryophyte ω-3 desaturase gene confers multiple-stress tolerance in tobacco. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2131-2148. [PMID: 29432580 PMCID: PMC6019038 DOI: 10.1093/jxb/ery050] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 02/02/2018] [Indexed: 05/16/2023]
Abstract
ω-3 fatty acid desaturases (FADs) are thought to contribute to plant stress tolerance mainly through linolenic acid (C18:3)-induced membrane stabilization, but a comprehensive analysis of their roles in stress adaptation is lacking. Here, we isolated a microsomal ω-3 FAD gene (CbFAD3) from a cryophyte (Chorispora bungeana) and elucidated its functions in stress tolerance. CbFAD3, exhibiting a high identity to Arabidopsis AtFAD3, was up-regulated by abiotic stresses. Its functionality was verified by heterogonous expression in yeast. Overexpression of CbFAD3 in tobacco constitutively increased C18:3 in both leaves and roots, which maintained the membrane fluidity, and enhanced plant tolerance to cold, drought, and salt stresses. Notably, the constitutively increased C18:3 induced a sustained activation of plasma membrane Ca2+-ATPase, thereby, changing the stress-induced Ca2+ signaling. The reactive oxygen species (ROS) scavenging system, which was positively correlated with the level of C18:3, was also activated in the transgenic lines. Microarray analysis showed that CbFAD3-overexpressing plants increased the expression of stress-responsive genes, most of which are affected by C18:3, Ca2+, or ROS. Together, CbFAD3 confers tolerance to multiple stresses in tobacco through the C18:3-induced integrated regulation of membrane, Ca2+, ROS, and stress-responsive genes. This is in contrast with previous observations that simply attribute stress tolerance to membrane stabilization.
Collapse
Affiliation(s)
- Yulan Shi
- Extreme Stress Resistance and Biotechnology Laboratory, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, PR China
| | - Xiule Yue
- School of Life Sciences, Lanzhou University, Lanzhou, PR China
| | - Lizhe An
- Extreme Stress Resistance and Biotechnology Laboratory, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, PR China
- School of Life Sciences, Lanzhou University, Lanzhou, PR China
| |
Collapse
|
25
|
Chen C, Yu Y, Ding X, Liu B, Duanmu H, Zhu D, Sun X, Cao L, Zaib-Un-Nisa, Li Q, Zhu Y. Genome-wide analysis and expression profiling of PP2C clade D under saline and alkali stresses in wild soybean and Arabidopsis. PROTOPLASMA 2018; 255:643-654. [PMID: 29052008 DOI: 10.1007/s00709-017-1172-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 10/02/2017] [Indexed: 06/07/2023]
Abstract
Protein phosphatase 2Cs (PP2Cs) belong to the largest protein phosphatase family in plants. Some members have been described as being negative modulators of plant growth and development, as well as responses to hormones and environmental stimuli. However, little is known about the members of PP2C clade D, which may be involved in the regulation of signaling pathways, especially in response to saline and alkali stresses. Here, we identified 13 PP2C orthologs from the wild soybean (Glycine soja) genome. We examined the sequence characteristics, chromosome locations and duplications, gene structures, and promoter cis-elements of the PP2C clade D genes in Arabidopsis and wild soybean. Our results showed that GsPP2C clade D (GsAPD) genes exhibit more gene duplications than AtPP2C clade D genes. Plant hormone and abiotic stress-responsive elements were identified in the promoter regions of most PP2C genes. Moreover, we investigated their expression patterns in roots, stems, and leaves. Quantitative real-time PCR analyses revealed that the expression levels of representative GsPP2C and AtPP2C clade D genes were significantly influenced by alkali and salt stresses, suggesting that these genes might be associated with or directly involved in the relevant stress signaling pathways. Our results established a foundation for further functional characterization of PP2C clade D genes in the future.
Collapse
Affiliation(s)
- Chao Chen
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yang Yu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xiaodong Ding
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Beidong Liu
- Department of chemistry and molecular biology, University of Gothenburg, S-413 90, Gothenburg, Sweden
| | - Huizi Duanmu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Dan Zhu
- College of Life Science, Qingdao Agricultural University, Qingdao, People's Republic of China
| | - Xiaoli Sun
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, People's Republic of China
| | - Lei Cao
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Zaib-Un-Nisa
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Qiang Li
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yanming Zhu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
26
|
Zhong C, Sun S, Yao L, Ding J, Duan C, Zhu Z. Fine Mapping and Identification of a Novel Phytophthora Root Rot Resistance Locus RpsZS18 on Chromosome 2 in Soybean. FRONTIERS IN PLANT SCIENCE 2018; 9:44. [PMID: 29441079 PMCID: PMC5797622 DOI: 10.3389/fpls.2018.00044] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/09/2018] [Indexed: 05/19/2023]
Abstract
Phytophthora root rot (PRR) caused by Phytophthora sojae is a major soybean disease that causes severe economic losses worldwide. Using soybean cultivars carrying a Rps resistance gene is the most effective strategy for controlling this disease. We previously detected a novel Phytophthora resistance gene, RpsZS18, on chromosome 2 of the soybean cultivar Zaoshu18. The aim of the present study was to identify and finely map RpsZS18. We used 232 F2:3 families generated from a cross between Zaoshu18 (resistant) and Williams (susceptible) as the mapping population. Simple sequence repeat (SSR) markers distributed on chromosome 2 were used to map RpsZS18. First, 12 SSR markers linked with RpsZS18 were identified by linkage analyses, including two newly developed SSR markers, ZCSSR33 and ZCSSR46, that flanked the gene at distances of 0.9 and 0.5 cM, respectively. Second, PCR-based InDel markers were developed based on sequence differences between the two parents and used to further narrow down the mapping region of RpsZS18 to 71.3 kb. Third, haplotype analyses were carried out in the RpsZS18 region using 14 soybean genotypes with whole-genome resequencing. We detected six genes with unique haplotype sequences in Zaoshu18. Finally, quantitative real-time PCR assays of the six genes revealed an EF-hand calcium-binding domain containing protein encoding gene (Glyma.02g245700), a pfkB carbohydrate kinase encoding gene (Glyma.02g245800), and a gene with no functional annotation (Glyma.02g246300), are putative candidate PRR resistance genes. This study provides useful information for breeding P. sojae-resistant soybean cultivars.
Collapse
Affiliation(s)
- Chao Zhong
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Suli Sun
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liangliang Yao
- Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, Jiamusi, China
| | - Junjie Ding
- Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, Jiamusi, China
| | - Canxing Duan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhendong Zhu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
27
|
Transcriptome analysis of genes involved in defense against alkaline stress in roots of wild jujube (Ziziphus acidojujuba). PLoS One 2017; 12:e0185732. [PMID: 28976994 PMCID: PMC5627934 DOI: 10.1371/journal.pone.0185732] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/18/2017] [Indexed: 11/19/2022] Open
Abstract
Wild jujube (Ziziphus acidojujuba Mill.) is highly tolerant to alkaline, saline and drought stress; however, no studies have performed transcriptome profiling to study the response of wild jujube to these and other abiotic stresses. In this study, we examined the tolerance of wild jujube to NaHCO3-NaOH solution and analyzed gene expression profiles in response to alkaline stress. Physiological experiments revealed that H2O2 content in leaves increased significantly and root activity decreased quickly during alkaline of pH 9.5 treatment. For transcriptome analysis, wild jujube plants grown hydroponically were treated with NaHCO3-NaOH solution for 0, 1, and 12 h and six transcriptomes from roots were built. In total, 32,758 genes were generated, and 3,604 differentially expressed genes (DEGs) were identified. After 1 h, 853 genes showed significantly different expression between control and treated plants; after 12 h, expression of 2,856 genes was significantly different. The expression pattern of nine genes was validated by quantitative real-time PCR. After gene annotation and gene ontology enrichment analysis, the genes encoding transcriptional factors, serine/threonine-protein kinases, heat shock proteins, cysteine-like kinases, calmodulin-like proteins, and reactive oxygen species (ROS) scavengers were found to be closely involved in alkaline stress response. These results will provide useful insights for elucidating the mechanisms underlying alkaline tolerance in wild jujube.
Collapse
|
28
|
Nisa ZU, Mallano AI, Yu Y, Chen C, Duan X, Amanullah S, Kousar A, Baloch AW, Sun X, Tabys D, Zhu Y. GsSNAP33, a novel Glycine soja SNAP25-type protein gene: Improvement of plant salt and drought tolerances in transgenic Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 119:9-20. [PMID: 28841544 DOI: 10.1016/j.plaphy.2017.07.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 07/30/2017] [Accepted: 07/31/2017] [Indexed: 05/23/2023]
Abstract
The N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) superfamily, specifically the SNAP25-type proteins and t-SNAREs, have been proposed to regulate cellular processes and plant resistance mechanisms. However, little is known about the role of SNAP25-type proteins in combating abiotic stresses, specifically in wild soybean. In the current study, the isolation and functional characterization of the putative synaptosomal-associated SNAP25-type protein gene GsSNAP33 from wild soybean (Glycine soja) were performed. GsSNAP33 has a molecular weight of 33,311 Da and comprises 300 amino acid residues along with Qb-Qc SNARE domains. Multiple sequence alignment revealed the highest similarity of the GsSNAP33 protein to GmSNAP33 (91%), VrSNAP33 (89%), PvSNAP33 (86%) and AtSNAP33 (63%). Phylogenetic studies revealed the abundance of SNAP33 proteins mostly in dicotyledons. Quantitative real-time PCR assays confirmed that GsSNAP33 expression can be induced by salt, alkali, ABA and PEG treatments and that GsSNAP33 is highly expressed in the pods, seeds and roots of Glycine soja. Furthermore, the overexpression of the GsSNAP33 gene in WT Arabidopsis thaliana resulted in increased germination rates, greater root lengths, improved photosynthesis, lower electrolyte leakage, higher biomass production and up-regulated expression levels of various stress-responsive marker genes, including KINI, COR15A, P5Cs, RAB18, RD29A and COR47 in transgenic lines compared with those in WT lines. Subcellular localization studies revealed that the GsSNAP33-eGFP fusion protein was localized to the plasma membrane, while eGFP was distributed throughout whole cytoplasm of onion epidermal cells. Collectively, our findings suggest that GsSNAP33, a novel plasma membrane protein gene of Glycine soja, might be involved in improving plant responses to salt and drought stresses in Arabidopsis.
Collapse
Affiliation(s)
- Zaib-Un Nisa
- Stress Physiology Lab, Government College Women University Faisalabad (GCWUF), Faisalabad, 38000, Pakistan; Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China.
| | - Ali Inayat Mallano
- Department of Biotechnology, Sindh Agriculture University Tandojaam, 71000, Hyderabad, Pakistan.
| | - Yang Yu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China.
| | - Chao Chen
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China.
| | - Xiangbo Duan
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China.
| | - Sikandar Amanullah
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China.
| | - Abida Kousar
- Stress Physiology Lab, Government College Women University Faisalabad (GCWUF), Faisalabad, 38000, Pakistan.
| | - Abdul Wahid Baloch
- Department of Plant Breeding and Genetics, Sindh Agriculture University Tandojaam, 71000, Hyderabad, Pakistan.
| | - Xiaoli Sun
- Agronomy College, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Dina Tabys
- College of Food Sciences, North East Agricultural University, Harbin, 15003, China.
| | - Yanming Zhu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
29
|
Guo M, Li S, Tian S, Wang B, Zhao X. Transcriptome analysis of genes involved in defense against alkaline stress in roots of wild jujube (Ziziphus acidojujuba). PLoS One 2017. [PMID: 28976994 DOI: 10.1371/journalpone0185732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023] Open
Abstract
Wild jujube (Ziziphus acidojujuba Mill.) is highly tolerant to alkaline, saline and drought stress; however, no studies have performed transcriptome profiling to study the response of wild jujube to these and other abiotic stresses. In this study, we examined the tolerance of wild jujube to NaHCO3-NaOH solution and analyzed gene expression profiles in response to alkaline stress. Physiological experiments revealed that H2O2 content in leaves increased significantly and root activity decreased quickly during alkaline of pH 9.5 treatment. For transcriptome analysis, wild jujube plants grown hydroponically were treated with NaHCO3-NaOH solution for 0, 1, and 12 h and six transcriptomes from roots were built. In total, 32,758 genes were generated, and 3,604 differentially expressed genes (DEGs) were identified. After 1 h, 853 genes showed significantly different expression between control and treated plants; after 12 h, expression of 2,856 genes was significantly different. The expression pattern of nine genes was validated by quantitative real-time PCR. After gene annotation and gene ontology enrichment analysis, the genes encoding transcriptional factors, serine/threonine-protein kinases, heat shock proteins, cysteine-like kinases, calmodulin-like proteins, and reactive oxygen species (ROS) scavengers were found to be closely involved in alkaline stress response. These results will provide useful insights for elucidating the mechanisms underlying alkaline tolerance in wild jujube.
Collapse
Affiliation(s)
- Mingxin Guo
- College of Life Science, Luoyang Normal University, Luoyang, Henan, China
| | - Shipeng Li
- College of Life Science, Luoyang Normal University, Luoyang, Henan, China
| | - Shan Tian
- College of Life Science, Luoyang Normal University, Luoyang, Henan, China
| | - Bei Wang
- College of Life Science, Luoyang Normal University, Luoyang, Henan, China
| | - Xusheng Zhao
- College of Life Science, Luoyang Normal University, Luoyang, Henan, China
| |
Collapse
|
30
|
Li T, Zhang J, Zhu H, Qu H, You S, Duan X, Jiang Y. Proteomic Analysis of Differentially Expressed Proteins Involved in Peel Senescence in Harvested Mandarin Fruit. FRONTIERS IN PLANT SCIENCE 2016; 7:725. [PMID: 27303420 PMCID: PMC4885882 DOI: 10.3389/fpls.2016.00725] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/11/2016] [Indexed: 05/15/2023]
Abstract
Mandarin (Citrus reticulata), a non-climacteric fruit, is an economically important fruit worldwide. The mechanism underlying senescence of non-climacteric fruit is poorly understood. In this study, a gel-based proteomic study followed by LC-ESI-MS/MS analysis was carried out to investigate the proteomic changes involved in peel senescence in harvested mandarin "Shatangju" fruit stored for 18 days. Over the course of the storage period, the fruit gradually senesced, accompanied by a decreased respiration rate and increased chlorophyll degradation and disruption of membrane integrity. Sixty-three proteins spots that showed significant differences in abundance were identified. The up-regulated proteins were mainly associated with cell wall degradation, lipid degradation, protein degradation, senescence-related transcription factors, and transcription-related proteins. In contrast, most proteins associated with ATP synthesis and scavenging of reactive oxygen species were significantly down-regulated during peel senescence. Three thioredoxin proteins and three Ca(2+) signaling-related proteins were significantly up-regulated during peel senescence. It is suggested that mandarin peel senescence is associated with energy supply efficiency, decreased antioxidant capability, and increased protein and lipid degradation. In addition, activation of Ca(2+) signaling and transcription factors might be involved in cell wall degradation and primary or secondary metabolism.
Collapse
Affiliation(s)
- Taotao Li
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of SciencesGuangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of SciencesGuangzhou, China
- College of Life Science, University of Chinese Academy of SciencesBeijing, China
| | - Jingying Zhang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of SciencesGuangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of SciencesGuangzhou, China
- College of Life Science, University of Chinese Academy of SciencesBeijing, China
| | - Hong Zhu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of SciencesGuangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of SciencesGuangzhou, China
| | - Hongxia Qu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of SciencesGuangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of SciencesGuangzhou, China
| | - Shulin You
- Zhangzhou Xiangcheng District Agricultural BureauFujian, China
| | - Xuewu Duan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of SciencesGuangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of SciencesGuangzhou, China
| | - Yueming Jiang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of SciencesGuangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of SciencesGuangzhou, China
| |
Collapse
|